An Enduring Error
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Computational Design Framework 3D Graphic Statics
Computational Design Framework for 3D Graphic Statics 3D Graphic for Computational Design Framework Computational Design Framework for 3D Graphic Statics Juney Lee Juney Lee Juney ETH Zurich • PhD Dissertation No. 25526 Diss. ETH No. 25526 DOI: 10.3929/ethz-b-000331210 Computational Design Framework for 3D Graphic Statics A thesis submitted to attain the degree of Doctor of Sciences of ETH Zurich (Dr. sc. ETH Zurich) presented by Juney Lee 2015 ITA Architecture & Technology Fellow Supervisor Prof. Dr. Philippe Block Technical supervisor Dr. Tom Van Mele Co-advisors Hon. D.Sc. William F. Baker Prof. Allan McRobie PhD defended on October 10th, 2018 Degree confirmed at the Department Conference on December 5th, 2018 Printed in June, 2019 For my parents who made me, for Dahmi who raised me, and for Seung-Jin who completed me. Acknowledgements I am forever indebted to the Block Research Group, which is truly greater than the sum of its diverse and talented individuals. The camaraderie, respect and support that every member of the group has for one another were paramount to the completion of this dissertation. I sincerely thank the current and former members of the group who accompanied me through this journey from close and afar. I will cherish the friendships I have made within the group for the rest of my life. I am tremendously thankful to the two leaders of the Block Research Group, Prof. Dr. Philippe Block and Dr. Tom Van Mele. This dissertation would not have been possible without my advisor Prof. Block and his relentless enthusiasm, creative vision and inspiring mentorship. -
Archimedean Solids
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln MAT Exam Expository Papers Math in the Middle Institute Partnership 7-2008 Archimedean Solids Anna Anderson University of Nebraska-Lincoln Follow this and additional works at: https://digitalcommons.unl.edu/mathmidexppap Part of the Science and Mathematics Education Commons Anderson, Anna, "Archimedean Solids" (2008). MAT Exam Expository Papers. 4. https://digitalcommons.unl.edu/mathmidexppap/4 This Article is brought to you for free and open access by the Math in the Middle Institute Partnership at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in MAT Exam Expository Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Archimedean Solids Anna Anderson In partial fulfillment of the requirements for the Master of Arts in Teaching with a Specialization in the Teaching of Middle Level Mathematics in the Department of Mathematics. Jim Lewis, Advisor July 2008 2 Archimedean Solids A polygon is a simple, closed, planar figure with sides formed by joining line segments, where each line segment intersects exactly two others. If all of the sides have the same length and all of the angles are congruent, the polygon is called regular. The sum of the angles of a regular polygon with n sides, where n is 3 or more, is 180° x (n – 2) degrees. If a regular polygon were connected with other regular polygons in three dimensional space, a polyhedron could be created. In geometry, a polyhedron is a three- dimensional solid which consists of a collection of polygons joined at their edges. The word polyhedron is derived from the Greek word poly (many) and the Indo-European term hedron (seat). -
How Platonic and Archimedean Solids Define Natural Equilibria of Forces for Tensegrity
How Platonic and Archimedean Solids Define Natural Equilibria of Forces for Tensegrity Martin Friedrich Eichenauer The Platonic and Archimedean solids are a well-known vehicle to describe Research Assistant certain phenomena of our surrounding world. It can be stated that they Technical University Dresden define natural equilibria of forces, which can be clarified particularly Faculty of Mathematics Institute of Geometry through the packing of spheres. [1][2] To solve the problem of the densest Germany packing, both geometrical and mechanical approach can be exploited. The mechanical approach works on the principle of minimal potential energy Daniel Lordick whereas the geometrical approach searches for the minimal distances of Professor centers of mass. The vertices of the solids are given by the centers of the Technical University Dresden spheres. Faculty of Geometry Institute of Geometry If we expand this idea by a contrary force, which pushes outwards, we Germany obtain the principle of tensegrity. We can show that we can build up regular and half-regular polyhedra by the interaction of physical forces. Every platonic and Archimedean solid can be converted into a tensegrity structure. Following this, a vast variety of shapes defined by multiple solids can also be obtained. Keywords: Platonic Solids, Archimedean Solids, Tensegrity, Force Density Method, Packing of Spheres, Modularization 1. PLATONIC AND ARCHIMEDEAN SOLIDS called “kissing number” problem. The kissing number problem is asking for the maximum possible number of Platonic and Archimedean solids have systematically congruent spheres, which touch another sphere of the been described in the antiquity. They denominate all same size without overlapping. In three dimensions the convex polyhedra with regular faces and uniform vertices kissing number is 12. -
