WO 2010/069008 Al

Total Page:16

File Type:pdf, Size:1020Kb

WO 2010/069008 Al (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date 24 June 2010 (24.06.2010) WO 2010/069008 Al (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12N 5/074 (2010.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, (21) International Application Number: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, PCT/AU2009/001665 DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, 2 1 December 2009 (21 .12.2009) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (25) Filing Language: English NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, (26) Publication Language: English SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 2008906529 19 December 2008 (19.12.2008) AU (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicants (for all designated States except US): GRIF¬ GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, FITH UNIVERSITY [AU/AU]; 170 Kessels Road, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, Nathan, Queensland 4 111 (AU). THE UNIVERSITY TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, OF QUEENSLAND [AU/AU]; St Lucia, Queensland ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, 4072 (AU). MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, (72) Inventors; and ML, MR, NE, SN, TD, TG). (75) Inventors/Applicants (for US only): BROWNE, Cather¬ ine [AU/AU]; 170 Kessels Road, Nathan, Queensland Published: 4 111 (AU). MACKAY-SIM, Alan [AU/AU]; 170 — with international search report (Art. 21(3)) Kessels Road, Nathan, Queensland 4 111 (AU). — before the expiration of the time limit for amending the (74) Agent: FISHER ADAMS KELLY; Level 29 Comalco claims and to be republished in the event of receipt of Place, 12 Creek Street, Brisbane, Queensland 4000 (AU). amendments (Rule 48.2(h)) (54) Title: A GERMLINE COMPETENT CELL DERIVED FROM ADULT TISSUE (57) Abstract: An adult mammalian stem cell is provid ed which is pluripotent and non-teratogenic in immune deficient animals. The mammalian stem cell is obtainable by culturing olfactory epithelium in the presence of one or more of FGF2, FGF9, SCF, LIF, TGF- β2 and BMP-4. The mammalian stem cell expresses low levels of Sox2 and Oct4 mRNA and higher levels of SPl and ANP32A mRNA. The mammalian stem cell expresses one or more proteins such as OCT-3./4, SOX2, NANOG, KLF4, MVH, KIT, NESTIN and also selected CD anti gens. The mammalian stem cell may be useful in compo sitions and methods for treating diseases or conditions responsive to cell-based therapies, including but not lim ited spinal repair, heart muscle regeneration, skin repair, bone-marrow transplantation and repair of neural degen eration. The mammalian stem cell and non-human mam mals generated therefrom may be useful in drug screen ing, disease modelling and identifying cell differentiation CeI pathways. «007 WiO IHO IHI PH 21 IHI i/io/im 20 I µ 1 TITLE A GERMLINE COMPETENT CELL DERIVED FROM ADULT TISSUE FIELD THIS INVENTION relates to pluripotent mammalian cells and to methods of isolating, culturing and using same. BACKGROUND Pluripotent cells are cells that have the potential to differentiate into all cell types found in an adult organism, except for certain placental tissue and umbilicus. These cells naturally occur in the inner cell mass of an embryo and they differentiate to form three embryonic germ layers: ectoderm, endoderm and mesoderm. It is from these three germ layers that all adult tissues in a human are formed. There is considerable interest in using pluripotent cells in drug development and discovery, gene therapy and cell and tissue therapy. There has been clinical application of these cells in in vitro fertilisation and tissue and cellular regeneration and replacement therapies. Pluripotent cells known to date may be classified into 3 groups. The first of these includes cells derived predominantly from embryonic tissue such as: (i) embryonic stem cells (ESCs), which are derived by long-term culture of cells from the inner cell mass of a blastocyst (Thomson et al. 1998 Science 282:1 145-1 147); and (ii) embryonic germ cells (EG cells), which are derived from migratory primordial germ cells found in the region of the hind gut in transit to the genitalgonadal ridge in E8.5 - E9.5 mouse foetuses (Shamblott et al. 1998 PNAS USA 10:13726-31). EG cells of a late embryo have many of the properties of ESCs. The primordial germ cells in an embryo develop into stem cells that in an adult generate the gametes. These cells are generally derived from embryos (created