Survey of Selected Phthalates

Total Page:16

File Type:pdf, Size:1020Kb

Survey of Selected Phthalates Survey of selected phthalates Part of the LOUS-review Environmental Project No. 1541, 2014 1 Survey of selected phthalates 1 Title: Authors and contributors: Survey of selected phthalates Sonja Hagen Mikkelsen Jakob Maag Jesper Kjølholt Carsten Lassen Christian Nyander Jeppesen Anna Juliane Clausen COWI A/S, Denmark Published by: The Danish Environmental Protection Agency Strandgade 29 1 401 Copenhagen K Denmark www.mst.dk/english Year: ISBN no. 2014 97 8-87-93026-95-7 Disclaimer: When the occasion arises, the Danish Environmental Protection Agency will publish reports and papers concerning research and development projects within the environmental sector, financed by study grants provided by the Danish Env ironmental Protection Agency. It should be noted that such publications do not necessarily reflect the position or opinion of the Danish Environmental Protection Agency. Howev er, publication does indicate that, in the opinion of the Danish Environmental Protection Agency, the conten t represents an important contribution to the debate surrounding Danish environmental policy. While the information provided in this report is believed to be accurate, the Danish Environmental Protection Agency disclaims any responsibility for possible inaccuracies or omissions and consequences that may flow from them. Neither the Danish Environmental Protection Agency nor COWI or any individual involved in the preparation of this publication shall be liable for any injury, loss, damage or prejudice of any kind that may be caused by persons who have acted based on their understanding of the information contained in this publication. Sources must be acknowledged. 2 Survey of selected phthalates Contents Preface ...................................................................................................................... 5 Conclusion and summary .......................................................................................... 9 Dansk resumé ......................................................................................................... 17 1. Introduction to the substance group ................................................................. 25 1 .1 Definition of the substances ............................................................................ 25 1 .2 Physical and chemical properties ...................................................................... 28 1 .3 Function of the substances for the main application areas...................................... 32 2. Regulatory framework...................................................................................... 35 2.1 Legislation................................................................................................... 35 2.1.1 Existing legislation ............................................................................ 35 2.1.2 Classification and labelling .................................................................. 40 2.1.3 REACH ........................................................................................... 42 2.1.4 Other legislation/initiatives ................................................................. 43 2.2 International agreements................................................................................ 44 2.3 Eco-labels.................................................................................................... 45 2.4 Summary and conclusions .............................................................................. 51 3. Manufacture and uses ...................................................................................... 53 3.1 Manufacturing.............................................................................................. 53 3.1.1 Manufacturing v olumes ...................................................................... 54 3.2 Import and export ......................................................................................... 57 3.2.1 Import and export of selected phthalates in Denmark ............................... 57 3.2.2 Import and export of the selected phthalates in EU................................... 58 3.3 Use ............................................................................................................ 60 3.3.1 Use in the EU ................................................................................... 60 3.3.2 Use in Denmark ................................................................................ 67 3.4 Historical trends in use .................................................................................. 72 3.5 Summary and conclusions .............................................................................. 73 4. Waste management .......................................................................................... 76 4.1 Waste from manufacture and use of selected phthalates ........................................ 76 4.2 Waste products from the use of selected phthalates in mixtures and articles .............. 76 4.3 Release of selected phthalates from waste disposal ............................................... 78 4.4 Summary and conclusions .............................................................................. 79 5. Environmental effects and exposure .................................................................80 5.1 Environmental hazard.................................................................................... 80 5.1 .1 Classification .................................................................................... 80 5.1 .2 Environmental effects ........................................................................ 81 5.2 Environmental fate........................................................................................ 83 5.3 Environmental exposure................................................................................. 84 5.3.1 Sources of releases............................................................................. 84 5.3.2 Monitoring data ................................................................................ 85 5.4 Environmental impact.................................................................................... 87 3 Survey of selected phthalates 3 5.5 Summary and conclusions .............................................................................. 87 6. Human health effects ....................................................................................... 