Ecological Assessment for Construction of a Proposed Irrigation Scheme South of the Hurunui River, in North Canterbury

Total Page:16

File Type:pdf, Size:1020Kb

Ecological Assessment for Construction of a Proposed Irrigation Scheme South of the Hurunui River, in North Canterbury ECOLOGICAL ASSESSMENT FOR CONSTRUCTION OF A PROPOSED IRRIGATION SCHEME SOUTH OF THE HURUNUI RIVER, IN NORTH CANTERBURY R5004 ECOLOGICAL ASSESSMENT FOR CONSTRUCTION OF A PROPOSED IRRIGATION SCHEME SOUTH OF THE HURUNUI RIVER, IN NORTH CANTERBURY Contract Report No. 5004 June 2020 Project Team: Des Smith - Project manager and report author Melanie Lapointe - Field survey and report author Peter Heenan - Field survey and report author Jamie MacKay - Field survey and report author Carey Knox - Field survey and report author Brian Patrick - Field survey and report author Stella McQueen - Report author Erin Gallagher - Field survey, report author William Shaw - Peer review Prepared for: Amuri Irrigation Company Ltd 50 Mountainview Road PO Box 194 Culverden 7345 CHRISTCHURCH OFFICE: 7A VULCAN PLACE, MIDDLETON, CHRISTCHURCH 8024; P.O. BOX 9276, TOWER JUNCTION, CHRISTCHURCH 8149; Ph 03-338-4005 HEAD OFFICE: 99 SALA STREET, P.O. BOX 7137, TE NGAE, ROTORUA Ph 07-343-9017; Fax 07-343-9018, email [email protected], www.wildlands.co.nz CONTENTS 1. INTRODUCTION 1 2. PROPOSED WORKS 1 3. METHODS 2 3.1 Overview 2 3.2 Literature review 2 3.3 Field visits 2 3.4 Vegetation 2 3.5 Avifauna 4 3.6 Lizards 4 3.7 Terrestrial invertebrates 5 3.8 Stream surveys 6 3.9 Fish and aquatic macroinvertebrates 6 3.10 Ecological significance assessment 6 4. ECOLOGICAL CONTEXT 7 4.1 Ecological districts 7 4.2 Protected areas 7 4.3 Recommended areas for protection 9 4.4 Hurunui River and its tributaries 9 4.5 Other ecological sites recorded previously 10 5. TERRESTRIAL VEGETATION, HABITATS, AND SPECIES 10 5.1 Overview 10 5.2 Ecological significance assessment 10 5.3 Vegetation and flora 10 5.4 Avifauna 12 5.5 Lizards 15 5.6 Terrestrial invertebrates 18 5.7 Terrestrial vegetation and habitat sites 19 Hurunui River intake 21 Hurunui River Marginal Strip 22 Waitohi River Terraces 25 Rank grass as lizard habitat 25 Other surveyed sites 26 6. AQUATIC HABITATS AND SPECIES 32 6.1 Surface water quality 32 6.2 Aquatic fauna 34 Fish 34 Macroinvertebrate communities 36 6.3 Aquatic habitats 37 Hurunui River intake 37 Stream and river crossings 40 © 2020 Contract Report No. 5004 7. POTENTIAL ECOLOGICAL EFFECTS AND MEASURES TO AVOID, REMEDY AND/OR MITIGATE POTENTIAL ADVERSE EFFECTS 44 7.1 Overview 44 7.2 Construction effects on terrestrial vegetation and palustrine wetland habitats 44 Hurunui River intake and sediment pond site 44 Hurunui River Marginal Strip 46 Waitohi River terraces 48 Rank grass habitats for lizards 49 Other surveyed sites 50 Exotic pest plants/woody weeds/algae 50 7.3 Operational effects on terrestrial vegetation and habitats 50 7.4 Operational effects on aquatic habitats and surface water quality 51 Overview 51 Disturbance and loss of aquatic fauna habitat at the intake 51 Disturbance and loss of aquatic habitat across the pipeline alignment 54 Entrainment, impingement, and mortality of aquatic fauna 55 Sedimentation 57 Spills and contamination 59 Alteration of watercourse hydrology 59 Fish passage restrictions 60 Reduced functioning of riparian margins 60 Spread of didymo and pest plants 61 Cumulative effects 61 7.5 Measures to avoid, remedy, and/or mitigate potential adverse effects 62 Guidelines on fish salvage 63 Other measures 65 7.6 Overall assessment 65 8. CONCLUSIONS 66 ACKNOWLEDGMENTS 68 REFERENCES 68 APPENDICES 1. Proposed irrigation infrastructure and operational requirements 74 2. Ecological district overviews 87 3. Rapid stream assessment data sheet 89 4. Bird records for the Hurunui River 90 5. Results from rapid stream assessments 91 6. Fish species in the Hurunui Catchment, from NZFFD data 94 7. Macroinvertebrate