IN VITRO CONSERVATION and PROTECTIVE EFFECT of Premna Serratifolia L

Total Page:16

File Type:pdf, Size:1020Kb

IN VITRO CONSERVATION and PROTECTIVE EFFECT of Premna Serratifolia L International Journal of Pharmaceutical Applications ISSN 0976-2639.Online ISSN 2278 – 6023 Vol 3, Issue 2, 2012, pp 332-343 http://www.bipublication.com IN VITRO CONSERVATION AND PROTECTIVE EFFECT OF Premna Serratifolia L. – AN IMPORTANT MEDICNAL TREE. *1C. Ravinder Singh, 2 R. Nelson, 1 N. Sithranga Boopathy, 1K. Kathiresan and 3Chinta.Sudheer Kumar *1 ,Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai- 608 502, Tamil Nadu, India. 2Department of Botany, Government Arts College, Ariyalur- 621 713, Tamil Nadu, India. 3Department of Bio- Technology, IST, University College of Engineering, JNTU-Kakinada, A.P-533 003. *1 Corresponding Author E- mail: [email protected] [Received 25/03/2012, Accepted27/04/12] ABSTRACT An attempt for conservation of medicinal important shrub Premna serratifolia L. through i n vitro morphogenesis was achieved from callus tissue derived from leaf explants, production of Luteolin through callus culture using different explants and screening of callus derived Luteolin for anti inflammatory effect of Premna serratifolia L. The leaf explants excised from 8 years old Premna serratifolia L. and achieved highest frequency of callus mass from MS medium supplemented with 3% sucrose as carbon source, 0.8% agar and 5.0mg/l IAA. Regeneration of adventitious buds from calli and maximum number of shoots were achieved when calli were cultured on MS medium fortified with 3.0mg/l BAP in combination with 0.5mg/l KN. Regenerated shoots produced prominent roots when they were transferred on MS medium with 1.0mg/l of NAA. Rooted plantlets, thus developed were hardened and successfully established in the soil. In this search 89% of field survivals have been achieved. Among the various callus extracts root and root callus found to be the best biomass source for luteolin production and this root and root callus extracts of Premna serratifolia L. augments that it is having good anti-inflammatory activity against carrageenan induced paw edema. Key Words : IAA: Indole-3- acetic acid, BAP: Benzyl amino purine, KN: Kinetin, paw edema. 1. INTRODUCTION notable interest in medicinal plants for its Medicinal plants are an important source of medicinal properties, approximately 85% of medicines and play a key role in world health traditional medicine preparations involve the use [1,2]. In the past few decades there has been a of plants or plant extracts [3]. Many traditional IN VITRO CONSERVATION AND PROTECTIVE EFFECT OF Premna Serratifolia L. plant based remedies are back in use and find and mass multiplication through controlled increasing application as, (i) source of direct environments. Advances in tissue culture, therapeutic agent (ii) as a raw material base for combined with improvement in genetic the elaboration of more complete semi-synthetic engineering, specifically transformation chemical (iii) as model for new synthetic technology, have opened new avenues for high compounds for the production [4]. Premna volume production of pharmaceuticals, serratifolia L. [syn. Premna obtusifolia R. Br., nutraceuticals, and other beneficial substances Premna taitensis Schauer., Premna. integrifolia [23]. Premna serratifolia L. is dwindling at an Var.] Shrub or small tree about 10 m tall. Leaves alarming rate due to overexploitation by the opposite, petiolate, blades elliptic to oblong, up to pharmaceutical industry and low seed viability 15 cm long and 9 cm wide, with base usually [24]. It is a vulnerable mangrove associates [25] cordate, and the tip pointed. Flowers minute, and also this important species listed in the Red white, 4-5 parted, borne in densely packed Data book of Andhra Pradesh, India [50]. clusters. Fruit is a black globose drupe to 8 mm Conventional breeding in some of the medicinal broad. Flowers and fruits are available throughout plants including Premna