naturally or via cloning), fetal tissue or via the mixing of nucleus and cytoplasm of multiple species. Reprogramming of somatic cells to cells exhibiting pluripotent properties has been achieved by nuclear transplantation of a somatic nucleus into an enucleated egg. There are ethical issues that arise from the derivation of these cells. A second group includes those cells obtained by introducing defined transcription factors into somatic cells. Cells formed by expression of a combination of transcription factors (e.g SOX2, OCT-3/4, NANOG and KLF4) expressed from a retrovirus or other compounds are referred to as "induced pluripotent stem cells" or "iPS cells" (Takahashi & Yamanaka, 2006, Cell 126:663-676). Until recently, adult stem cells have been thought not to be pluripotent although recent studies have cast some doubt on this thinking. In this context some adult stem cells are thought to represent a third class of pluripotent cells. The in vivo developmental potency of a given cell may be determined by assessing for germline competency or, for teratoma formation in an immune deficient animal. A "germline competent" cell is capable of giving rise to functional gametes. One form of assessing germline competence includes injecting a candidate cell into a blastocyst and determining whether Fl derived from an intercross involving a founder derived from the blastocyst contains the genetic complement of the candidate cell. Germline competency is a defining feature of all pluripotent cells. The capacity to form a teratoma - a tumour containing tissue that is characteristic of endodermal, ectodermal and mesodermal lineages- is also understood to indicate that the candidate cell has pluripotency in vivo. All pluripotent cells known to date - ESCs, EG cells and iPS cells - have this defining property. It is generally understood that teratoma formation occurs as a consequence of a "reprogramming" of the cell during culture to differentiate when placed in an environment in the absence of LIF. That is, the differentiation is a function of the cell itself, rather than stimuli from the tissue environment in which it is placed. As an example, inner cell mass cells generally do not form teratomas whereas ESCs do. Teratoma formation is generally understood to be a significant limitation to the use of all pluripotent cells identified to date in clinical applications. More particularly, it is generally understood that there is a significant risk that pluripotent cells identified to date will cause teratomas or other forms of neoplasia or unregulated cell or tissue growth if used in clinical applications. SUMMARY The present invention is broadly directed to a mammalian pluripotent stem cell that is obtainable from adult cells and/or tissues. A preferred advantage of the mammalian pluripotent stem cell is that it does not form teratomas. In one aspect, there is provided an isolated mammalian cell having the developmental potency of an embryonic stem cell (ESC), characterised in that the isolated mammalian cell does not form a teratoma when provided in an immune deficient animal. Suitably, the isolated mammalian cell is a germline competent, pluripotent stem cell. The isolated mammalian cell may be further characterized by a presence, absence, relatively high or relatively low level of expression of one or more genes or proteins set forth in Tables 1-12. In particular embodiments, the invention provides: (i) an isolated human cell designated Human XY pOS-17 deposited at the European Collection of Cell Cultures (ECACC) on December 16 2009 with accession number 09121602; (ii) an isolated mouse cell designated B6 Rosa26-EGFP XY Pos deposited at the European Collection of Cell Cultures (ECACC) on December 16 2009 with accession number 09121601; and/or (i) an isolated rat cell designated SD Rat XY pOS deposited at the European Collection of Cell Cultures (ECACC) on December 16 2009 with accession number 09121603. In another aspect, the invention provides a method of producing a mammalian cell, said method including the step of culturing a one or more cells or tissues obtained from a mammal in a medium including one or more of FGF9, FGF2, SCF and LIF, to thereby produce the isolated mammalian cell. In one particular embodiment, the method includes culturing neurospheres or a neurosphere-like cellular mass in a medium comprising one or more of FGF2, FGF9, SCF and/or leukaemia inhibitory factor (LIF). In a particular embodiment of this aspect relating to human cells, the medium includes one or more of FGF2, FGF9, SCF, LIF, TGF-β2 and/or BMP-4.