results 99 8. Ecological significance assessment 100 © 2020 Contract Report No. 5004 Reviewed and approved for release by: _______________________ W.B. Shaw Director/Principal Ecologist Wildland Consultants Ltd Wildland Consultants Ltd 2020 This report has been produced by Wildland Consultants Ltd for the Amuri Irrigation Company Ltd. All copyright in this report is the property of Wildland Consultants Ltd and any unauthorised publication, reproduction, or adaptation of this report is a breach of that copyright. © 2020 Contract Report No. 5004 1. INTRODUCTION Amuri Irrigation Company Ltd (Amuri) has completed a takeover of Hurunui Water Project Ltd (HWP). Through this amalgamation, Amuri have secured the existing HWP resource consents that will enable irrigation to occur south of the Hurunui River and to provide water for irrigation to landowners in the Hurunui District. Amuri also wishes to secure construction-related consents to irrigate up to 4,000 hectares of land. The scope of works requires construction of a water intake in the Hurunui River, a sediment pond at the intake site, clearance of vegetation, excavation and back-filling of trenches, laying of an underground pipeline network, creation of storage ponds, and river and stream crossings. The project covers an area of 21,058 hectares and is centred on Hawarden. The northeastern boundary of the project area is bounded by the Hurunui River downstream from the Mandamus River confluence (Figure 1). The eastern limit of the project area follows SH7 until it reaches the Waikari River valley through to the start of the Scargill Valley. The southern limit follows the Waikari River valley up to Pyramid Valley. The western boundary skirts the foothills of the Southern Alps. This report comprises an ecological review drawing on the results from various ecological surveys and an assessment of ecological effects. This will support the resource consent application for the construction of the irrigation scheme. Specifically, this report addresses potential effects on: x Terrestrial ecology, including vegetation, lizards, and invertebrates. x Aquatic ecology, including avifauna, as well as surface water quality. This assessment does not address the effects of water abstraction and the use of water for irrigation (which has already been consented). Existing resource consents (CRC120675, CRC190085, CRC172780) have authorised the taking and use of water for irrigation associated with this project. This ecological assessment addresses the potential ecological effects of constructing and maintaining the water intake, sediment pond, pipelines, and other associated infrastructure (described in the next sections). This includes assessment of the location and design of the ‘in the water’ infrastructure such as the intake channel and the discharge channel, and any related vegetation clearance. The aquatic ecological assessment also considers whether the fish screen design meets the requirements of consent CRC190085 and the standards set out by NIWA (2007). 2. PROPOSED WORKS Proposed works include the construction of an intake channel in the bed of the Hurunui River, diversion of the river bed to manage braided channels, a sediment pond, and an underground pipeline network south of the Hurunui River. This ecological assessment is for construction and maintenance of the irrigation infrastructure (water intake, sediment pond, pipe alignments) based on preliminary plans provided in March 2020 (Figure 1). © 2020 1 Contract Report No. 5004 Descriptions and construction methods for the following infrastructure requirements are provided in Appendix 1: x Hurunui River intake (Riley Consultants 2020). x Pipeline alignments (Beca 2020). Operational requirements are also described in Appendix 1. 