serratifolia is hampered the year, belonging to the family Lamiaceae due to poor seed viability and low percentage of (previously: Verbenaceae) is a native of Konkan germination through stem cutting [26]. near the sea from Bombay to Malacca, Immediate measures have to be taken to save widespread throughout the South Pacific, from these species from extinction . Application of India to Malaysia, South-East Asia, and Africa tissue culture methods used for conservation and [5,6]. Root, leaf and stem bark of the plant large scale propagation of plant species [27,28]. produce medicinal substances which are found to This is our second scientific report for possess anti-malarial, febrifuge, galactogenic and conservation of Premna serratifolia L. through in hypoglycemic activity [8-10]. Pepper along with vitro technique. The present search was leaf extract shown significant effects in patients undertaken in order to contribute in developing a of fever and cold, cough, constipation, low cost and efficient protocol for the in vitro Hypertension and cardiac insuffiency [10,11] conservation and screening of anti inflammatory Hepato protective activity [12-15] It is also used effect L. through callus extract of Premna in the ayurvedic preparation of arishtam, serratifolia L.. Kvatham, ghritham [16,17]. Cardio tonic 2. Materials and methods: [18].The decoction of roots is also used to treat Leaf explants were collected from the 8 years old gonorrhea [19], Cancer [20], anti- parasitic agent Premna serratifolia L. growing in [21] and used for infectious disease [22]. Keelathaniyam, Pudukottai District, Tamilnadu, Traditionally it is used to promote menstruation, India. For the present investigation shoot tip, to treat shortness of breath and illness after leaves, node, stem and root of Premna childbirth, to remedy deep pains in bones, to treat serratifolia were selected as the explants. The bone fractures, appendicitis, rheumatic aches, young leaf explants were collected and immersed swellings, headaches, diarrhoea, wounds, in water immediately then they were thoroughly migraine and testicles swollen from hernia and washed under running tap water for 30minutes. also used for the treatment of eye injuries and Teepol (2%) wash for 5minutes, leaf explants inflammations [5]. were sterilized with 80% ethanol for 30 seconds. Medicinal plant products have created a need for Followed by treatment with 0.1% (w/v) mercuric the development of solid scientific protocols for chloride solution (Qualigens, India) for 2-3 the phytochemical investigations and protections, minutes and then thorough washing with C. Ravinder Singh, et al 333 IN VITRO CONSERVATION AND PROTECTIVE EFFECT OF Premna Serratifolia L. sterilized double-distilled water using 5-10 fold 25 ± 1 oC under a relative humidity of 50 to 60% volume rinses to completely remove the mercuric and 12/12 – hour photoperiod, with irradiance of chloride. And inoculations of plant materials 30 µmol m 2 s-1 provided by cool white were carried out in clean laminar air flow fluorescent tubes (Philips India Ltd. Mumbai). chamber under aseptic condition. The callus growth was measured in terms of fresh and dry weight. Fresh weights of callus were 2.1. Methods and culture condition: taken after removing the excess of moisture on MS [29] salts and vitamin medium supplemented the surface using blotting paper. Dry weight of with 30% sucrose (w/v) (Qualigens, India) was callus was determined by drying in a hot air oven H used in all the experiments. P of the medium at 60 0C for 24 h. was adjusted to 5.7-5.8 with 0.1N NaOH or HCL perior to adding agar 0.8% (w/v), (Qualigens, 2.3. Plant materials preparation and India). Culture tubes were plugged with non- Chromatographic separation of Luteolin adsorbent cotton wrapped in double layered gauze cloth. The media was steam sterilized for The in vivo plant parts (leaf, stem and root) were 20 minutes at 121°C. All the culture tubes were collected from 8 years old tree and washed in tap incubated