Petrie Schemes
Canad. J. Math. Vol. 57 (4), 2005 pp. 844–870 Petrie Schemes Gordon Williams Abstract. Petrie polygons, especially as they arise in the study of regular polytopes and Coxeter groups, have been studied by geometers and group theorists since the early part of the twentieth century. An open question is the determination of which polyhedra possess Petrie polygons that are simple closed curves. The current work explores combinatorial structures in abstract polytopes, called Petrie schemes, that generalize the notion of a Petrie polygon. It is established that all of the regular convex polytopes and honeycombs in Euclidean spaces, as well as all of the Grunbaum–Dress¨ polyhedra, pos- sess Petrie schemes that are not self-intersecting and thus have Petrie polygons that are simple closed curves. Partial results are obtained for several other classes of less symmetric polytopes. 1 Introduction Historically, polyhedra have been conceived of either as closed surfaces (usually topo- logical spheres) made up of planar polygons joined edge to edge or as solids enclosed by such a surface. In recent times, mathematicians have considered polyhedra to be convex polytopes, simplicial spheres, or combinatorial structures such as abstract polytopes or incidence complexes. A Petrie polygon of a polyhedron is a sequence of edges of the polyhedron where any two consecutive elements of the sequence have a vertex and face in common, but no three consecutive edges share a commonface. For the regular polyhedra, the Petrie polygons form the equatorial skew polygons. Petrie polygons may be defined analogously for polytopes as well. Petrie polygons have been very useful in the study of polyhedra and polytopes, especially regular polytopes. -
Math 311. Polyhedra Name: a Candel CSUN Math ¶ 1. a Polygon May Be
Math 311. Polyhedra A Candel Name: CSUN Math ¶ 1. A polygon may be described as a finite region of the plane enclosed by a finite number of segments, arranged in such a way that (a) exactly two segments meets at every vertex, and (b) it is possible to go from any segment to any other segment by crossing vertices of the polygon. A polyhedron (plural: polyhedra) is a three dimensional figure enclosed by a finite number of polygons arranged in such a way that (a) exactly two polygons meet (at any angle) at every edge. (b) it is possible to get from every polygon to every other polygon by crossing edges of the polyhedron. ¶ 2. The simplest class of polyhedra are the simple polyhedra: those that can be continuously deformed into spheres. Within this class we find prisms and pyramids. Prism Pyramid If you round out the corners and smooth out the edges, you can think of a polyhedra as the surface of a spherical body. An so you may also think of the polyhedra, with its faces, edges, and vertices, as determining a decomposition of the surface of the sphere. ¶ 3. A polyhedron is called convex if the segment that joins any two of its points lies entirely in the polyhedron. Put in another way, a convex polyhedron is a finite region of space enclosed by a finite number of planes. Convexity is a geometric property, it can be destroyed by deformations. It is important because a convex polyhe- dron is always a simple polyhedron. (a) Can you draw a simple polyhedron that is not a convex polyhedron? November 4, 2009 1 Math 311. -
15 BASIC PROPERTIES of CONVEX POLYTOPES Martin Henk, J¨Urgenrichter-Gebert, and G¨Unterm
15 BASIC PROPERTIES OF CONVEX POLYTOPES Martin Henk, J¨urgenRichter-Gebert, and G¨unterM. Ziegler INTRODUCTION Convex polytopes are fundamental geometric objects that have been investigated since antiquity. The beauty of their theory is nowadays complemented by their im- portance for many other mathematical subjects, ranging from integration theory, algebraic topology, and algebraic geometry to linear and combinatorial optimiza- tion. In this chapter we try to give a short introduction, provide a sketch of \what polytopes look like" and \how they behave," with many explicit examples, and briefly state some main results (where further details are given in subsequent chap- ters of this Handbook). We concentrate on two main topics: • Combinatorial properties: faces (vertices, edges, . , facets) of polytopes and their relations, with special treatments of the classes of low-dimensional poly- topes and of polytopes \with few vertices;" • Geometric properties: volume and surface area, mixed volumes, and quer- massintegrals, including explicit formulas for the cases of the regular simplices, cubes, and cross-polytopes. We refer to Gr¨unbaum [Gr¨u67]for a comprehensive view of polytope theory, and to Ziegler [Zie95] respectively to Gruber [Gru07] and Schneider [Sch14] for detailed treatments of the combinatorial and of the convex geometric aspects of polytope theory. 15.1 COMBINATORIAL STRUCTURE GLOSSARY d V-polytope: The convex hull of a finite set X = fx1; : : : ; xng of points in R , n n X i X P = conv(X) := λix λ1; : : : ; λn ≥ 0; λi = 1 : i=1 i=1 H-polytope: The solution set of a finite system of linear inequalities, d T P = P (A; b) := x 2 R j ai x ≤ bi for 1 ≤ i ≤ m ; with the extra condition that the set of solutions is bounded, that is, such that m×d there is a constant N such that jjxjj ≤ N holds for all x 2 P . -