3. METHODS 3.1 Overview This assessment provides an evaluation of ecosystems, habitats, species, and ecological values in the project area based on a literature review and field surveys. Construction of infrastructure and ongoing maintenance of that infrastructure has been addressed in this assessment. Effects associated with operation of the irrigation scheme are addressed in existing consents. 3.2 Literature review To evaluate the ecological values of the site within a wider context, a literature search was undertaken for relevant existing ecological information. The literature search included databases such as the Department of Conservation Herpetofauna Database, New Zealand Freshwater Fish Database, and eBird, and ecological reports, including information previously gathered by Amuri and Hurunui Water Project Ltd. 3.3 Field visits Field visits took place from 11 April to 1 May 2019 and covered the entire project area (Figure 1). An additional field visit was undertaken on 28 February 2020 to assess the-proposed intake site within the Hurunui River bed and a Department of Conservation marginal strip. 3.4 Vegetation Routes of the proposed pipelines and proposed intake site were initially surveyed on 23 April 2019, and, following pipeline realignment and a new intake location, were resurveyed on 28 February 2020. These surveys aimed to identify, describe, and assess the vegetation and habitats present, evaluate ecological values, and assess potential effects on indigenous vegetation and habitats. Photographs were taken to illustrate issues and points of interest. The surveys aimed to characterise areas rather than a specific point location, and to identify vegetation and habitats of ecological value. © 2020 2 Contract Report No. 5004 © 2020 3 Contract Report No. 5004 3.5 Avifauna A search of the eBird database was undertaken to see whether the database held records of any threatened bird species observed within a 10 kilometre radius of the existing Amuri intake on the Hurunui River. ‘eBird’ is a citizen science, global, on- line checklist database programme. Observations of single birds through to checklists
Recommended publications
  • Anisodactylus Binotatus Fabr., a Carabid Beetle New to New Zealand, and a Review of the Exotic Carabid Fauna
    Pacific Insects 5 (4) : 837-847 December 30, 1963 ANISODACTYLUS BINOTATUS FABR., A CARABID BEETLE NEW TO NEW ZEALAND, AND A REVIEW OF THE EXOTIC CARABID FAUNA By R. L. C. Pilgrim DEPT, OF ZOOLOGY, UNIVERSITY OF CANTERBURY, NEW ZEALAND Abstract: Anisodactylus binotatus Fabr. 1787 (Col.: Carabidae), an introduced species now established in Canterbury (South Island), New Zealand, is reported for the first time. The literature respecting other carabids sometimes recorded as introduced is reviewed; Ago- nochila binotata (White, 1846), Agonum submetallicum (White, 1846), Hypharpax australasiae (Dejean, 1829) and Pentagonica vittipennis Chaudoir, 1877 are shown to be better considered as endemic to the Australia - New Zealand area. Other species are classed as either native to New Zealand, clearly introduced though not all established, or of doubtful occurrence in New Zealand. Introduction: The Carabidae of New Zealand are predominantly endemic species, but a small number of exotic species has been recorded. This paper reports a further introduc­ tion to the carabid fauna of this country and concludes with a survey of recorded exotic Carabidae in New Zealand. Specimens of the newly-recorded species were collected in domestic gardens in Christ­ church, and were included in a collection sent for identification to Dr. E. B. Britton, British Museum (Nat. Hist.), who kindly drew the writer's attention to the fact that they were so far unreported from New Zealand. Description of adult (from New Zealand specimens) Fig. 1. Anisodactylus binotatus Fabricius, 1787 Color: Head, pronotum, elytra and femora black; tibiae and tarsi light brown to red- black ; palps and antennal segments 1-2 brown, remainder of antennae black; leg spines red-brown; head with small red spot on frons between eyes.