at 16-h photoperiod under illumination water and then chopped into small fragments. of cool-white fluorescent tube with a light Then materials were dried under shade conditions intensity of 3000 lux at 22±1°C. Cultures were for 30 days and the drying operation was carried examined regularly. All the experiments were out under controlled conditions to avoid chemical repeated thrice. Data which showed advantageous changes. The dried samples were powdered effect were induced in the tables and presented in roughly with hands. The powdered samples were mean±SE of 80 explants per treatment. Mean stored in polythene containers at room values with the same superscript were not temperature. The in vitro derived callus materials significantly different (p=0.05%) according to obtained from leaf stem and roots were dried in ο Duncan’s Multiple Range Test (DMRT). hot air oven at 50 C for 48 h. Then the dried 2.2. Luteolin production through callus callus materials were powdered using mortar and culture: pestle and the powdered samples were stored in Various explants (leaf, stem and root) of Premna polythene containers at room temperature. serratifolia L were excised into 0.5 – 1.5 cm long segments and small incision was made on the 2.4. Preparation of TLC plates (Harbone, surface of each explant using a surgical sterile 1998) blade. Stem and root explants were placed The glass plates to be used in TLC were cleaned horizontally on culture medium. In the case of carefully with ethanol in order to remove grease. leaf, the abaxial side of leaflet was in contact Then the slurry of silica gel G in water (20 g of with the medium. All the explants were cultured silica gel per plate) was shaken vigorously for 90 on MS basal medium supplemented with various seconds and coated on the plates to a thickness of concentrations of different auxins ranging from 0.5 mm using a commercial spreader. Then the 1.0 – 7.0 mg/l of 2.4-D, NAA, IAA and IBA for plates were activated at 105° C for 30 minutes callus initiation.
Recommended publications
  • Premna Odorata Volatile Oil As a New Mycobacterium Tuberculosis Growth Inhibitor for the Control of Tuberculosis Disease
    European Journal of Medicinal Plants 21(4): 1-11, 2017; Article no.EJMP.38375 ISSN: 2231-0894, NLM ID: 101583475 Premna odorata Volatile Oil as a New Mycobacterium tuberculosis Growth Inhibitor for the Control of Tuberculosis Disease Abeer H. Elmaidomy 1* , Hossam M. Hassan 1, Elham Amin 1, Waleed Mohamed 2 and Mona H. Hetta 3 1Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, 62514, Egypt. 2Department of Biochemistry, Kasr El-Eini Teaching Hospital, Cairo University, Egypt. 3Department of Pharmacognosy, Faculty of Pharmacy, Fayoum University, 63514, Egypt. Authors’ contributions This work was carried out in collaboration between all authors. Author MHH designed the work. Authors HMH and EA performed the data collection and GC/MS analysis. Author WM made MeDipro Mycobacterium tuberculosis antigen ELISA technique and PCR analysis. Author AHE wrote the manuscript. All authors read and approved the final manuscript. Article Information DOI: 10.9734/EJMP/2017/38375 Editor(s): (1) Daniela Rigano, Department of Chemistry of Natural Compounds, University Federico II of Naples, Italy. (2) Marcello Iriti, Professor, Plant Biology and Pathology, Department of Agricultural and Environmental Sciences, Milan State University, Italy. Reviewers: (1) Ayah Hilles, International Islamic University Malaysia, Malaysia. (2) Diana C. Tapia-Pancardo, National Autonomous University of México, México. Complete Peer review History: http://www.sciencedomain.org/review-history/22412 Received 23 rd November 2017 Accepted 19 th December 2017 Original Research Article Published 22 nd December 2017 ABSTRACT Aims: This study aimed to identify and compare Premna odorata Blanco volatile oil (VO) for the first time; isolated from different plant organs (leaves, young stems, and flowers) with evaluating the oil antituberculosis (anti-TB) activity.