Hwsolns5scan.Pdf
Math 462: Homework 5 Paul Hacking 3/27/10 (1) One way to describe a polyhedron is by cutting along some of the edges and folding it flat in the plane. The diagram obtained in this way is called a net. For example here is a net for the cube: Draw nets for the tetrahedron, octahedron, and dodecahedron. +~tfl\ h~~1l1/\ \(j [ NJte: T~ i) Mq~ u,,,,, cMi (O/r.(J 1 (2) Another way to describe a polyhedron is as follows: imagine that the faces of the polyhedron arc made of glass, look through one of the faces and draw the image you see of the remaining faces of the polyhedron. This image is called a Schlegel diagram. For example here is a Schlegel diagram for the octahedron. Note that the face you are looking through is not. drawn, hut the boundary of that face corresponds to the boundary of the diagram. Now draw a Schlegel diagram for the dodecahedron. (:~) (a) A pyramid is a polyhedron obtained from a. polygon with Rome number n of sides by joining every vertex of the polygon to a point lying above the plane of the polygon. The polygon is called the base of the pyramid and the additional vertex is called the apex, For example the Egyptian pyramids have base a square (so n = 4) and the tetrahedron is a pyramid with base an equilateral 2 I triangle (so n = 3). Compute the number of vertices, edges; and faces of a pyramid with base a polygon with n Rides. (b) A prism is a polyhedron obtained from a polygon (called the base of the prism) as follows: translate the polygon some distance in the direction normal to the plane of the polygon, and join the vertices of the original polygon to the corresponding vertices of the translated polygon. -
An Enduring Error
Version June 5, 2008 Branko Grünbaum: An enduring error 1. Introduction. Mathematical truths are immutable, but mathematicians do make errors, especially when carrying out non-trivial enumerations. Some of the errors are "innocent" –– plain mis- takes that get corrected as soon as an independent enumeration is carried out. For example, Daublebsky [14] in 1895 found that there are precisely 228 types of configurations (123), that is, collections of 12 lines and 12 points, each incident with three of the others. In fact, as found by Gropp [19] in 1990, the correct number is 229. Another example is provided by the enumeration of the uniform tilings of the 3-dimensional space by Andreini [1] in 1905; he claimed that there are precisely 25 types. However, as shown [20] in 1994, the correct num- ber is 28. Andreini listed some tilings that should not have been included, and missed several others –– but again, these are simple errors easily corrected. Much more insidious are errors that arise by replacing enumeration of one kind of ob- ject by enumeration of some other objects –– only to disregard the logical and mathematical distinctions between the two enumerations. It is surprising how errors of this type escape detection for a long time, even though there is frequent mention of the results. One example is provided by the enumeration of 4-dimensional simple polytopes with 8 facets, by Brückner [7] in 1909. He replaces this enumeration by that of 3-dimensional "diagrams" that he inter- preted as Schlegel diagrams of convex 4-polytopes, and claimed that the enumeration of these objects is equivalent to that of the polytopes. -
Combinatorial Aspects of Convex Polytopes Margaret M
Combinatorial Aspects of Convex Polytopes Margaret M. Bayer1 Department of Mathematics University of Kansas Carl W. Lee2 Department of Mathematics University of Kentucky August 1, 1991 Chapter for Handbook on Convex Geometry P. Gruber and J. Wills, Editors 1Supported in part by NSF grant DMS-8801078. 2Supported in part by NSF grant DMS-8802933, by NSA grant MDA904-89-H-2038, and by DIMACS (Center for Discrete Mathematics and Theoretical Computer Science), a National Science Foundation Science and Technology Center, NSF-STC88-09648. 1 Definitions and Fundamental Results 3 1.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3 1.2 Faces : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3 1.3 Polarity and Duality : : : : : : : : : : : : : : : : : : : : : : : : : 3 1.4 Overview : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4 2 Shellings 4 2.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4 2.2 Euler's Relation : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4 2.3 Line Shellings : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5 2.4 Shellable Simplicial Complexes : : : : : : : : : : : : : : : : : : : 5 2.5 The Dehn-Sommerville Equations : : : : : : : : : : : : : : : : : : 6 2.6 Completely Unimodal Numberings and Orientations : : : : : : : 7 2.7 The Upper Bound Theorem : : : : : : : : : : : : : : : : : : : : : 8 2.8 The Lower Bound Theorem : : : : : : : : : : : : : : : : : : : : : 9 2.9 Constructions Using Shellings : : : : : : : : : : : : : -
Polytopes with Preassigned Automorphism Groups