88 6.1 Human health hazard .................................................................................... 88 6.1.1 Classification .................................................................................... 88 6.1.2 DEP................................................................................................ 89 6.1.3 DIPP............................................................................................... 94 6.1.4 DPHP ............................................................................................. 95 6.1.5 DMEP ............................................................................................. 96 6.1.6 DINP and DIDP ................................................................................ 98 6.2 Human exposure..........................................................................................1 01 6.2.1 Direct exposure pathway s ................................................................. 1 02 6.2.2 Indirect exposure pathways ............................................................... 1 02 6.3 Bio-monitoring data .................................................................................... 1 04 6.4 Human health impact .................................................................................. 1 07 6.5 Summary and conclusions ............................................................................ 1 08 7. Information on alternatives.............................................................................110 7 .1 Alternatives to DINP, DIDP and DPHP use in PVC ..............................................1 10 7 .2 General features of plasticisers relevant in substitution efforts...............................1 10 7 .3 Possible plasticiser alternatives to DINP, DIDP and DPHP in PVC.......................... 1 12 7 .4 Alternatives to DEP, DMEP and DIPP .............................................................. 1 19 7 .4.1 Alternative polymers .........................................................................1 25 7 .5 Historical and future trends ...........................................................................1 25 7 .5.1 Summary and conclusions................................................................. 1 26 8. Abbreviations and acronyms .......................................................................... 128 References ............................................................................................................ 130 Appendix 1: Background information to chapter 3 on legal framework ........... 137 Appendix 2: Danish proposal on criteria for endocrine disruptors .................. 143 4 Survey of selected phthalates Preface Background and objectives The Danish Environmental Protection Agency’s List of Undesirable Substances (LOUS) is intended as a guide for enterprises. It indicates substances of concern whose use should be reduced or eliminated completely. The first list was published in 1998 and updated versions have been published in 2000, 2004 and 2009. The latest version, LOUS 2009 (Danish EPA, 2011) includes 40 chemical substances
Recommended publications
  • 162 Part 175—Indirect Food Addi
    § 174.6 21 CFR Ch. I (4–1–19 Edition) (c) The existence in this subchapter B Subpart B—Substances for Use Only as of a regulation prescribing safe condi- Components of Adhesives tions for the use of a substance as an Sec. article or component of articles that 175.105 Adhesives. contact food shall not be construed as 175.125 Pressure-sensitive adhesives. implying that such substance may be safely used as a direct additive in food. Subpart C—Substances for Use as (d) Substances that under conditions Components of Coatings of good manufacturing practice may be 175.210 Acrylate ester copolymer coating. safely used as components of articles 175.230 Hot-melt strippable food coatings. that contact food include the fol- 175.250 Paraffin (synthetic). lowing, subject to any prescribed limi- 175.260 Partial phosphoric acid esters of pol- yester resins. tations: 175.270 Poly(vinyl fluoride) resins. (1) Substances generally recognized 175.300 Resinous and polymeric coatings. as safe in or on food. 175.320 Resinous and polymeric coatings for (2) Substances generally recognized polyolefin films. as safe for their intended use in food 175.350 Vinyl acetate/crotonic acid copoly- mer. packaging. 175.360 Vinylidene chloride copolymer coat- (3) Substances used in accordance ings for nylon film. with a prior sanction or approval. 175.365 Vinylidene chloride copolymer coat- (4) Substances permitted for use by ings for polycarbonate film. 175.380 Xylene-formaldehyde resins con- regulations in this part and parts 175, densed with 4,4′-isopropylidenediphenol- 176, 177, 178 and § 179.45 of this chapter.
    [Show full text]
  • Survey and Risk Assessment of Chemical Substances in Rugs for Children
    Survey and risk assessment of chemical substances in rugs for children Survey of chemical substances in consumer products No. 147, 2016 Titel: Forfattere: Survey and risk assessment of chemical substances Helene Bendstrup Klinke, Sie Woldum Tordrup, Thomas Witterseh, in rugs for children Johnny Rodam, Nils H. Nilsson -Danish Technological Institute Poul Bo Larsen - DHI Udgiver: The Danish Environmental Protection Agency Strandgade 29 1401 København K www.mst.dk År: ISBN nr. 2016 978-87-93435-98-8 Disclaimer: The Danish Environmental Protection Agency publishes reports and papers about research and development projects within the environmental sector, financed by the Agency. The contents of this publication do not necessarily represent the official views of the Danish Environmental Protection Agency. By publishing this report, the Danish Environmental Protection Agency expresses that the content represents an important contribution to the related discourse on Danish environmental policy. Sources must be acknowledged. 2 Survey and risk assessment of chemical substances in rugs for children Contents Contents .................................................................................................................... 3 Preface ...................................................................................................................... 6 Summary and Conclusion .......................................................................................... 7 Sammenfatning og konklusion ................................................................................