    [Show full text]
  • Fitness Costs of Chlorantraniliprole Resistance Related to the Senpf Overexpression in the Spodoptera Exigua (Lepidoptera: Noctuidae)
    International Journal of Molecular Sciences Article Fitness Costs of Chlorantraniliprole Resistance Related to the SeNPF Overexpression in the Spodoptera exigua (Lepidoptera: Noctuidae) Changwei Gong † , Xinge Yao †, Qunfang Yang, Xuegui Wang *, Yuming Zhang, Yumeng Wang and Litao Shen Biorational Pesticide Research Laboratory, Agricultural College, Sichuan Agricultural University, Chengdu 611130, China; [email protected] (C.G.); [email protected] (X.Y.); [email protected] (Q.Y.); [email protected] (Y.Z.); [email protected] (Y.W.); [email protected] (L.S.) * Correspondence: [email protected]; Tel.: +86-28-8629-0977 † Changwei Gong and Xinge Yao contributed equally to this work. Abstract: Spodoptera exigua, a multifeeding insect pest, has developed a high level of resistance to chlorantraniliprole, which is a benzoylurea insecticide that targets the ryanodine receptors (RyRs). Herein, the resistant strain (SE-Sel) and sensitive strain (SE-Sus) were obtained by bidirectional screening for six generations. The potential oviposited eggs and oviposition rate of the SE-Sel strain were dramatically lower than those of the SE-Sus strain; on the contrary, the weights of prepupae and preadult were significantly increased. As a post-mating response, the higher number of non- oviposited eggs in the SE-Sel strain was caused by a lower mating rate. In addition, the expression levels of vitellogenin (SeVg) and its receptor (SeVgR) in the SE-Sel strain were consistently lower than those in the SE-Sus strain. An RyRI4743M mutation, contributing to the resistance to chlorantraniliprole, Citation: Gong, C.; Yao, X.; Yang, Q.; was located in the S3 transmembrane segments and might have affected the release of calcium ions; Wang, X.; Zhang, Y.; Wang, Y.; Shen, L.
    [Show full text]
  • Reptiles and Amphibians of Otago
    Society for Research on Amphibians and Reptiles in New Zealand (SRARNZ) presents Reptiles and Amphibians of Otago Otago is a large (31,251 km2) and lightly populated region of the southern South Island of Aotearoa New Zealand, stretching from the eastern coastline west to the Southern Alps. The earliest humans, of East Polynesian origin, arrived about 700 years ago. The largest settlement today is the coastal city of Dunedin (pop. >127,000), which grew from a Scottish influx in the 1800s. The Otago Regional Council administers the region, and tribal authority (mana whenua) rests with the iwi of Ngāi Tahu. Climates in the Otago region (roughly 45°– leiopelmatid frogs survive elsewhere in 47°S) range from changeable, cool- New Zealand. Two species of introduced temperate conditions near the coast to frogs are present, but there are no the near-continental climates (baking hot crocodilians, salamanders, terrestrial summers, freezing winters) of the interior. snakes or turtles. Marine turtles (mainly The region provides varied habitats for leatherback turtles, Dermochelys coriacea) herp species, including sand-dunes, visit the coastal waters of Otago but do grasslands, shrublands, wetlands, forests, not nest here. rock structures and scree slopes, some occupied to at least 1900 m above sea level. Today’s herpetofauna is dominated by lizards (solely geckos and skinks), including about 10 described species. A further 12 or more undescribed taxa are recognised Otago by tag names for conservation purposes, and we follow that approach here. All lizards in Otago are viviparous and long- lived, and remain vulnerable to ongoing habitat loss and predation by introduced mammals.
    [Show full text]
  • Submission from the Canterbury District Health Board on The
    CDHB Consultation Submission to Hurunui draft Local Alcohol Policy 2013 Submission from Canterbury District Health Board (Community and Public Health (CPH) Division on behalf of the whole of Canterbury DHB) And incorporating the submission from the Medical Officer of Health for Canterbury, Dr. Alistair Humphrey July 2013 Hurunui District Council’s draft Local Alcohol Policy 2013 1 CDHB Consultation Submission to Hurunui draft Local Alcohol Policy 2013 SUBMISSION DETAILS This document covers the Canterbury District Health Board’s (CDHB) written submission on Hurunui’s District Council’s (HDC) draft Local Alcohol Policy and it is the combination of multiple inputs from across the service including the Medical Officer of Health for Canterbury, Dr. Alistair Humphrey. The CDHB as a whole represents over 8300 employees across a diverse range of services. Every division of the CDHB is affected by alcohol misuse and alcohol-related harm. The CDHB response is based on extensive evidence for alcohol-related harm. It is important that evidence-based submissions are given a higher weighting than those based on opinion or hearsay in the final formulation of the Local Alcohol Policy. There are important evidence based issues, clinical issues and public health issues which need to be articulated by the CDHB and therefore requests two slots at the hearings . Name: Alistair Humphrey Organisation Name: Canterbury District Health Board Organisation Role: Medical Officer of Health for Canterbury Contact Address: Community & Public Health, PO Box 1475, Christchurch Postcode: 8140 Note: Please contact Stuart Dodd for correspondence (same physical address) as followss ee over for full contact details Phone Number (day): 03 379 6852 (day/evening): 027 65 66 554* preferred number Email: [email protected]* preferred email continued over….
