AXL-Driven EMT State As a Targetable Conduit in Cancer Jane Antony1,2,3 and Ruby Yun-Ju Huang1,4,5

Total Page:16

File Type:pdf, Size:1020Kb

AXL-Driven EMT State As a Targetable Conduit in Cancer Jane Antony1,2,3 and Ruby Yun-Ju Huang1,4,5 Published OnlineFirst June 30, 2017; DOI: 10.1158/0008-5472.CAN-17-0392 Cancer Review Research AXL-Driven EMT State as a Targetable Conduit in Cancer Jane Antony1,2,3 and Ruby Yun-Ju Huang1,4,5 Abstract The receptor tyrosine kinase (RTK) AXL has been intrinsically further elucidation to define targetable conduits. Therapeuti- linked to epithelial–mesenchymal transition (EMT) and pro- cally, as AXL inhibition has shown EMT reversal and resensi- moting cell survival, anoikis resistance, invasion, and metas- tization to other tyrosine kinase inhibitors, mitotic inhibitors, tasis in several cancers. AXL signaling has been shown to and platinum-based therapy, there is a need to stratify patients directly affect the mesenchymal state and confer it with aggres- based on AXL dependence. This review elucidates the role of sive phenotype and drug resistance. Recently, the EMT gradient AXL in EMT-mediated oncogenesis and highlights the recipro- has also been shown to rewire the kinase signaling nodes that cal control between AXL signaling and the EMT state. In facilitate AXL–RTK cross-talk, protracted signaling, converging addition, we review the potential in inhibiting AXL for the on ERK, and PI3K axes. The molecular mechanisms under- development of different therapeutic strategies and inhibitors. playing the regulation between the kinome and EMT require Cancer Res; 77(14); 3725–32. Ó2017 AACR. Introduction was originally identified in 1991 as a transforming gene in chronic myeloid leukemia (CML; ref. 3). Under normal phys- AXL, which stems from the Greek word for uncontrolled, iologic conditions, it is ubiquitously expressed in several tissues "anexelekto," is a receptor tyrosine kinase (RTK) belonging to and organs, including but not limited to the hippocampus, the tumor-associated macrophage (TAM) family, comprising of cerebellum, macrophages, platelets, endothelial cells, heart, TYRO-3, AXL, and MER (Fig. 1). Structurally, the TAM receptors liver, kidney, and skeletal muscle. It was found to be over- comprise two Immunoglobulin-like (Ig) domains, two fibro- expressed in several cancers (6) such as breast, lung, liver, colon, nectin type III (FNIII) moieties in their extracellular domain, gastric, ovarian, pancreatic, and glioblastoma. and the conserved amino acid sequence KW(I/L)A(I/L)ES in their kinase domain (1). Among the RTK family, TIE and TEK are also known to contain both Ig and FNIII motifs on their AXL Signaling Pathways ectodomains. The Ig domains are common to the FGF, VEGF, Gas6 binds to the ectodomain of AXL, causing receptor and platelet-derived growth factor (PDGF) receptor families, dimerization with a 2:2 stoichiometry of Gas6 and AXL (7). whereas the FNIII is prevalent in the ephrin and insulin families. The proximity of the kinase domains of two AXL moieties in the The MET RTK family, comprising of cMET and RON, share high RTK–ligand complex enables trans-autophosphorylation of the degree of sequence similarity in the kinase domain (2). The residues on the cytoplasmic tails, where signaling molecules human AXL gene resides on chromosome 19q13.2 and is like phospholipase C-g (PLCg), PI3K, and growth factor recep- encoded by 20 exons to form the full-length protein comprising tor-bound protein 2 (Grb2) can dock (8, 9). The tyrosine of 894 amino acids. Though the expected molecular weight is 98 residues 698, 702, and 703 in the human sequence of AXL kDa, it is posttranslationally glycosylated to form either a 120 are conserved among the TAM receptors and are involved in the kDa (partially glycosylated form) or 140 kDa protein (complete functional activity of the kinase. The tyrosine residues 779, 821, glycosylation; ref. 3). It is activated by its ligand growth arrest and 866 are also potential autophosphorylation sites in the specific 6 (Gas6; ref. 4), which becomes biologically active upon C-terminal AXL domain (9). Gas6-independent AXL phos- vitamin K–dependent posttranslational modifications (5). AXL phorylation can also occur when the RTK is overexpressed, resulting in RTK dimerization (10, 11). – 1Cancer Science Institute of Singapore, National University of Singapore, In a cell type dependent context, Gas6/AXL signaling can Singapore. 