    [Show full text]
  • 1. PUBLIC HEALTH STATEMENT This Statement Was Prepared to Give
    OTTO FUEL II AND ITS COMPONENTS 1 1. PUBLIC HEALTH STATEMENT This statement was prepared to give you information about Otto Fuel II and its components, and to emphasize the human health effects that may result from exposure to them. The Environmental Protection Agency (EPA) has identified 1,397 hazardous waste sites as the most serious in the nation. These sites make up the National Priorities List (NPL) and are the sites targeted for long-term federal clean-up activities. Otto Fuel II has been found at two of the sites on the NPL. However, the number of NPL sites evaluated for Otto Fuel II and its components is not known. As EPA evaluates more sites, the number of sites at which Otto Fuel II and its components are found may increase. This information is important for you to know because Otto Fuel II and its components may cause harmful health effects and because these sites are potential or actual sources of human exposure to Otto Fuel II and its components. When a chemical is released from a large area, such as an industrial plant, or from a container, such as a drum or bottle, it enters the environment as a chemical emission. This emission, which is also called a release, does not always lead to exposure. You can be exposed to a chemical only when you come into contact with the chemical. You may be exposed to it in the environment by breathing, eating or drinking substances containing the chemical, or from skin contact with it. If you are exposed to a hazardous chemical such as Otto Fuel II and its components, several factors will determine whether harmful health effects will occur, and what the type and severity of those health effects will be.
    [Show full text]
  • Polyvinylchloride, Phthalates and Packaging
    Page 29 | Bulletin 86 | July 2014 Polyvinylchloride, phthalates and packaging Plastics are synthetic resins, are either thermosetting or thermoplastic. Thermoplastic resins can be re-softened by heating, and include polyethylene (PE), polystyrene (PS), polypropylene (PP), and polyvinylchloride (PVC) which is very widely used in disposable medical devices. Polyvinylchloride (PVC) Di(2-ethylhexyl) phthalate (DEHP) Vinyl chloride (CH2=CHCl or chloroethylene) DEHP (sometimes referred to as bis is polymerized by free-radical initiators to (2-ethylhexyl) phthalate) is the diester of open the double bond and to link together phthalic acid and 2 ethylhexanol (Figure 2). vinyl chloride monomers, to form repeating Dr A M Walton units of polymers (Figure 1). Figure 2 The structure of di(2-ethylhexyl) phthalate DEHP. Anaesthesia ST 7, Figure 1 The phthalic moiety is common to all phthalates; University Hospital The chemical structure of vinyl chloride and PVC the pair of symmetrical aliphatic chains depends Southampton on the esterified alcohol PVC is a rigid structure at room temperature. Heating gives the molecules energy, widens the distance between between the molecules and softens the resin. To give PVC flexibility at room and body temperatures, plasticisers Dr J M T Pierce are added non-covalently to the PVC when Consultant Anaesthetist, At room temperature it is a colourless, oil- University Hospital molten and serve as molecular spacers so soluble viscous liquid and is used to form Southampton; RCoA when cooled the polymer has a softness even up to 40% of the mass of the PVC product. Environmental Advisor at room temperatures. The most commonly The annual global production of DEHP is used plasticisers are phthalates.
    [Show full text]
  • Selected Plasticisers and Additional Sweeteners in the Nordic Environment Selected Plasticisers and Additional Sweeteners in the Nordic Environment
    TemaNord 2013:505 TemaNord Ved Stranden 18 DK-1061 Copenhagen K www.norden.org Selected Plasticisers and Additional Sweeteners in the Nordic Environment Selected Plasticisers and Additional Sweeteners in the Nordic Environment The report Selected plasticisers and additional sweeteners in the Nordic Environment describes the findings of a Nordic environmental study. The study has been done as a screening, that is, it provides a snapshot of the occurrence of selected plasticisers and sweeteners, both in regions most likely to be polluted as well as in some very pristine environments. The pla- sticisers analysed were long chained phthalates and adipates, and the sweeteners analysed were aspartame, cyclamate and sucralose. The purpose of the screening was to elucidate levels and pathways of hitherto unrecognized pollutants. Thus the samples analysed were taken mainly from sewage lines, but also in recipients and biota, both in assumed hot-spot areas and in background areas. TemaNord 2013:505 ISBN 978-92-893-2464-9 ISBN 978-92-893-2464-9 9 789289 324649 TN2013505 omslag.indd 1 18-02-2013 10:25:36 Selected Plasticisers and Additional Sweeteners in the Nordic Environment Mikael Remberger, Lennart Kaj, Katarina Hansson, Hanna Andersson and Eva Brorström-Lundén, IVL Swedish Environmental Research Institute, Helene Lunder and Martin Schlabach, NILU, Norwegian Institute for Air Research TemaNord 2013:505 Selected Plasticisers and Additional Sweeteners in the Nordic Environment Mikael Remberger, Lennart Kaj, Katarina Hansson, Hanna Andersson and Eva Brorström-Lundén, IVL Swedish Environmental Research Institute, Helene Lunder and Martin Schlabach, NILU, Norwegian Institute for Air Research ISBN 978-92-893-2464-9 http://dx.doi.org/10.6027/TN2013-505 TemaNord 2013:505 © Nordic Council of Ministers 2013 Layout: Hanne Lebech/NMR Cover photo: Image Select Print: Rosendahls-Schultz Grafisk Copies: 150 Printed in Denmark This publication has been published with financial support by the Nordic Council of Ministers.