    [Show full text]
  • The Genetics and Evolution of Iridescent Structural Colour in Heliconius Butterflies
    The genetics and evolution of iridescent structural colour in Heliconius butterflies Melanie N. Brien A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy The University of Sheffield Faculty of Science Department of Animal & Plant Sciences Submission Date August 2019 1 2 Abstract The study of colouration has been essential in developing key concepts in evolutionary biology. The Heliconius butterflies are well-studied for their diverse aposematic and mimetic colour patterns, and these pigment colour patterns are largely controlled by a small number of homologous genes. Some Heliconius species also produce bright, highly reflective structural colours, but unlike pigment colour, little is known about the genetic basis of structural colouration in any species. In this thesis, I aim to explore the genetic basis of iridescent structural colour in two mimetic species, and investigate its adaptive function. Using experimental crosses between iridescent and non-iridescent subspecies of Heliconius erato and Heliconius melpomene, I show that iridescent colour is a quantitative trait by measuring colour variation in offspring. I then use a Quantitative Trait Locus (QTL) mapping approach to identify loci controlling the trait in the co-mimics, finding that the genetic basis is not the same in the two species. In H. erato, the colour is strongly sex-linked, while in H. melpomene, we find a large effect locus on chromosome 3, plus a number of putative small effect loci in each species. Therefore, iridescence in Heliconius is not an example of repeated gene reuse. I then show that both iridescent colour and pigment colour are sexually dimorphic in H.
    [Show full text]
  • The First New Zealand Insects Collected on Cook's
    Pacific Science (1989), vol.43, 43, nono.. 1 © 1989 by UniversityUniversity of Hawaii Press.Pres s. All rights reserved TheThe First New Zealand Zealand InsectsInsects CollectedCollectedon Cook'sCook's Endeavour Voyage!Voyage! 2 J. R. H. AANDREWSNDREWS2 AND G.G . W. GIBBSGmBS ABSTRACT:ABSTRACT: The Banks collection of 40 insect species, species, described by J. J. C.C. Fabricius in 1775,1775, is critically examined to explore the possible methods of collection and to document changesto the inseinsectct fauna andto the original collection localities sincsincee 1769.The1769. The aassemblagessemblageof species is is regarded as unusual. unusual. It includes insects that are large large and colorful as well as those that are small and cryptic;cryptic; some species that were probably common were overlooked, but others that are today rare were taken.taken. It is concluded that the Cook naturalists caught about 15species with a butterfly net, but that the majority (all CoColeoptera)leoptera) were discoveredin conjunction with other biobiologicallogical specimens, especially plantsplants.. PossibPossiblele reasons for the omission ofwetwetasas,, stick insects, insects, etc.,etc., are discussed. discussed. This early collection shows that marked changesin abundance may have occurred in some speciespeciess since European colonizationcolonization.. One newrecord is is revealed:revealed: The cicada NotopsaltaNotopsaltasericea sericea (Walker) was found to be among the Fabricius speci­speci­ mens from New Zealand,Zealand, but itsits description evidentlyevidently
    [Show full text]
  • From Characters of the Female Reproductive Tract
    Phylogeny and Classification of Caraboidea Mus. reg. Sci. nat. Torino, 1998: XX LCE. (1996, Firenze, Italy) 107-170 James K. LIEBHERR and Kipling W. WILL* Inferring phylogenetic relationships within Carabidae (Insecta, Coleoptera) from characters of the female reproductive tract ABSTRACT Characters of the female reproductive tract, ovipositor, and abdomen are analyzed using cladi­ stic parsimony for a comprehensive representation of carabid beetle tribes. The resulting cladogram is rooted at the family Trachypachidae. No characters of the female reproductive tract define the Carabidae as monophyletic. The Carabidac exhibit a fundamental dichotomy, with the isochaete tri­ bes Metriini and Paussini forming the adelphotaxon to the Anisochaeta, which includes Gehringiini and Rhysodini, along with the other groups considered member taxa in Jeannel's classification. Monophyly of Isochaeta is supported by the groundplan presence of a securiform helminthoid scle­ rite at the spermathecal base, and a rod-like, elongate laterotergite IX leading to the explosion cham­ ber of the pygidial defense glands. Monophyly of the Anisochaeta is supported by the derived divi­ sion of gonocoxa IX into a basal and apical portion. Within Anisochaeta, the evolution of a secon­ dary spermatheca-2, and loss ofthe primary spermathcca-I has occurred in one lineage including the Gehringiini, Notiokasiini, Elaphrini, Nebriini, Opisthiini, Notiophilini, and Omophronini. This evo­ lutionary replacement is demonstrated by the possession of both spermatheca-like structures in Gehringia olympica Darlington and Omophron variegatum (Olivier). The adelphotaxon to this sper­ matheca-2 clade comprises a basal rhysodine grade consisting of Clivinini, Promecognathini, Amarotypini, Apotomini, Melaenini, Cymbionotini, and Rhysodini. The Rhysodini and Clivinini both exhibit a highly modified laterotergite IX; long and thin, with or without a clavate lateral region.