2NUS Graduate School for Integrative Sciences and Engineering, mediate growth, survival, proliferation, motility, and invasion National University of Singapore, Singapore. 3Department of Surgery and by harnessing a diverse repertoire of signaling networks such Cancer, Imperial College London, London, United Kingdom. 4Department of as the Ras/Raf/MEK/ERK cascade, PI3K/Akt signaling path- Obstetrics and Gynecology, National University Health System, Singapore. ways. The MAPK/ERK cascade is usually involved in prolifer- 5 Department of Anatomy, Yong Loo Lin School of Medicine, National University ation, whereas PI3K activation signaling converges on cell of Singapore, Singapore. survival through the Akt/ribosomal s6 kinase (S6K) axis Corresponding Author: Ruby Yun-Ju Huang, National University Hospital, 1E (12). Gas6/AXL signaling also causes increased expression of Kent Ridge Road, NUHS Tower Block Level 12, Singapore 119228, Singapore. antiapoptotic proteins such as B-cell lymphoma 2 (Bcl-2) and Phone: 656-516-1148; Fax: 656-779-4753; E-mail: [email protected] B-cell lymphoma-extra large (Bcl-xL), phosphorylation and doi: 10.1158/0008-5472.CAN-17-0392 activation of NF-kB, phosphorylation and stabilization of Ó2017 American Association for Cancer Research. Bad, and inhibition of proapoptotic proteins such as caspase 3, www.aacrjournals.org 3725 Downloaded from cancerres.aacrjournals.org on September 26, 2021. © 2017 American Association for Cancer Research. Published OnlineFirst June 30, 2017; DOI: 10.1158/0008-5472.CAN-17-0392 Antony and Huang VEGFR TIE InsulinR PDGFR EGFR α α FGFR HGFR EGFD IgD EPHR AXL α β CRD AB FNIII β β EGFR INSR PDGFR-α VEGFR1 FGFR1 MET EPHA1 AXL TIE ERBB2 IGF-1R PDGFR-β VEGFR2 FGFR2 RON EPHA2 MER TEK ERBB3+ IRR CSF-1R VEGFR3 FGFR3 EPHA3 TYRO3 ERBB4 KIT/SCFR EPHA4 FLK2/FLT3 EPHA5 EPHA6 EPHA7 EPHA8 EPHB1 EPHB2 EPHB3 EPHB4 EPHB5 EPHB6 © 2017 American Association for Cancer Research Figure 1. AXL belongs to the TAM family of RTKS. Legend for RTK subfamilies: InsulinR, insulin receptor; PDGFR, platelet-derived growth factor receptor; HGFR, hepatocyte growth factor receptor; EPHR, ephrin receptor; TIE, tyrosine kinase receptor in endothelial cells. CRD, cysteine-rich domain; FNIII, fibronectin type III domain; IgD, Immunoglobulin-like domain; AB, acidic box; EGFD, epidermal growth factor-like domain. a and b denote distinct RTK subunits. NOTE: RTKs in bold font are implicated in human cancers. The "þ" on ERBB3 signifies it is devoid of intrinsic kinase activity. to induce prosurvival signaling (13, 14). Signaling through (22), can interact with AXL (23). There is evidence to suggest the PI3K/Ras/Rac axis causes actin reorganization and enables that the suppressor of cytokine signaling (SOCS-1) could serve migration (15, 16). The adapter protein Nck2, which comprises to negatively modulate AXL signaling (24, 25). The E3-ubiqui- of three tandem SH3 and one SH1 domains, is involved tin ligase Cbl-b has also been reported to counteract AXL in linking AXL with other signaling complexes. In particular, signaling by ubiquitination and subsequent degradation of the AXL–Nck2 interaction facilitates AXL-mediated modula- AXL (26, 27), enhancing the antitumor efficacy of NK cells tion of the integrin-linked kinase (ILK), a major component in the immune system. The schematic representation of the of signaling platforms at focal adhesions, thereby enabling Gas6/AXL signaling is illustrated in Fig. 2. AXL to regulate cytoskeleton dynamics (6). Furthermore, AXL has also been directly linked to control of contractility by its The EMT State Rewires the AXL Signaling ability to phosphorylate tropomyosin 2.1 (17). AXL signaling in cancers has also been implicated in processes such as Modality epithelial–mesenchymal transition (EMT; refs. 6, 18, 19), In a panel of 643 human cancer cell lines, elevated AXL wherein polarized epithelial cells lose their junctional integrity expression correlated positively with the mesenchymal pheno- to become motile, invasive, mesenchymal cells (20, 21). type, particularly in NSCLC and breast cancer. It was further The modulation of AXL required to regulate signaling has demonstrated that AXL inhibition was synergistic with antimi- not been extensively documented. The phosphatase C1-TEN, totic drugs in EMTed systems that presented with resistance to which is known to prevent signaling downstream of Akt tyrosine kinase inhibitors(TKI;ref.28). 