    [Show full text]
  • Common Chemical Additives in Plastics
    Journal of Hazardous Materials 344 (2018) 179–199 Contents lists available at ScienceDirect Journal of Hazardous Materials j ournal homepage: www.elsevier.com/locate/jhazmat Review An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling a,∗ a,∗ b a a John N. Hahladakis , Costas A. Velis , Roland Weber , Eleni Iacovidou , Phil Purnell a School of Civil Engineering, University of Leeds, Woodhouse Lane, LS2 9JT, Leeds, United Kingdom b POPs Environmental Consulting, Lindenfirststr. 23, D.73527, Schwäbisch Gmünd, Germany h i g h l i g h t s g r a p h i c a l a b s t r a c t • Plastics are important in our society providing a range of benefits. • Waste plastics, nowadays, burden the marine and terrestrial environment. • Additives and PoTSs create complica- tions in all stages of plastics lifecycle. • Inappropriate use, disposal and recy- cling may lead to undesirable release of PoTSs. • Sound recycling of plastics is the best waste management and sustainable option. a r t i c l e i n f o a b s t r a c t Article history: Over the last 60 years plastics production has increased manifold, owing to their inexpensive, multipur- Received 22 July 2017 pose, durable and lightweight nature. These characteristics have raised the demand for plastic materials Received in revised form 2 October 2017 that will continue to grow over the coming years. However, with increased plastic materials production, Accepted 7 October 2017 comes increased plastic material wastage creating a number of challenges, as well as opportunities to Available online 9 October 2017 the waste management industry.
    [Show full text]
  • Analysis of PFAS, Phthalates, Alternative Plasticizers and Organophosphate Esters in Sludge
    No. U 6235 January 2020 Analysis of PFAS, phthalates, alternative plasticizers and organophosphate esters in sludge Commissioned by Naturvårdsverket Georgios Giovanoulis, Jenny Aasa, Jon Benskin, Merle Plassmann, Minh Nguyen, Raed Awad and Robin Vestergren Author: Georgios Giovanoulis, Jenny Aasa, Minh Nguyen, and Robin Vestergren Commissioned by Naturvårdsverket Project Participants: Naturvårdsverket Report number: U 6235 © IVL Swedish Environmental Research Institute 2020 IVL Swedish Environmental Research Institute Ltd., P.O Box 210 60, S-100 31 Stockholm, Sweden Phone +46-(0)10-788 65 00 // www.ivl.se This report has been reviewed and approved in accordance with IVL's audited and approved management system. Table of contents Summary ................................................................................................................................ 4 Sammanfattning ..................................................................................................................... 5 1 Introduction ..................................................................................................................... 6 2 Materials & Methods ...................................................................................................... 8 2.1 Sampling ............................................................................................................................................ 8 2.2 Extraction and analysis of phthalates, alternative plasticizers and organophosphate esters .................................................................................................................................................