    [Show full text]
  • Lamiales – Synoptical Classification Vers
    Lamiales – Synoptical classification vers. 2.6.2 (in prog.) Updated: 12 April, 2016 A Synoptical Classification of the Lamiales Version 2.6.2 (This is a working document) Compiled by Richard Olmstead With the help of: D. Albach, P. Beardsley, D. Bedigian, B. Bremer, P. Cantino, J. Chau, J. L. Clark, B. Drew, P. Garnock- Jones, S. Grose (Heydler), R. Harley, H.-D. Ihlenfeldt, B. Li, L. Lohmann, S. Mathews, L. McDade, K. Müller, E. Norman, N. O’Leary, B. Oxelman, J. Reveal, R. Scotland, J. Smith, D. Tank, E. Tripp, S. Wagstaff, E. Wallander, A. Weber, A. Wolfe, A. Wortley, N. Young, M. Zjhra, and many others [estimated 25 families, 1041 genera, and ca. 21,878 species in Lamiales] The goal of this project is to produce a working infraordinal classification of the Lamiales to genus with information on distribution and species richness. All recognized taxa will be clades; adherence to Linnaean ranks is optional. Synonymy is very incomplete (comprehensive synonymy is not a goal of the project, but could be incorporated). Although I anticipate producing a publishable version of this classification at a future date, my near- term goal is to produce a web-accessible version, which will be available to the public and which will be updated regularly through input from systematists familiar with taxa within the Lamiales. For further information on the project and to provide information for future versions, please contact R. Olmstead via email at [email protected], or by regular mail at: Department of Biology, Box 355325, University of Washington, Seattle WA 98195, USA.
    [Show full text]
  • Survey of Coastal Vegetation in Townsville City Council Reserve At
    Earthworks Environmental Services Pty Ltd ACN 082 707 533 Specialist Biological Consultants Survey of coastal vegetation in Townsville City Council Reserve at Rowes Bay Earthworks Report 00c01b to Townsville City Council October 2000 Prepared by Dr Con Lokkers for Earthworks Environmental Services Pty Ltd © Earthworks Environmental Services Pty Ltd & Townsville City Council. Apart from fair dealings for the purpose of private study, research, criticism or review as permitted under the Copyright Act, no part may be reproduced without written permission of Earthworks Environmental Services or Townsville City Council. Suite 104-105, T&G Building, 102 Stanley St, Townsville. Email: [email protected] PO Box 5225, Townsville Mail Centre. Qld. 4810. Phone: (07) 4771 4623. Fax: (07) 4771 4624 Rowes Bay flora survey 2 Methodology A field survey of vegetation was conducted on 3 May, 2000, for the Townsville City Council Sanitary Reserve, located between Rowes Bay and the Belgian Gardens Cemetery (Figure 1). Landforms included beach ridges, swales and swamps. Ten sites were surveyed to identify vegetation types and species composition. Species classification follows Henderson (1997). Naturalised species are identified by an asterisk (*) symbol. Each vegetation type is described and mapped using a tracing paper overlay of aerial photography (Figure 2). The relationships of the current vegetation communities to those mapped by Skull (1996) and the Regional Ecosystem (RE) model (Sattler & Williams 1999) are given in Table 1. Photographs of vegetation communities and noteworthy flora are presented in Appendix 1. The plant species recorded during this survey are listed in Table 2. The conservation significance of vegetation communities and species are discussed, and some general recommendations are given.