Recommended publications
  • Integrated Bioinformatic Analysis of RNA Binding Proteins in Hepatocellular Carcinoma
    www.aging-us.com AGING 2021, Vol. 13, No. 2 Research Paper Integrated bioinformatic analysis of RNA binding proteins in hepatocellular carcinoma Ling Wang1,*, Zhen Zhang2,3,*, Yuan Li1, Yanyan Wan1, Baocai Xing1,& 1Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Hepatopancreatobiliary Surgery Department I, Peking University Cancer Hospital and Institute, Beijing 100142, China 2Department of Gastroenterological Surgery, Peking University People’s Hospital, Beijing 100044, China 3Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People’s Hospital, Beijing 100044, China *Equal contribution Correspondence to: Baocai Xing; email: [email protected] Keywords: RNA binding protein, hepatocellular carcinoma, biomarker, transcriptomics, proteomics Received: June 8, 2020 Accepted: November 3, 2020 Published: December 19, 2020 Copyright: © 2020 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT RNA binding proteins (RBPs) are aberrantly expressed in a tissue-specific manner across many tumors. These proteins, which play a vital role in post-transcriptional gene regulation, are involved in RNA splicing, maturation, transport, stability, degradation, and translation. We set out to establish an accurate risk score model based on RBPs to estimate prognosis in hepatocellular carcinoma (HCC). RNA-sequencing data, proteomic data and corresponding clinical information were acquired from the Cancer Genome Atlas database and the Clinical Proteomic Tumor Analysis Consortium database respectively. We identified 406 differentially expressed RBPs between HCC tumor and normal tissues at the transcriptional and protein level.
    [Show full text]
  • GLUTATHIONE TRANSFERASE N STRUCTURE and GENE REGULATION
    GLUTATHIONE TRANSFERASE n STRUCTURE AND GENE REGULATION By Chu-Lin Xia This report is in part-fulfillment of the requirements for the degree of doctor of philosophy in the University of London University College, University of London January 1992 ProQuest Number: 10609162 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 10609162 Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 ABSTRACT In the early stage of this research, amino acid residues that are essential for the activity of human pi class glutathione transferase (GST n) were identified using chemical modification with group-specific reagents. Protection from inactivation by substrates, substrate analogues and inhibitors was used as the criterion for active site specificity. The results suggested the apparent involvement of one cysteine (Cys), one lysine (Lys), one arginine (Arg), one histidine (His) or tyrosine (Tyr) or both, one aspartate (Asp) or glutamate (Glu) and tryptophan (Trp) residues in the glutathione binding site (G-site) of GSTtc. It was concluded that without the knowledge of the three-dimensional structure of GST 7i, further work in this area would not be profitable and therefore, attention was turned to the regulation of GST n gene expression.
    [Show full text]
  • Predicting Clinical Response to Treatment with a Soluble Tnf-Antagonist Or Tnf, Or a Tnf Receptor Agonist
    (19) TZZ _ __T (11) EP 2 192 197 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 02.06.2010 Bulletin 2010/22 C12Q 1/68 (2006.01) (21) Application number: 08170119.5 (22) Date of filing: 27.11.2008 (84) Designated Contracting States: (72) Inventor: The designation of the inventor has not AT BE BG CH CY CZ DE DK EE ES FI FR GB GR yet been filed HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR (74) Representative: Habets, Winand Designated Extension States: Life Science Patents AL BA MK RS PO Box 5096 6130 PB Sittard (NL) (71) Applicant: Vereniging voor Christelijk Hoger Onderwijs, Wetenschappelijk Onderzoek en Patiëntenzorg 1081 HV Amsterdam (NL) (54) Predicting clinical response to treatment with a soluble tnf-antagonist or tnf, or a tnf receptor agonist (57) The invention relates to methods for predicting a clinical response to a therapy with a soluble TNF antagonist, TNF or a TNF receptor agonist and a kit for use in said methods. EP 2 192 197 A1 Printed by Jouve, 75001 PARIS (FR) EP 2 192 197 A1 Description [0001] The invention relates to methods for predicting a clinical response to a treatment with a soluble TNF antagonist, with TNF or a TNF receptor agonist using expression levels of genes of the Type I INF pathway and a kit for use in said 5 methods. In another aspect, the invention relates to a method for evaluating a pharmacological effect of a treatment with a soluble TNF antagonist, TNF or a TNF receptor agonist.