    [Show full text]
  • Four Plastics Exempted from CPSIA Third Party Testing of Phthalates
    Issue No.: 05/16/TCD Four Plastics Exempted from CPSIA Third Party Testing of Phthalates A Notice of Proposed Rulemaking exempting four plastics from phthalates testing under the CPSIA was approved by the Consumer Product Safety Commission (CPSC) on 9 August 2016. The decision came following a research conducted by the Toxicology Excellence for Risk Assessment (TERA) and other similar researches by the CPSC on the presence of eleven phthalates in four plastics used in children’s toys and child care articles. Once the rule has been approved, manufacturers shall not be required to conduct third-party testing in assuring compliance with the phthalate prohibitions for these four plastics. These four exempted plastics are: ¾ Polypropylene (PP) ¾ Polyethylene (PE) ¾ High Impact Polystyrene (HIPS) ¾ Acrylonitrile Butadiene Styrene (ABS) However, products made from the above plastics must continue to comply with Section 108 of CPSIA in which the “accessible plasticized component parts and other component parts made of materials that may contain phthalates” shall not contain any of the prohibited phthalates in concentration greater than 0.1% in children’s toys and child care articles. The six prohibited phthalates are: CPSIA Section 108 Phthalates Limit Permanent ban for use in children’s DEHP: di-(2-ethylhexyl) phthalate 0.1% toys or child care articles DBP: dibutyl phthalate 0.1% BBP: benzyl butyl phthalate 0.1% Interim ban for use in toys that can be DINP: diisononyl phthalate 0.1% put in the mouth or child care articles DIDP: diisodecyl phthalate 0.1% DnOP: di-n-octyl phthalate 0.1% Phthalates are generally used as plasticizers or softener of certain plastics.
    [Show full text]
  • CVS Store Brand Restricted Substances List
    CVS Store Brand Restricted Substances List The following ingredients are restricted from select CVS Store Brand Baby & Child, Beauty, Personal Care, Foods, Suncare, Household, and Bottled Spring Water Products. This list is updated annually, in May. Baby & Child Products (non-medicated products, e.g., shampoos, lotions, wipes) California Proposition 65 Banned Chemicals (e.g., Toluene, Multiple Styrene, BPA) ii Formaldehyde 50-00-0 Dimethyl-dimethyl (DMDM) Hydantoin 6440-58-0 Imidazolidinyl Urea 39236-46-9 Diazolidinyl Urea 78491-02-8 Sodium Hydroxymethylglycinate 70161-44-3 Formaldehyde 2-bromo-2-nitropropane-1,3-diol (Bronopol) 52-51-7 and donors Quaternium-15 4080-31-3 Glyoxal 107-22-2 Polyoxymethylene Urea 68611-64-3 5-Bromo-5-Nitro-1,3 Dioxane (Bronidox) 30007-47-7 Methylene glycol (methanediol) 463-57-0 Methenamine 100-97-0 Ethylparaben 120-47-8 Butylparaben 94-26-8 Methylparaben 99-76-3 Propylparaben 94-13-3 Heptylparaben 1085-12-7 Isobutylparaben 4247-02-3 Isopropylparaben 4191-73-5 Parabens Benzylparaben 94-18-8 Octylparaben 1219-38-1 Pentylparaben 6521-29-5 Phenylparaben 17696-62-7 Isodecylparaben 2664-60-0 Calcium Paraben 69959-44-0 Potassium Paraben 16782-08-4 5026-62-0 35285-69-9 Sodium Parabens 35285-68-8 36457-20-2 Hexamidine Paraben Not Found Hexamidine Diparaben 93841-83-9 Undecylenoyl PEG 5 Paraben Not Found Phenoxyethylparaben 55468-88-7 4-Hydroxybenzoic acid 99-96-7 Di-2-ethylhexyl phthalate (DEHP) 117-81-7 Benzyl butyl phthalate (BBP) 85-68-7 Di-n-butyl phthalate (DBP) 84-74-2 Diisodecyl phthalate (DIDP) 26761-40-0
    [Show full text]
  • Acetyl Tributyl Citrate | C20H34O8 - Pubchem
    12/31/2020 Acetyl tributyl citrate | C20H34O8 - PubChem COVID-19 is an emerging, rapidly evolving situation. Get the latest public health information from CDC: https://www.coronavirus.gov. Get the latest research from NIH: https://www.nih.gov/coronavirus. COMPOUND SUMMARY Acetyl tributyl citrate PubChem CID 6505 Structure 2D Find Similar Structures Chemical Safety Laboratory Chemical Safety Summary (LCSS) Datasheet Molecular Formula C20H34O8 ACETYL TRIBUTYL CITRATE 77-90-7 tributyl 2-acetoxypropane-1,2,3-tricarboxylate Synonyms Tributyl O-acetylcitrate Acetyltributyl citrate More... Molecular Weight 402.5 g/mol Modify Create Dates 2020-12-26 2005-03-26 https://pubchem.ncbi.nlm.nih.gov/compound/6505 1/46 12/31/2020 Acetyl tributyl citrate | C20H34O8 - PubChem 1 Structures 