    [Show full text]
  • Phytochemical Analysis and Evaluation of Antioxidant Activity Of
    The Pharma Innovation Journal 2019; 8(5): 13-20 ISSN (E): 2277- 7695 ISSN (P): 2349-8242 NAAS Rating: 5.03 Phytochemical analysis and evaluation of antioxidant TPI 2019; 8(5): 13-20 © 2019 TPI activity of Premna latifolia Roxb. A medicinal plant www.thepharmajournal.com Received: 06-03-2019 (Family: Lamiaceae) Accepted: 07-04-2019 Pushpa Ruwali Pushpa Ruwali and Diksha Negi Department of Biotechnology, MB Government PG College, Haldwani, Uttarakhand, India Abstract Traditional medicine employing a plant-based system of treatment forms an important part of human Diksha Negi medicine system. The most common reason for utilizing traditional medicine is its non- toxic nature, Department of Biotechnology, closely resembles the patient ideology and allays concerns about the adverse effects of chemical MB Government PG College, medicines, satisfies the desire for more personalized health care, and allows greater public access to Haldwani, Uttarakhand, India health information. Plants and their bioactive principles have a long history of use in modern medicine and in certain systems of traditional medicine. Plant-derived substances have recently become of great interest owing to their versatile applications. The bark and leaves extract of Premna latifolia Roxb. with different solvents were investigated for their phytochemical and antioxidant potential. The phytochemical composition was carried on the bark and leaves extracts of Premna latifolia, revealed the presence of active ingredients such as Glycosides, Steroids, Saponins, Phenols, Flavonoids, Terpenoids, and Tannins. The bark and leaves extracts were also evaluated for antioxidant activities by DPPH radical and ABTS scavenging assay. Among four different solvents used, the maximum antioxidant activity found in methanolic extract followed by hexane, ethanol, and chloroform.
    [Show full text]
  • A Synopsis of the Genus Premna L. (Lamiaceae) in Thailand
    The Natural History Journal of Chulalongkorn University 9(2): 113-142, October 2009 ©2009 by Chulalongkorn University A Synopsis of the Genus Premna L. (Lamiaceae) in Thailand CHARAN LEERATIWONG1, PRANOM CHANTARANOTHAI2* AND ALAN J. PATON3 1Department of Biology, Faculty of Science, Prince of Songkla University, Songkhla 90112, Thailand. 2Applied Taxonomic Research Center, Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand. 3Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, United Kingdom. ABSTRACT.– A synopsis of the genus Premna in Thailand is taxonomically revised. Keys, notes on their distributional and ecological data, vernacular names and some illustrations are also provided. Twenty-three species and two varieties are enumerated, including seven endemic taxa: P. annulata, P. garrettii, P. interrupta var. smitinandii, P. paniculata, P. repens, P. serrata and P. siamensis. The former species P. dubia, P. amplectans & P. macrophylla var. glaberrima, P. macrophylla var. thailandica and P. quadridentata are reduced to the synonyms of P. collinsiae, P. herbacea, P. nana and P. trichostoma, respectively. KEY WORDS: Pupinidae, Taxonomy, Pollicaria mouhoti, Karyotype differentiation Leeratiwong et al. (2008) found one (P. INTRODUCTION subcapitata Rehd.) and three new records for Thailand (P. punctulata C.B. Clarke, P. The genus Premna L. belongs to the rabakensis Moldenke and P. stenobotrys family Lamiaceae with ca. 200 species Merr.), respectively. However, there is worldwide and is distributed chiefly in currently no available key to the species, tropical and subtropical Asia, Africa, whilst there are problems of doubtful or Australia and the Pacific Islands (Harley et unknown species, synonymy and al., 2004). The genus was first described by misidentification of species.
    [Show full text]
  • Premna Species: a Review
    J. Biol. Chem. Chron. 2015, 1(1), 55-59 ISSN (Print): 2454 – 7468 ISSN (Online): 2454 - 7476 www.eresearchco/jbcc/ Premna Species: A Review Atul Kabra1*, Ruchika Kabra1 and Uttam Singh Baghel2 1 Faculty of Pharmacy, Abhilashi University, Mandi, Himachal Pradesh) INDIA 2 Department of Pharmacy, Khalsa College of Pharmacy, Amritsar (Punjab) INDIA * Correspondance: E-mail: [email protected] (Received 12 May, 2015; Accepted 10 July, 2015; Published 17 July, 2015) ABSTRACT: Millions of people all over the world are using herbal medicines from thousands of years, due to their great interest in traditional medicines. They belief that herbal medicines might be effective in the treatment of cer- tain diseases(Calixto, 2000).The genus Premna contains 200 species under the family Verbenaceaeall over the world and out of that approximately 30 species are present in India. The Premna genus can be used traditionally in treat- ing various ailments like rheumatism, asthma, dropsy, cough, fever, boils and scrofulous disease’s.The different parts of the plant like leaves, stem, stem barks, root, root barks and wood have been used for extraction purpose. The chemical constituents or secondary metabolites found are mainly alkaloids, terpenoids, phenolic compounds, flavanoids and amino acids. The Pharmacological activities like anti-bacterial, anti-oxidant, anti-inflammatory, anti- hyperlipidemic and immuno-modulatory are mainly reported during in-vitro and in-vivo evaluation. Keywords: Premna; Verbenaceae; anti-inflammatory; Diuretics and anti-microbial. INTRODUCTION: Man and animals depends direct- longing to the family Verbenaceae was established by ly or indirectly on the plants for their existence. Our Linnaeus (1771) based on P.