3726 Cancer Res; 77(14) July 15, 2017 Cancer Research Downloaded from cancerres.aacrjournals.org on September 26, 2021. © 2017 American Association for Cancer Research. Published OnlineFirst June 30, 2017; DOI: 10.1158/0008-5472.CAN-17-0392 Targeting AXL in Cancer Gas6 AXL Integrins Calcium PLCγ signaling Shc ILK Nck2 C1-TEN PINCH-1 Grb2 Ras SRC SOCS-1 Raf1 Rac PI3K P38 Rac/ MEK1 MAPK Rho AKT Pro-inflammatory ERK1/2 MAPKAP Pak cytokine Kinase 2 production Caspase-3 S6 Bad NFκB Proliferation HSP25 JNK Actin reorganization/ Survival cell migration © 2017 American Association for Cancer Research Figure 2. Gas6/AXL signaling schema. Axl activation by ligand Gas6 in a 2:2 stoichiometry results in phosphorylation of the Axl kinase domain. Signal transduction through the Ras/Raf/MEK/ERK pathway as well as Src converges on proliferation and migration phenotype. Signal transmission through the PI3K kinase axis involving S6, AKT, or JNK results in cell survival and protection from apoptosis. Gas6/AXL signaling also interlinks with integrin-linked kinase to affect actin reorganization through integrins. It has also been shown to modulate calcium signaling through PCLg and proinflammatory cytokine production through SOCS-1. Given the relationship between drug resistance, changes in sig- in protracted downstream phosphorylated ERK (pERK) tem- naling, and emergence of an invasive phenotype is well appre- poral response, motility, and invasion. This addiction to the ciated, EMT state-mediated rewiring of the RTK signaling nodes Gas6/AXL signaling node sensitizes the mesenchymal system has identified AXL as a key player.
Recommended publications
  • Abnormal Embryonic Lymphatic Vessel Development in Tie1 Hypomorphic Mice Xianghu Qu, Kevin Tompkins, Lorene E
    © 2014. Published by The Company of Biologists Ltd | Development (2014) 141, 1417 doi:10.1242/dev.108969 CORRECTION Abnormal embryonic lymphatic vessel development in Tie1 hypomorphic mice Xianghu Qu, Kevin Tompkins, Lorene E. Batts, Mira Puri and H. Scott Baldwin There was an error published in Development 137, 1285-1295. Author name H. Scott Baldwin was incomplete. The correct author list appears above. The authors apologise to readers for this mistake. 1417 RESEARCH ARTICLE 1285 Development 137, 1285-1295 (2010) doi:10.1242/dev.043380 © 2010. Published by The Company of Biologists Ltd Abnormal embryonic lymphatic vessel development in Tie1 hypomorphic mice Xianghu Qu1, Kevin Tompkins1, Lorene E. Batts1, Mira Puri2 and Scott Baldwin1,3,* SUMMARY Tie1 is an endothelial receptor tyrosine kinase that is essential for development and maintenance of the vascular system; however, the role of Tie1 in development of the lymphatic vasculature is unknown. To address this question, we first documented that Tie1 is expressed at the earliest stages of lymphangiogenesis in Prox1-positive venous lymphatic endothelial cell (LEC) progenitors. LEC Tie1 expression is maintained throughout embryonic development and persists in postnatal mice. We then generated two lines of Tie1 mutant mice: a hypomorphic allele, which has reduced expression of Tie1, and a conditional allele. Reduction of Tie1 levels resulted in abnormal lymphatic patterning and in dilated and disorganized lymphatic vessels in all tissues examined and in impaired lymphatic drainage in embryonic skin. Homozygous hypomorphic mice also exhibited abnormally dilated jugular lymphatic vessels due to increased production of Prox1-positive LECs during initial lymphangiogenesis, indicating that Tie1 is required for the early stages of normal lymphangiogenesis.