    [Show full text]
  • Report Format WITHOUT PHOTOS
    LIZARD MANAGEMENT PLAN WAKANUI CREEK REALIGNMENT 28 FEBRUARY 2018 LIZARD MANAGEMENT PLAN WAKANUI CREEK REALIGNMENT PREPARED BY: DYLAN VAN WINKEL BIORESEARCHES GROUP LTD 68 BEACH ROAD, AUCKLAND [email protected] FOR: AECOM NEW ZEALAND LIMITED PO BOX 4241 SHORTLAND ST AUCKLAND 1140 DATE: 28 FEBRUARY 2018 REFERENCE: BIORESEARCHES (2017). LIZARD MANAGEMENT PLAN: WAKANUI CREEK REALIGNMENT COVER ILLUSTRATION: OLIGOSOMA AFF. POLYCHROMA Level 4, 68 Beach Road, Auckland 1010; PO Box 2727, Shortland Street, Auckland 1140. T: (09) 379-9417; www.bioresearches.co.nz CONTENTS Page 1 INTRODUCTION ................................................................................................................ 1 2 LIZARD MANAGEMENT PLAN ........................................................................................... 2 2.1 Context of the lizard management plan .............................................................. 2 2.2 Project area and area of affected habitat ........................................................... 2 2.3 Local lizard populations ....................................................................................... 5 2.4 Management of resident lizards .......................................................................... 5 3 LIZARD SALVAGE AND RELOCATION ................................................................................. 6 3.1 Lizard capture ...................................................................................................... 6 3.1.1 Active Searches .......................................................................................
    [Show full text]
  • Report-VIC-Croajingolong National Park-Appendix A
    Croajingolong National Park, Victoria, 2016 Appendix A: Fauna species lists Family Species Common name Mammals Acrobatidae Acrobates pygmaeus Feathertail Glider Balaenopteriae Megaptera novaeangliae # ~ Humpback Whale Burramyidae Cercartetus nanus ~ Eastern Pygmy Possum Canidae Vulpes vulpes ^ Fox Cervidae Cervus unicolor ^ Sambar Deer Dasyuridae Antechinus agilis Agile Antechinus Dasyuridae Antechinus mimetes Dusky Antechinus Dasyuridae Sminthopsis leucopus White-footed Dunnart Felidae Felis catus ^ Cat Leporidae Oryctolagus cuniculus ^ Rabbit Macropodidae Macropus giganteus Eastern Grey Kangaroo Macropodidae Macropus rufogriseus Red Necked Wallaby Macropodidae Wallabia bicolor Swamp Wallaby Miniopteridae Miniopterus schreibersii oceanensis ~ Eastern Bent-wing Bat Muridae Hydromys chrysogaster Water Rat Muridae Mus musculus ^ House Mouse Muridae Rattus fuscipes Bush Rat Muridae Rattus lutreolus Swamp Rat Otariidae Arctocephalus pusillus doriferus ~ Australian Fur-seal Otariidae Arctocephalus forsteri ~ New Zealand Fur Seal Peramelidae Isoodon obesulus Southern Brown Bandicoot Peramelidae Perameles nasuta Long-nosed Bandicoot Petauridae Petaurus australis Yellow Bellied Glider Petauridae Petaurus breviceps Sugar Glider Phalangeridae Trichosurus cunninghami Mountain Brushtail Possum Phalangeridae Trichosurus vulpecula Common Brushtail Possum Phascolarctidae Phascolarctos cinereus Koala Potoroidae Potorous sp. # ~ Long-nosed or Long-footed Potoroo Pseudocheiridae Petauroides volans Greater Glider Pseudocheiridae Pseudocheirus peregrinus
    [Show full text]
  • A New Fishfly Species (Megaloptera: Corydalidae: Chauliodinae) from Eocene Baltic Amber