    [Show full text]
  • 50159-001: Protecting and Investing in Natural Capital in Asia and The
    Technical Assistance Consultant’s Report Project Number: 50159-001 October 2019 Technical Assistance Number: 9461 Regional: Protecting and Investing in Natural Capital in Asia and the Pacific (Cofinanced by the Climate Change Fund and the Global Environment Facility) Prepared by: Lorenzo V. Cordova, Jr. MA and Prof. Pastor L. Malabrigo, Jr. PRO-SEEDS DEVELOPMENT ASSOCIATION, INC. Los Banos, Laguna, Philippines Asian Development Bank is the executing and implementing agency. This consultant’s report does not necessarily reflect the views of ADB or the Government concerned, and ADB and the Government cannot be held liable for its contents. (For project preparatory technical assistance: All the views expressed herein may not be incorporated into the proposed project’s design. Nature-Based Solutions for New Clark City ASSESSMENT OF DESIGN STANDARD AND GUIDELINES, AND SCOPING RESULTS OF PROPOSED SUSTAINABILITY MANAGEMENT UNIT Lorenzo V. Cordova, Jr. EnP Prof. Pastor L. Malabrigo, Jr. October 2019 A report submitted to: Asian Development Bank 1 Table of Contents I. Background and Introduction ............................................................................................................. 4 II. Overview of Activities and Framework ............................................................................................. 5 III. Assessment of Chapter 8 of New Clark City Phase 1 Design Standards and Guidelines ..... 7 3.1. Landscape beauty in harmony with nature ...................................................................................
    [Show full text]
  • Plants of Magnetic Island
    PLANTS OF MAGNETIC ISLAND 3rd EDITION BETSY R. JACKES SCHOOL OF MARINE and TROPICAL BIOLOGY JAMES COOK UNIVERSITY TOWNSVILLE QUEENSLAND 1 © James Cook University 2010 Jackes Betsy R (Betsy Rivers) Plants of Magnetic Island ISBN: 978-0-9808183-8-3 ACKNOWLEDGMENTS This publication is based on "Plants of Magnetic Island', Editions 1 (1987) and 2 (2003). To all those who have collected plants for the 1987 edition and subsequently my sincere thanks. Art work is by Ashley Field, Geoff Kelly and Norm Duke, with small sketches by myself. Other illustrations are based on photocopies and recently coloured scans of actual plants. Photographs of flowers chiefly by Andi Cairns, John Elliott, Chris Gardiner, Don Kinsey and Andrea Lim. The map was prepared by Adella Edwards, Cartography, James Cook University, modified from Sandercoe (1990) with permission of the Director, Queensland Herbarium. Andi Cairns provided valuable assistance with the layout and with suggestions on the manuscript. To all those who have suggested changes, who have provided lists of plants, particularly the staff of the Queensland Herbarium, my grateful thanks. Names updated 2021. 2 GUIDE TO THE PLANTS OF MAGNETIC ISLAND MANGROVES, DUNES AND WOODLANDS Betsy R. Jackes Magnetic Island (190 08 S, 1480 50 E), offshore from the north Queensland city of Townsville, was first named by Captain James Cook in 1770. He called it “Magnetical Point, land which has the appearance of an island”, because his compass moved erratically as he passed it. This large island, about 5,000 ha in area, rises to 493 m at Mt Cook, the highest point.