    [Show full text]
  • Discovery of Orphan Receptor Tie1 and Angiopoietin Ligands Ang1 and Ang4 As Novel GAG-Binding Partners
    78 Chapter 3 Discovery of Orphan Receptor Tie1 and Angiopoietin Ligands Ang1 and Ang4 as Novel GAG-Binding Partners 79 3.1 Abstract The Tie/Ang signaling axis is necessary for proper vascular development and remodeling. However, the mechanisms that modulate signaling through this receptor tyrosine kinase pathway are relatively unclear. In particular, the role of the orphan receptor Tie1 is highly disputed. Although this protein is required for survival, Tie1 has been found both to inhibit and yet be necessary for Tie2 signaling. While differing expression levels have been put forth as an explanation for its context-specific activity, the lack of known endogenous ligands for Tie1 has severely hampered understanding its molecular mode of action. Here we describe the discovery of orphan receptor Tie1 and angiopoietin ligands Ang1 and Ang4 as novel GAG binding partners. We localize the binding site of GAGs to the N- terminal region of Tie1, which may provide structural insights into the importance of this interaction regarding the formation of Tie1-Tie2 heterodimerization. Furthermore, we use our mutagenesis studies to guide the generation of a mouse model that specifically ablates GAG-Tie1 binding in vivo for further characterization of the functional outcomes of GAG-Tie1 binding. We also show that GAGs can form a trimeric complex with Ang1/4 and Tie2 using our microarray technology. Finally, we use our HaloTag glycan engineering platform to modify the cell surface of endothelial cells and demonstrate that HS GAGs can potentiate Tie2 signaling in a sulfation-specific manner, providing the first evidence of the involvement of HS GAGs in Tie/Ang signaling and delineating further the integral role of HS GAGs in angiogenesis.
    [Show full text]
  • Patents Related to EPH Receptors and Ligands
    NEWS & ANALYSIS discuss EPH receptor–ephrin signalling Patents related to EPH receptors and its role in disorders such as tumour and ligands growth and progression, nerve injury and inflammation, and highlight therapeutic EPH receptors are a family of receptor approaches that are currently under tyrosine kinases that, together with their investigation. Here in TABLE 1 we highlight ligands, are involved in cell positioning, patent applications published in the past tissue and organ patterning as well as the 3 years related to EPH receptors and ligands. control of cell survival. In their Review Data were researched using the Espacenet on page 39, Lackman and colleagues database. Table 1 | Recent patent applications related to EPH receptors and ligands Nature Reviews | Drug Discovery Publication Applicants Subject numbers NZ 581397 AstraZeneca Pyrimidine compounds that inhibit EPH receptors and are useful for treating cancer HK 1108702 Sanford-Burnham Peptides that selectively bind to EPH type-B receptors (EPHBs); useful for tumour imaging and the Institute treatment of neoplastic disease, neurological disease and vascular disease US 2013091591 California Institute of During angiogenesis, arterial cells express ephrin B2, and its receptor EPHB4 is expressed on venous Technology cells; this distinction can be used in methods to alter angiogenesis and to assess the effect of drugs WO 2013052710 Expression Pathology Selected reaction monitoring mass spectrometry-based and multiple reaction monitoring mass spectrometry-based assays for quantifying
    [Show full text]
  • Ephb3 Suppresses Non-Small-Cell Lung Cancer Metastasis Via a PP2A/RACK1/Akt Signalling Complex
    ARTICLE Received 7 Nov 2011 | Accepted 11 Jan 2012 | Published 7 Feb 2012 DOI: 10.1038/ncomms1675 EphB3 suppresses non-small-cell lung cancer metastasis via a PP2A/RACK1/Akt signalling complex Guo Li1, Xiao-Dan Ji1, Hong Gao1, Jiang-Sha Zhao1, Jun-Feng Xu1, Zhi-Jian Sun1, Yue-Zhen Deng1, Shuo Shi1, Yu-Xiong Feng1, Yin-Qiu Zhu1, Tao Wang2, Jing-Jing Li1 & Dong Xie1 Eph receptors are implicated in regulating the malignant progression of cancer. Here we find that despite overexpression of EphB3 in human non-small-cell lung cancer, as reported previously, the expression of its cognate ligands, either ephrin-B1 or ephrin-B2, is significantly downregulated, leading to reduced tyrosine phosphorylation of EphB3. Forced activation of EphB3 kinase in EphB3-overexpressing non-small-cell lung cancer cells inhibits cell migratory capability in vitro as well as metastatic seeding in vivo. Furthermore, we identify a novel EphB3-binding protein, the receptor for activated C-kinase 1, which mediates the assembly of a ternary signal complex comprising protein phosphatase 2A, Akt and itself in response to EphB3 activation, leading to reduced Akt phosphorylation and subsequent inhibition of cell migration. Our study reveals a novel tumour-suppressive signalling pathway associated with kinase-activated EphB3 in non-small-cell lung cancer, and provides a potential therapeutic strategy by activating EphB3 signalling, thus inhibiting tumour metastasis. 1 Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Graduate School of Chinese Academy of Sciences, Shanghai 200031, China. 2 The Eastern Hepatobiliary Surgery Hospital, the Second Military Medical University, Shanghai 200433, China.