1.1 2D Structure Chemical Structure Depiction PubChem 1.2 3D Status Conformer generation is disallowed since too flexible PubChem https://pubchem.ncbi.nlm.nih.gov/compound/6505 2/46 12/31/2020 Acetyl tributyl citrate | C20H34O8 - PubChem 2 Names and Identifiers 2.1 Computed Descriptors 2.1.1 IUPAC Name tributyl 2-acetyloxypropane-1,2,3-tricarboxylate Computed by LexiChem 2.6.6 (PubChem release 2019.06.18) PubChem 2.1.2 InChI InChI=1S/C20H34O8/c1-5-8-11-25-17(22)14-20(28-16(4)21,19(24)27-13-10-7-3)15-18(23)26-12-9-6-2/h5-15H2,1-4H3 Computed by InChI 1.0.5 (PubChem release 2019.06.18) PubChem 2.1.3 InChI Key QZCLKYGREBVARF-UHFFFAOYSA-N Computed by InChI 1.0.5 (PubChem release 2019.06.18) PubChem 2.1.4 Canonical SMILES CCCCOC(=O)CC(CC(=O)OCCCC)(C(=O)OCCCC)OC(=O)C Computed
    [Show full text]
  • Polymer Compositions
    Europaisches Patentamt European Patent Office © Publication number: 0 434 067 A2 Office europeen des brevets © EUROPEAN PATENT APPLICATION © Application number: 90124972.272.2 © int. ci.s: C08K 5/13, C08L 37/00 © Date of filing: 20.12.90 © Priority: 21.12.89 JP 334449/89 © Applicant: KURARAY Co. LTD. 1621 Sakazu Kurashiki-shi @ Date of publication of application: Okayama 710(JP) 26.06.91 Bulletin 91/26 © Inventor: Matsumoto, Mitsuo © Designated Contracting States: 1505-9, Mitzue, Kurashiki-shi DE FR GB IT NL Okayama 710(JP) Inventor: Sanda, Fumio Sun-mall Tsukumi 101, 4-21-17, Chuorinkan, Yamato-shi Kanagawa 242(JP) © Representative: Vossius & Partner Siebertstrasse 4 P.O. Box 86 07 67 W-8000 Munchen 86(DE) © Polymer compositions. © Polymer compositions comprising a polymer (A) having a repeating structure unit of the formula (I) in the main chain r R5 R8 \ (I) CM < CO o wherein Ft1, R2, R3, R+, R5 and Rs are respectively a hydrogen atom or a lower alkyl, and at least one species selected from the group consisting of a phenol compound and a plasticizer. The polymer compositions of the contained therein in CO present invention disintegrate themselves due to decomposition of the polymer (A) ft atmosphere, soil or water and thus, they are useful as materials for disposable moldings. 111 Xerox Copy Centre EP 0 434 067 A2 POLYMER COMPOSITIONS The present invention relates to polymer compositions comprising a polymer having a tetrahydrofuran skeleton, and at least one species selected from the group of a plasticizer and a phenol compound of a specific structure.
    [Show full text]
  • PINK BOOK 3 Sebacic Acid/Dicarboxylic Acids CIR EXPERT PANEL MEETING AUGUST 30-31, 2010
    PINK BOOK 3 Sebacic Acid/Dicarboxylic Acids CIR EXPERT PANEL MEETING AUGUST 30-31, 2010 Memorandum To: CIR Expert Panel Members and Liaisons From: Monice M. Fiume MMF Senior Scientific Analyst/Writer Bart A. Heldreth, Ph.D. BAH Chemist Date: July 30, 2010 Subject: Draft Report on Dicarboxylic Acids (previously called Diisopropyl Sebacate) The draft report on dicarboxylic acids was last reviewed in December 2009, under the title Diisopropyl Sebacate. At that time, the report was tabled for reorganization. Also at that time, it was determined that oxalic acid would not be part of the safety assessment. The entire report has been reorganized and rewritten. It will be obvious that the Chemistry section is now prepared in a way that allows you to view the dicarboxylic acids in order of increasing chain length. Also included are charts demonstrating the relationship between molecular weight and the log octanol – water partitioning coefficient. Additionally, the report, from the General Biology section on, is now divided into two sections, as was suggested by the Panel in December. The first section addresses dicarboxylic acids and their salts, while the second part addresses esters of dicarboxylic acids. These two subsets of ingredients have different functions in cosmetics, and this will allow the Panel to view the data on each subset separately. In addition to the reorganization, the report has change greatly in the extent of data included. A complete new search of the literature has been performed, and a substantial amount of new data has been added. A great deal of the information included in this report has come from summary documents, such as HPV robust summaries, that cite unpublished sources.
    [Show full text]