    [Show full text]
  • Investigation of the Underlying Hub Genes and Molexular Pathogensis in Gastric Cancer by Integrated Bioinformatic Analyses
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.20.423656; this version posted December 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Investigation of the underlying hub genes and molexular pathogensis in gastric cancer by integrated bioinformatic analyses Basavaraj Vastrad1, Chanabasayya Vastrad*2 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2020.12.20.423656; this version posted December 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract The high mortality rate of gastric cancer (GC) is in part due to the absence of initial disclosure of its biomarkers. The recognition of important genes associated in GC is therefore recommended to advance clinical prognosis, diagnosis and and treatment outcomes. The current investigation used the microarray dataset GSE113255 RNA seq data from the Gene Expression Omnibus database to diagnose differentially expressed genes (DEGs). Pathway and gene ontology enrichment analyses were performed, and a proteinprotein interaction network, modules, target genes - miRNA regulatory network and target genes - TF regulatory network were constructed and analyzed. Finally, validation of hub genes was performed. The 1008 DEGs identified consisted of 505 up regulated genes and 503 down regulated genes.
    [Show full text]
  • A Chemical Proteomic Approach to Investigate Rab Prenylation in Living Systems
    A chemical proteomic approach to investigate Rab prenylation in living systems By Alexandra Fay Helen Berry A thesis submitted to Imperial College London in candidature for the degree of Doctor of Philosophy of Imperial College. Department of Chemistry Imperial College London Exhibition Road London SW7 2AZ August 2012 Declaration of Originality I, Alexandra Fay Helen Berry, hereby declare that this thesis, and all the work presented in it, is my own and that it has been generated by me as the result of my own original research, unless otherwise stated. 2 Abstract Protein prenylation is an important post-translational modification that occurs in all eukaryotes; defects in the prenylation machinery can lead to toxicity or pathogenesis. Prenylation is the modification of a protein with a farnesyl or geranylgeranyl isoprenoid, and it facilitates protein- membrane and protein-protein interactions. Proteins of the Ras superfamily of small GTPases are almost all prenylated and of these the Rab family of proteins forms the largest group. Rab proteins are geranylgeranylated with up to two geranylgeranyl groups by the enzyme Rab geranylgeranyltransferase (RGGT). Prenylation of Rabs allows them to locate to the correct intracellular membranes and carry out their roles in vesicle trafficking. Traditional methods for probing prenylation involve the use of tritiated geranylgeranyl pyrophosphate which is hazardous, has lengthy detection times, and is insufficiently sensitive. The work described in this thesis developed systems for labelling Rabs and other geranylgeranylated proteins using a technique known as tagging-by-substrate, enabling rapid analysis of defective Rab prenylation in cells and tissues. An azide analogue of the geranylgeranyl pyrophosphate substrate of RGGT (AzGGpp) was applied for in vitro prenylation of Rabs by recombinant enzyme.
    [Show full text]
  • Rrna Types in Zebrafish Development
    UvA-DARE (Digital Academic Repository) Distinct maternal and somatic rRNA types in zebrafish development Locati, M. Publication date 2017 Document Version Final published version License Other Link to publication Citation for published version (APA): Locati, M. (2017). Distinct maternal and somatic rRNA types in zebrafish development. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:04 Oct 2021 DISTINCT MATERNAL AND SOMATIC rRNA TYPES IN ZEBRAFISH DEVELOPMENT MAURO LOCATI DISTINCT MATERNAL AND SOMATIC rRNA TYPES IN ZEBRAFISH DEVELOPMENT MAURO LOCATI Distinct Maternal and Somatic rRNA Types in Zebrafish Development ACADEMISCH PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Universiteit van Amsterdam op gezag van de Rector Magnificus prof. dr. ir. K.I.J. Maex ten overstaan van een door het College voor Promoties ingestelde commissie, in het openbaar te verdedigen in de Aula der Universiteit op woensdag 6 december 2017, te 13:00 uur door Mauro Locati geboren te Palermo, Italië Promotiecommissie: Promotor: Prof.