    [Show full text]
  • Gene and Drug Matrix for Personalized Cancer Therapy
    CORRESPONDENCE LINK TO ORIGINAL ARTICLE ALK) for the treatment of non-small cell lung carcinoma with ALK translocations Gene and drug matrix for or for the treatment of neuroblastoma with ALK-activating mutations or personalized cancer therapy overexpression6,7. Although the numbers are currently Tim Harris small this matrix of ‘genes versus drugs’ is growing rapidly and will expand dramatically as our understanding of The recent Perspective by Richard Schilsky As a consequence of these gene profiling tumour mutations increases and as new (Nature Rev. Drug Discov. 9, 363–367; studies, physicians are being left with the inhibitors with different specificities emerge. 2010)1 suggests that the ‘future is now’ for increasingly complex question of which A more extensive analysis comparing many personalized medicine in the treatment of drugs to use to treat tumours that have one of the kinase inhibitors in late-stage cancer1. Examples of genetic analyses that or more of these cancer-associated molec- development against this same set of drive clinical decision-making in cancer ular defects. There are two aspects to this genes is available on request. include the use of imatinib in the treat- challenge: one is the ability to define the The therapeutic impact of personalized ment of chronic myeloid leukaemia with molecular defect or defects in the tumour, health care utilizing robust diagnostic assays BCR–ABL translocations; using gefitinib or and the other is access to available drugs and selected therapies will be considerable. erlotinib to treat lung cancer with epidermal on the market (or in clinical development) Information such as that provided by TABLE 1 growth factor receptor (EGFR) mutations; that are likely to be appropriate for the above will be needed to inform oncologists treating human epidermal growth factor treatment of that subclass of disease in and allow them to treat patients in a more receptor 2 (HER2/neu)-positive patients the context of other relevant (chemo) personalized way.
    [Show full text]
  • LY2801653 Is an Orally Bioavailable Multi-Kinase Inhibitor with Potent
    Invest New Drugs (2013) 31:833–844 DOI 10.1007/s10637-012-9912-9 PRECLINICAL STUDIES LY2801653 is an orally bioavailable multi-kinase inhibitor with potent activity against MET, MST1R, and other oncoproteins, and displays anti-tumor activities in mouse xenograft models S. Betty Yan & Victoria L. Peek & Rose Ajamie & Sean G. Buchanan & Jeremy R. Graff & Steven A. Heidler & Yu-Hua Hui & Karen L. Huss & Bruce W. Konicek & Jason R. Manro & Chuan Shih & Julie A. Stewart & Trent R. Stewart & Stephanie L. Stout & Mark T. Uhlik & Suzane L. Um & Yong Wang & Wenjuan Wu & Lei Yan & Wei J. Yang & Boyu Zhong & Richard A. Walgren Received: 19 October 2012 /Accepted: 3 December 2012 /Published online: 29 December 2012 # The Author(s) 2012. This article is published with open access at Springerlink.com Summary The HGF/MET signaling pathway regulates a of a potent, orally bioavailable, small-molecule inhibitor wide variety of normal cellular functions that can be subverted LY2801653 targeting MET kinase. LY2801653 is a type-II to support neoplasia, including cell proliferation, survival, ATP competitive, slow-off inhibitor of MET tyrosine kinase apoptosis, scattering and motility, invasion, and angiogenesis. with a dissociation constant (Ki) of 2 nM, a pharmacodynamic −1 MET over-expression (with or without gene amplification), residence time (Koff) of 0.00132 min and t1/2 of 525 min. aberrant autocrine or paracrine ligand production, and mis- LY2801653 demonstrated in vitro effects on MET pathway- sense MET mutations are mechanisms that lead to activation dependent cell scattering and cell proliferation; in vivo anti- of the MET pathway in tumors and are associated with poor tumor effects in MET amplified (MKN45), MET autocrine prognostic outcome.