    [Show full text]
  • Premna Serratifolia Click on Images to Enlarge
    Species information Abo ut Reso urces Hom e A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Premna serratifolia Click on images to enlarge Family Lamiaceae Scientific Name Premna serratifolia L. Linnaeus, C. von (1771) Mantissa Plantarum : 253. Type: Habitat in India orientali. [given by A.A.Munir, J. Adelaide Bot. Gard. 7 (1984) 13 as Hermann s.n., from Ceylon; holo: LINN.]. Flower and buds. Copyright Barry Jago Common name Coastal Premna; Creek Premna; Bastard Guelder Stem Seldom exceeding 30 cm dbh. An orange layer normally visible just outside the subrhytidome layer and orange-brown stripes usually visible in the blaze. Leaves Younger leaf bearing twigs smooth and green with no lenticels apparent, older twigs with oval or slightly elongated lenticels. Leaf blades about 8-15 x 5-10 cm. Petioles about 1.5-4 cm long. Domatia, if present, are Fruit, several views and seed. Copyright W. T. Cooper inconspicuous tufts of hairs. Flowers Calyx obscurely 2-lipped or 3-lobed, about 2-2.5 mm long, +/- glabrous or obscurely puberulous on the outer surface. Corolla about 4-5 mm long, tube almost cylindrical, about 2-3 mm long, lobes about 1.3-1.7 mm long. Corolla bearded on the inner surface about the level of the staminal filaments. Stamens exserted, filaments glabrous, but villous towards the base, about 1.5-2.5 mm long. Ovary globose, glabrous, about 1- 1.3 mm diam. Style glabrous, about 3-4.5 mm long.
    [Show full text]
  • Phylogeny of Lamiidae Reveals Increased Resolution and Support for Internal Relationships That Have Remained Elusive
    American Journal of Botany 101(2): 287–299. 2014. P HYLOGENY OF LAMIIDAE 1 N ANCY F . R EFULIO-RODRIGUEZ 2 AND R ICHARD G. OLMSTEAD 2,3 2 Department of Biology, Box 355325, University of Washington, Seattle, Washington 98195 USA • Premise of the study: The Lamiidae, a clade composed of approximately 15% of all fl owering plants, consists of fi ve orders: Boraginales, Gentianales, Garryales, Lamiales, and Solanales; and four families unplaced in an order: Icacinaceae, Metteniusi- aceae, Oncothecaceae, and Vahliaceae. Our understanding of the phylogenetic relationships of Lamiidae has improved signifi - cantly in recent years, however, relationships among the orders and unplaced families of the clade remain partly unresolved. Here, we present a phylogenetic analysis of the Lamiidae based on an expanded sampling, including all families together, for the fi rst time, in a single phylogenetic analyses. • Methods: Phylogenetic analyses were conducted using maximum parsimony, maximum likelihood, and Bayesian approaches. Analyses included nine plastid regions ( atpB , matK , ndhF , psbBTNH , rbcL , rps4 , rps16 , trnL - F , and trnV - atpE ) and the mitochondrial rps3 region, and 129 samples representing all orders and unplaced families of Lamiidae. • Key results: Maximum Likelihood (ML) and Bayesian trees provide good support for Boraginales sister to Lamiales, with successive outgroups (Solanales + Vahlia) and Gentianales, together comprising the core Lamiidae. Early branching patterns are less well supported, with Garryales only poorly supported as sister to the above ‘core’ and a weakly supported clade composed of Icacinaceae, Metteniusaceae, and Oncothecaceae sister to all other Lamiidae. • Conclusions: Our phylogeny of Lamiidae reveals increased resolution and support for internal relationships that have remained elusive.