    [Show full text]
  • The Role of Stress-Derived Vesicles in the Bystander Effect and Cancer Related Cachexia
    THE ROLE OF STRESS-DERIVED VESICLES IN THE BYSTANDER EFFECT AND CANCER RELATED CACHEXIA Thesis is submitted in partial fulfilment of the requirements of the award of Doctor of Philosophy FINDLAY REDVERS BEWICKE-COPLEY Department of Biological and Medical Sciences Degree awarded by Oxford Brookes University First submitted for examination: January 2018 ACKNOWLEDGEMENTS Thank you to Oxford Brookes for providing funding for my research, and especially to Professor Nigel Groome whose research and generosity has allowed so many to complete their PhDs. I would also like to say thank you to the Cancer and Polio trust for providing some of the funding for my PhD I would like to thank my Supervisors Dave and Ryan for their support throughout my PhD and for only occasionally saddling me with unrelated projects. Without your guidance and support I would have curled up into a ball in the corner of the office and gently sobbed to myself for the last 5 years. Thanks to Priya for her tireless work ensuring the lab functions correctly and supporting all other members of the lab. I’d also like to thank past members of the lab, Laura Jacobs and Laura Mulcahy for their support throughout both my MSc and my PhD. Sunny Vijen for chatting with me whilst he smoked and making me leave lunch early, so he could have another smoke before going back to work. Thank you to Robbie Crickley for all the lunch time chats. To Lia I would like to say χασμουριέμαι! Thanks to Bianca for all her help getting to know the world of immunocytochemistry.
    [Show full text]
  • United States Patent (19) 11 Patent Number: 5,869,438 Svendsen Et Al
    USOO5869438A United States Patent (19) 11 Patent Number: 5,869,438 Svendsen et al. (45) Date of Patent: Feb. 9, 1999 54) LIPASE WARIANTS 52 U.S. Cl. ......................... 510/226; 435/198; 435/69.1; 435/252.3; 435/320.1; 435/196; 536/23.2; 75 Inventors: Allan Svendsen, Birkerød; Shamkant 536/23.7; 530/350; 510/392; 510/305 Anant Patkar, Lyngby; Erik Gormsen, 58 Field of Search ..................................... 435/198, 196, Virum; Jens Sigurd Okkels; Marianne 435/187-188, 69.1, 252.3, 320.1, 71.1; Thellersen, both of Frederiksberg, all of 424/94.1; 536/22.2, 23.7; 510/305, 226, Denmark 392 73 Assignee: Novo Nordisk A/S, Bagsvaerd, 56) References Cited Denmark FOREIGN PATENT DOCUMENTS 21 Appl. No.: 479,275 O305 216 A1 3/1989 European Pat. Off.. O 407 225A1 1/1991 European Pat. Off.. 22 Filed: Jun. 7, 1995 WO95/09909 4/1995 WIPO. Related U.S. Application Data Primary Examiner Robert A. Wax ASSistant Examiner Tekchand Saidha 63 Continuation-in-part of PCT/DK94/00162, Apr. 22, 1994, which is a continuation-in-part of PCT/DK95/00079, Feb. Attorney, Agent, or Firm-Steve T. Belson; Elias J. 27, 1995, which is a continuation-in-part of Ser. No. 434, Lambiris 904, May 1, 1995, abandoned, which is a continuation of Ser. No. 977,429, which is a continuation of PCT/DK91/ 57 ABSTRACT 00271, Sep. 13, 1991, abandoned. The present invention relates to lipase variants which exhibit 30 Foreign Application Priority Data improved properties, detergent compositions comprising Said lipase variants, DNA constructs coding for Said lipase Sep.