    [Show full text]
  • Profiling Data
    Compound Name DiscoveRx Gene Symbol Entrez Gene Percent Compound Symbol Control Concentration (nM) JNK-IN-8 AAK1 AAK1 69 1000 JNK-IN-8 ABL1(E255K)-phosphorylated ABL1 100 1000 JNK-IN-8 ABL1(F317I)-nonphosphorylated ABL1 87 1000 JNK-IN-8 ABL1(F317I)-phosphorylated ABL1 100 1000 JNK-IN-8 ABL1(F317L)-nonphosphorylated ABL1 65 1000 JNK-IN-8 ABL1(F317L)-phosphorylated ABL1 61 1000 JNK-IN-8 ABL1(H396P)-nonphosphorylated ABL1 42 1000 JNK-IN-8 ABL1(H396P)-phosphorylated ABL1 60 1000 JNK-IN-8 ABL1(M351T)-phosphorylated ABL1 81 1000 JNK-IN-8 ABL1(Q252H)-nonphosphorylated ABL1 100 1000 JNK-IN-8 ABL1(Q252H)-phosphorylated ABL1 56 1000 JNK-IN-8 ABL1(T315I)-nonphosphorylated ABL1 100 1000 JNK-IN-8 ABL1(T315I)-phosphorylated ABL1 92 1000 JNK-IN-8 ABL1(Y253F)-phosphorylated ABL1 71 1000 JNK-IN-8 ABL1-nonphosphorylated ABL1 97 1000 JNK-IN-8 ABL1-phosphorylated ABL1 100 1000 JNK-IN-8 ABL2 ABL2 97 1000 JNK-IN-8 ACVR1 ACVR1 100 1000 JNK-IN-8 ACVR1B ACVR1B 88 1000 JNK-IN-8 ACVR2A ACVR2A 100 1000 JNK-IN-8 ACVR2B ACVR2B 100 1000 JNK-IN-8 ACVRL1 ACVRL1 96 1000 JNK-IN-8 ADCK3 CABC1 100 1000 JNK-IN-8 ADCK4 ADCK4 93 1000 JNK-IN-8 AKT1 AKT1 100 1000 JNK-IN-8 AKT2 AKT2 100 1000 JNK-IN-8 AKT3 AKT3 100 1000 JNK-IN-8 ALK ALK 85 1000 JNK-IN-8 AMPK-alpha1 PRKAA1 100 1000 JNK-IN-8 AMPK-alpha2 PRKAA2 84 1000 JNK-IN-8 ANKK1 ANKK1 75 1000 JNK-IN-8 ARK5 NUAK1 100 1000 JNK-IN-8 ASK1 MAP3K5 100 1000 JNK-IN-8 ASK2 MAP3K6 93 1000 JNK-IN-8 AURKA AURKA 100 1000 JNK-IN-8 AURKA AURKA 84 1000 JNK-IN-8 AURKB AURKB 83 1000 JNK-IN-8 AURKB AURKB 96 1000 JNK-IN-8 AURKC AURKC 95 1000 JNK-IN-8
    [Show full text]
  • Src-Family Kinases Impact Prognosis and Targeted Therapy in Flt3-ITD+ Acute Myeloid Leukemia
    Src-Family Kinases Impact Prognosis and Targeted Therapy in Flt3-ITD+ Acute Myeloid Leukemia Title Page by Ravi K. Patel Bachelor of Science, University of Minnesota, 2013 Submitted to the Graduate Faculty of School of Medicine in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2019 Commi ttee Membership Pa UNIVERSITY OF PITTSBURGH SCHOOL OF MEDICINE Commi ttee Membership Page This dissertation was presented by Ravi K. Patel It was defended on May 31, 2019 and approved by Qiming (Jane) Wang, Associate Professor Pharmacology and Chemical Biology Vaughn S. Cooper, Professor of Microbiology and Molecular Genetics Adrian Lee, Professor of Pharmacology and Chemical Biology Laura Stabile, Research Associate Professor of Pharmacology and Chemical Biology Thomas E. Smithgall, Dissertation Director, Professor and Chair of Microbiology and Molecular Genetics ii Copyright © by Ravi K. Patel 2019 iii Abstract Src-Family Kinases Play an Important Role in Flt3-ITD Acute Myeloid Leukemia Prognosis and Drug Efficacy Ravi K. Patel, PhD University of Pittsburgh, 2019 Abstract Acute myelogenous leukemia (AML) is a disease characterized by undifferentiated bone-marrow progenitor cells dominating the bone marrow. Currently the five-year survival rate for AML patients is 27.4 percent. Meanwhile the standard of care for most AML patients has not changed for nearly 50 years. We now know that AML is a genetically heterogeneous disease and therefore it is unlikely that all AML patients will respond to therapy the same way. Upregulation of protein-tyrosine kinase signaling pathways is one common feature of some AML tumors, offering opportunities for targeted therapy.