    [Show full text]
  • A Biogeographical Study on Tropical Flora of Southern China
    Received: 23 July 2017 | Revised: 21 September 2017 | Accepted: 8 October 2017 DOI: 10.1002/ece3.3561 ORIGINAL RESEARCH A biogeographical study on tropical flora of southern China Hua Zhu Center for Integrative Conservation, Xishuangbanna Tropical Botanical Abstract Garden, Chinese Academy of Sciences, The tropical climate in China exists in southeastern Xizang (Tibet), southwestern to Mengla, Yunnan, China southeastern Yunnan, southwestern Guangxi, southern Guangdon, southern Taiwan, Correspondence and Hainan, and these southern Chinese areas contain tropical floras. I checked and Zhu Hua, Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, synonymized native seed plants from these tropical areas in China and recognized Chinese Academy of Sciences, Mengla, 12,844 species of seed plants included in 2,181 genera and 227 families. In the tropical Yunnan, China. Email: [email protected] flora of southern China, the families are mainly distributed in tropical areas and extend into temperate zones and contribute to the majority of the taxa present. The genera Funding information National Natural Science Foundation of China, with tropical distributions also make up the most of the total flora. In terms of geo- Grant/Award Number: 41471051, 41071040, graphical elements, the genera with tropical Asian distribution constitute the highest 31170195 proportion, which implies tropical Asian or Indo- Malaysia affinity. Floristic composition and geographical elements are conspicuous from region to region due to different geo- logical history and ecological environments, although floristic similarities from these regions are more than 90% and 64% at the family and generic levels, respectively, but lower than 50% at specific level. These differences in the regional floras could be influ- enced by historical events associated with the uplift of the Himalayas, such as the southeastward extrusion of the Indochina geoblock, clockwise rotation and southeast- ward movement of Lanping–Simao geoblock, and southeastward movement of Hainan Island.
    [Show full text]
  • Identification of Acteoside As the Active Antioxidant Principle of Premna Serratifolia Root Wood Tissues
    Phytopharmacology 2013, 4(2), 228-236 Lekshmi et al. Identification of acteoside as the active antioxidant principle of Premna serratifolia root wood tissues Lekshmi V. Bose1, George K. Varghese2, Solomon Habtemariam3* 1School of Environmental Sciences, M. G. University, Kottayam, Kerala, India. 2Department of Botany, C. M.S. College, Kottayam, Kerala, India. 3Pharmacognosy Research Laboratories, Medway School of Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK. * Corresponding author: [email protected]; Tel: +44 208 331 8302; Fax: +44 208 331 9805 Received: 11 December 2012, Revised: 22 December 2012, Accepted: 23 December 2012 Abstract Premna serratifolia Linn. (syn: Premna integrifolia) is one the most widely used plant in the Ayurvedic system of medicine. Several pharmacological activities including antioxidant effects and phytochemical investigations have been previously reported for the various parts of plant, except the root woody tissues. In the present study, the antioxidant activity and active principle of the root woody tissues were investigated. Antioxidant effect was routi- nely monitored using the DPPH radical scavenging assay while phytochemical investigation was based on analysis using HPLC and Teledyne Isco flash chromatography system. Thro- ugh the use of comprehensive spectroscopy studies, the isolated active antioxidant principle was identified as acteoside (verbacoside). Aceoside, which was about four times more acti- ve (18.3 ± 3.7 µg/ml; 11.4 ± 2.3 µM) than the crude root wood extract (73.8 ± 2.4 µg/ml), could account for most of the reported pharmacological activity on P. serratifolia. Keywords: Premna serattifolia; Verbenaceae; antioxidant; root wood; acteoside; verbacoside Introduction The genus Premna (Verbenaceae) is widely distributed in tropical and subtropical regions of Africa, Asia, Australia and the Pacific islands (Kadareit, 2004).
    [Show full text]