Polytopes with Preassigned Automorphism Groups Egon Schulte∗ Northeastern University, Department of Mathematics, Boston, MA 02115, USA and Gordon Ian Williamsy University of Alaska Fairbanks Department of Mathematics and Statistics, Fairbanks, AK 99709, USA June 22, 2018 Abstract We prove that every finite group is the automorphism group of a finite abstract poly- tope isomorphic to a face-to-face tessellation of a sphere by topological copies of convex polytopes. We also show that this abstract polytope may be realized as a convex poly- tope. Keywords: Convex polytope, abstract polytope, automorphism group, barycentric sub- division. Subject classification: Primary 52B15; Secondary 52B11, 51M20 1 Introduction arXiv:1505.06253v1 [math.CO] 23 May 2015 The study of the symmetry properties of convex polyhedra goes back to antiquity with the classification of the Platonic solids as the solids with regular polygonal faces possessing the greatest amount of possible symmetry. Subsequent investigation of regular polyhedra — those in which any incident triple of vertex, edge and facet could be mapped to another by an isometry of the figure — led to a number of interesting classes and relaxations of the definition of a polyhedron to encompass other types of regular polyhedra such as the Kepler-Poinsot polyhedra (allowing various kinds of self intersection), the Coxeter-Petrie polyhedra (allowing polyhedra with infinitely many faces)[Co73] and the Grünbaum-Dress polyhedra (allowing nonplanar and non-finite faces)[Gr77, Dr81, Dr85]. ∗Email: [email protected] yEmail: [email protected] 1 A particularly fruitful area of investigation during the last thirty years has been the study of abstract polytopes. These are partially ordered sets which inherit their structure from derived constraints on convex polytopes. -
Triangulations and Simplex Tilings of Polyhedra
Triangulations and Simplex Tilings of Polyhedra by Braxton Carrigan A dissertation submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Auburn, Alabama August 4, 2012 Keywords: triangulation, tiling, tetrahedralization Copyright 2012 by Braxton Carrigan Approved by Andras Bezdek, Chair, Professor of Mathematics Krystyna Kuperberg, Professor of Mathematics Wlodzimierz Kuperberg, Professor of Mathematics Chris Rodger, Don Logan Endowed Chair of Mathematics Abstract This dissertation summarizes my research in the area of Discrete Geometry. The par- ticular problems of Discrete Geometry discussed in this dissertation are concerned with partitioning three dimensional polyhedra into tetrahedra. The most widely used partition of a polyhedra is triangulation, where a polyhedron is broken into a set of convex polyhedra all with four vertices, called tetrahedra, joined together in a face-to-face manner. If one does not require that the tetrahedra to meet along common faces, then we say that the partition is a tiling. Many of the algorithmic implementations in the field of Computational Geometry are dependent on the results of triangulation. For example computing the volume of a polyhedron is done by adding volumes of tetrahedra of a triangulation. In Chapter 2 we will provide a brief history of triangulation and present a number of known non-triangulable polyhedra. In this dissertation we will particularly address non-triangulable polyhedra. Our research was motivated by a recent paper of J. Rambau [20], who showed that a nonconvex twisted prisms cannot be triangulated. As in algebra when proving a number is not divisible by 2012 one may show it is not divisible by 2, we will revisit Rambau's results and show a new shorter proof that the twisted prism is non-triangulable by proving it is non-tilable. -
A Convex Polyhedron Which Is Not Equifacettable Branko Grünbaum
Geombinatorics 10(2001), 165 – 171 A convex polyhedron which is not equifacettable Branko Grünbaum Department of Mathematics, Box 354350 University of Washington Seattle, WA 98195-4350 e-mail: [email protected] 1. Introduction. Can every triangle-faced convex polyhedron be deformed to a polyhedron all triangles of which are congruent ? We shall show that such a deformation is not always possible, even if the deformed polyhedron is not required to be convex; in this note, only polyhedra without selfintersections are considered. This result was first presented, in sketchy form, in a course on polyhedra I gave in 1996. The motivation to present the details now was provided by the interesting paper [2] by Malkevitch, which appeared in the preceding issue of Geombinatorics. Here is the background. A famous theorem due to E. Steinitz states, in one of its formulations, that every planar (or, equivalently, every spherical) graph can be realized as the graph of edges and vertices of a convex polyhedron in Euclidean 3-space (see, for example, Grünbaum [1, Section 13.1] or Ziegler [3, Chapter 4]). This representation is possible in many different ways, but in all of them the circuits that bound faces of the polyhedron are the same. Malkevitch considered the question whether, in case the graph is a triangulation of the sphere (or, equivalently, the graph of a triangle-faced convex polyhedron), one can insist that the polyhedron in Steinitz's theorem has congruent isosceles triangles as faces. He shows by an elegant example that the answer is negative, and discusses various other questions.