    [Show full text]
  • Ponatinib Shows Potent Antitumor Activity in Small Cell Carcinoma of the Ovary Hypercalcemic Type (SCCOHT) Through Multikinase Inhibition Jessica D
    Published OnlineFirst February 9, 2018; DOI: 10.1158/1078-0432.CCR-17-1928 Cancer Therapy: Preclinical Clinical Cancer Research Ponatinib Shows Potent Antitumor Activity in Small Cell Carcinoma of the Ovary Hypercalcemic Type (SCCOHT) through Multikinase Inhibition Jessica D. Lang1,William P.D. Hendricks1, Krystal A. Orlando2, Hongwei Yin1, Jeffrey Kiefer1, Pilar Ramos1, Ritin Sharma3, Patrick Pirrotte3, Elizabeth A. Raupach1,3, Chris Sereduk1, Nanyun Tang1, Winnie S. Liang1, Megan Washington1, Salvatore J. Facista1, Victoria L. Zismann1, Emily M. Cousins4, Michael B. Major4, Yemin Wang5, Anthony N. Karnezis5, Aleksandar Sekulic1,6, Ralf Hass7, Barbara C. Vanderhyden8, Praveen Nair9, Bernard E. Weissman2, David G. Huntsman5,10, and Jeffrey M. Trent1 Abstract Purpose: Small cell carcinoma of the ovary, hypercalcemic type three SWI/SNF wild-type ovarian cancer cell lines. We further (SCCOHT) is a rare, aggressive ovarian cancer in young women identified ponatinib as the most effective clinically approved that is universally driven by loss of the SWI/SNF ATPase subunits RTK inhibitor. Reexpression of SMARCA4 was shown to confer SMARCA4 and SMARCA2. A great need exists for effective targeted a 1.7-fold increase in resistance to ponatinib. Subsequent therapies for SCCOHT. proteomic assessment of ponatinib target modulation in Experimental Design: To identify underlying therapeutic vul- SCCOHT cell models confirmed inhibition of nine known nerabilities in SCCOHT, we conducted high-throughput siRNA ponatinib target kinases alongside 77 noncanonical ponatinib and drug screens. Complementary proteomics approaches pro- targets in SCCOHT. Finally, ponatinib delayed tumor dou- filed kinases inhibited by ponatinib. Ponatinib was tested for bling time 4-fold in SCCOHT-1 xenografts while reducing efficacy in two patient-derived xenograft (PDX) models and one final tumor volumes in SCCOHT PDX models by 58.6% and cell-line xenograft model of SCCOHT.
    [Show full text]
  • Functional Analysis of Somatic Mutations Affecting Receptor Tyrosine Kinase Family in Metastatic Colorectal Cancer
    Author Manuscript Published OnlineFirst on March 29, 2019; DOI: 10.1158/1535-7163.MCT-18-0582 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Functional analysis of somatic mutations affecting receptor tyrosine kinase family in metastatic colorectal cancer Leslie Duplaquet1, Martin Figeac2, Frédéric Leprêtre2, Charline Frandemiche3,4, Céline Villenet2, Shéhérazade Sebda2, Nasrin Sarafan-Vasseur5, Mélanie Bénozène1, Audrey Vinchent1, Gautier Goormachtigh1, Laurence Wicquart6, Nathalie Rousseau3, Ludivine Beaussire5, Stéphanie Truant7, Pierre Michel8, Jean-Christophe Sabourin9, Françoise Galateau-Sallé10, Marie-Christine Copin1,6, Gérard Zalcman11, Yvan De Launoit1, Véronique Fafeur1 and David Tulasne1 1 Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161 - M3T – Mechanisms of Tumorigenesis and Target Therapies, F-59000 Lille, France. 2 Univ. Lille, Plateau de génomique fonctionnelle et structurale, CHU Lille, F-59000 Lille, France 3 TCBN - Tumorothèque Caen Basse-Normandie, F-14000 Caen, France. 4 Réseau Régional de Cancérologie – OncoBasseNormandie – F14000 Caen – France. 5 Normandie Univ, UNIROUEN, Inserm U1245, IRON group, Rouen University Hospital, Normandy Centre for Genomic and Personalized Medicine, F-76000 Rouen, France. 6 Tumorothèque du C2RC de Lille, F-59037 Lille, France. 7 Department of Digestive Surgery and Transplantation, CHU Lille, Univ Lille, 2 Avenue Oscar Lambret, 59037, Lille Cedex, France. 8 Department of hepato-gastroenterology, Rouen University Hospital, Normandie Univ, UNIROUEN, Inserm U1245, IRON group, F-76000 Rouen, France. 9 Department of Pathology, Normandy University, INSERM 1245, Rouen University Hospital, F 76 000 Rouen, France. 10 Department of Pathology, MESOPATH-MESOBANK, Centre León Bérard, Lyon, France. 11 Thoracic Oncology Department, CIC1425/CLIP2 Paris-Nord, Hôpital Bichat-Claude Bernard, Paris, France.