    Palaeoentomology 003 (2): 188–195 ISSN 2624-2826 (print edition) https://www.mapress.com/j/pe/ PALAEOENTOMOLOGY Copyright © 2020 Magnolia Press Article ISSN 2624-2834 (online edition) PE https://doi.org/10.11646/palaeoentomology.3.2.8 http://zoobank.org/urn:lsid:zoobank.org:pub:20A34D9A-DC69-453E-9662-0A8FAFA25677 A new fishfly species (Megaloptera: Corydalidae: Chauliodinae) from Eocene Baltic amber XINGYUE LIU1, * & JÖRG ANSORGE2 1College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China �[email protected]; https://orcid.org/0000-0002-9168-0659 2Institute of Geography and Geology, University of Greifswald, Friedrich-Ludwig-Jahnstraße 17a, D-17487 Greifswald, Germany �[email protected]; https://orcid.org/0000-0002-1284-6893 *Corresponding author. �[email protected] Abstract and Sialidae (alderflies). Species of Megaloptera have worldwide distribution, but most of them occur mainly in The fossil record of Megaloptera (Insecta: Holometabola: subtropical and warm temperate regions, e.g., the Oriental, Neuropterida) is very limited. Both megalopteran families, i.e., Corydalidae and Sialidae, have been found in the Eocene Neotropical, and Australian Regions (Yang & Liu, 2010; Baltic amber, comprising two named species in one genus Liu et al., 2012, 2015a). The phylogeny and biogeography of Corydalidae (Chauliodinae) and four named species in of extant Megaloptera have been intensively studied in two genera of Sialidae. Here we report a new species of Liu et al. (2012, 2015a, b, 2016) and Contreras-Ramos Chauliodinae from the Baltic amber, namely Nigronia (2011). prussia sp. nov.. The new species possesses a spotted hind Compared with the other two orders of Neuropterida wing with broad band-like marking, a well-developed stem (Raphidioptera and Neuroptera), the fossil record of of hind wing MA subdistally with a short crossvein to MP, a Megaloptera is considerably scarce.
    [Show full text]
  • Conservation Biology Project Reports of Cleardale Station and Taniwha Farm, Rakaia Gorge, Canterbury, New Zealand
    Conservation biology project reports of Cleardale Station and Taniwha Farm, Rakaia Gorge, Canterbury, New Zealand Edited by Nick Dickinson & Mike Bowie Lincoln University Wildlife Management Report No. 73 2020 ©Department of Pest-management & Conservation, Lincoln University ISSN: 1179-7738 ISBN: 978-0-86476-451-5 Lincoln University Wildlife Management Report No. 73 September 2020 Conservation biology project reports of Cleardale Station and Taniwha Farm, Rakaia Gorge, Canterbury, New Zealand Cleardale Station looking towards Rakaia River (Photo: Tanmayi Pagadala) Edited by Nick Dickinson and Mike Bowie Department of Pest-management & Conservation, Lincoln University, PO Box 85084, Lincoln 7647 Email:[email protected] i Contents List of Tables ............................................................................................................................v List of Figures .......................................................................................................................... vi Introduction ............................................................................................................................ 1 Cleardale and Taniwha Stations ............................................................................................... 2 : Habitat Preference of Birds ................................................................................... 3 Fraser Gurney Abstract ...............................................................................................................................................3
    [Show full text]
  • ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
    NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000).
    [Show full text]