    [Show full text]
  • Gene Structure of the Human Receptor Tyrosine Kinase RON And
    GENES,CHROMOSOMES&CANCER29:147–156(2000) GeneStructureoftheHumanReceptorTyrosine KinaseRONandMutationAnalysisinLung CancerSamples DeboraAngeloni,1* AllaDanilkovitch-Miagkova,1 SergeyV.Ivanov,2 RichardBreathnach,3 BruceE.Johnson,4 EdwardJ.Leonard,1 andMichaelI.Lerman1 1LaboratoryofImmunobiology,NationalCancerInstitute,FrederickCancerResearchandDevelopmentCenter,Frederick,Maryland 2IntramuralResearchSupportProgram,ScienceApplicationsInternationalCorporation,FrederickCancerResearchandDevelopment Center,Frederick,Maryland 3InstitutdeBiologie,Nantes,France 4MedicineBranchattheNavy,NationalCancerInstitute,NationalInstitutesofHealth,Bethesda,Maryland ThehumanRONgene(MST1R)mapsto3p21.3,aregionfrequentlyalteredinlungcancerandothermalignancies.Itencodes areceptortyrosinekinase(RTK)closelyrelatedtoMET,whosemutationsareassociatedwithneoplasia.Weinvestigated whetherRONmightbeinvolvedinthedevelopmentorprogressionoflungcancer.Wefirstdeterminedtheexon-intron structureofthegenebydirectsequencingofRONcosmidDNAandPCRproductscontainingintronicsequences,andthen developedprimerssuitableformutationanalysisbythesingle-strandconformationpolymorphism(SSCP)method.Twenty codingexonswerecharacterized,allbutthefirstonesmall(averagesize:170bp),afeaturesharedwithotherRTKgenes.We performedSSCPanalysisofRONinsmallandnon-smallcelllungcancersamples,upondetectionofitsexpressioninasample oflungcancercelllines.Amutation(T915C:L296P)wasfoundinanadenocarcinomaspecimen.Severalsinglenucleotide polymorphismswerealsofound.Thepanelofintron-anchoredprimersdevelopedinthisworkwillbeusefulformutation
    [Show full text]
  • Supplementary Table 1. in Vitro Side Effect Profiling Study for LDN/OSU-0212320. Neurotransmitter Related Steroids
    Supplementary Table 1. In vitro side effect profiling study for LDN/OSU-0212320. Percent Inhibition Receptor 10 µM Neurotransmitter Related Adenosine, Non-selective 7.29% Adrenergic, Alpha 1, Non-selective 24.98% Adrenergic, Alpha 2, Non-selective 27.18% Adrenergic, Beta, Non-selective -20.94% Dopamine Transporter 8.69% Dopamine, D1 (h) 8.48% Dopamine, D2s (h) 4.06% GABA A, Agonist Site -16.15% GABA A, BDZ, alpha 1 site 12.73% GABA-B 13.60% Glutamate, AMPA Site (Ionotropic) 12.06% Glutamate, Kainate Site (Ionotropic) -1.03% Glutamate, NMDA Agonist Site (Ionotropic) 0.12% Glutamate, NMDA, Glycine (Stry-insens Site) 9.84% (Ionotropic) Glycine, Strychnine-sensitive 0.99% Histamine, H1 -5.54% Histamine, H2 16.54% Histamine, H3 4.80% Melatonin, Non-selective -5.54% Muscarinic, M1 (hr) -1.88% Muscarinic, M2 (h) 0.82% Muscarinic, Non-selective, Central 29.04% Muscarinic, Non-selective, Peripheral 0.29% Nicotinic, Neuronal (-BnTx insensitive) 7.85% Norepinephrine Transporter 2.87% Opioid, Non-selective -0.09% Opioid, Orphanin, ORL1 (h) 11.55% Serotonin Transporter -3.02% Serotonin, Non-selective 26.33% Sigma, Non-Selective 10.19% Steroids Estrogen 11.16% 1 Percent Inhibition Receptor 10 µM Testosterone (cytosolic) (h) 12.50% Ion Channels Calcium Channel, Type L (Dihydropyridine Site) 43.18% Calcium Channel, Type N 4.15% Potassium Channel, ATP-Sensitive -4.05% Potassium Channel, Ca2+ Act., VI 17.80% Potassium Channel, I(Kr) (hERG) (h) -6.44% Sodium, Site 2 -0.39% Second Messengers Nitric Oxide, NOS (Neuronal-Binding) -17.09% Prostaglandins Leukotriene,
    [Show full text]