    [Show full text]
  • The Role of the Rho Gtpases in Neuronal Development
    Downloaded from genesdev.cshlp.org on September 24, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW The role of the Rho GTPases in neuronal development Eve-Ellen Govek,1,2, Sarah E. Newey,1 and Linda Van Aelst1,2,3 1Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724, USA; 2Molecular and Cellular Biology Program, State University of New York at Stony Brook, Stony Brook, New York, 11794, USA Our brain serves as a center for cognitive function and and an inactive GDP-bound state. Their activity is de- neurons within the brain relay and store information termined by the ratio of GTP to GDP in the cell and can about our surroundings and experiences. Modulation of be influenced by a number of different regulatory mol- this complex neuronal circuitry allows us to process that ecules. Guanine nucleotide exchange factors (GEFs) ac- information and respond appropriately. Proper develop- tivate GTPases by enhancing the exchange of bound ment of neurons is therefore vital to the mental health of GDP for GTP (Schmidt and Hall 2002); GTPase activat- an individual, and perturbations in their signaling or ing proteins (GAPs) act as negative regulators of GTPases morphology are likely to result in cognitive impairment. by enhancing the intrinsic rate of GTP hydrolysis of a The development of a neuron requires a series of steps GTPase (Bernards 2003; Bernards and Settleman 2004); that begins with migration from its birth place and ini- and guanine nucleotide dissociation inhibitors (GDIs) tiation of process outgrowth, and ultimately leads to dif- prevent exchange of GDP for GTP and also inhibit the ferentiation and the formation of connections that allow intrinsic GTPase activity of GTP-bound GTPases (Zalc- it to communicate with appropriate targets.
    [Show full text]
  • Intersections Spring Symposium
    INTERSECTIONS SPRING SYMPOSIUM APRIL TH, 8 Last Name First Name Project Title Page Analyzing the Effect of Urbanization on Abboud Bissan Phylogenetic signal in the Species Columba 1 Abouzahra Sharifah Peripheral IV Catheter Sterilization Device 2 Development of a Liquid Crystal Based Electron Adkins Raymond Shower Detector 2 Purification of Secreted Protein, Acidic and Rich in Cysteine (SPARC) Implicated for its Effects on Al Bahrani Zaid Intraocular Pressure 3 A Window into Metabolite Changes of Live Aljawad Yaqeen Bacteria Following Drug Infusion 3 Anderson Emily In-situ Resource Utilization on Mars 4 The Relationship Between Subjective and Objective Language Assessments For Second- Arredondo Kaitlynn Language Learners 4 Atkinson Scott MotionSense Wave: Toucheless Faucet 5 Ayyar Aneeka Hand Tremor Reduction Device 6 Modifying Low-Emissivity Glass for Use with Bailey Jessica Surface Enhanced Raman Spectroscopy 5 Automated Segmentation and Radiomic Characterization of Visceral Fat on Bowel MRIs for Barbur Iulia Crohn's Disease 6 Periodic Liquid Crystal Order: Theory and Barnaby Gavin-Rae Simulations 7 The Role of Dentistry in the U.S. Opioid Epidemic: Basore Makenna A Literature Review 7 Berends Hannah A Leader’s Role in a Nation’s Stability 8 A Study on Daily Cycles in Activity Levels of Bhatia Shireen Coyotes (Canis latrans) 8 Co-creation of an Intervention with African American Older Adults to Manage Stress Blackshire Gabrielle Associated with Self-management of 9 Developing to Developed: Entrepreneurship in Blatt Noah Latin America
    [Show full text]
  • Table S4. Trophoblast Differentiation-Associated Genes
    Table S4. Trophoblast differentiation-associated genes Gene Stem Chromosomal Affymetrix ID Gene Title Symbol Ave Dif Ave GenBank Location dif/ stem t-test 1390511_at LOC308394 Cgm4 10 1863 BI285801 1 193.51 0.006 1378534_at similar to brain carcinoembryonic antigen LOC308394 10 1746 NM_001025679 1q21 183.10 0.001 1388433_at keratin complex 1, acidic, gene 19 Krt1-19 53 7958 NM_199498 10q32.1 149.07 0.022 1369029_at phospholipid scramblase 1 Plscr1 20 2050 NM_057194 8q31 101.12 0.028 1389856_at carcinoembryonic antigen gene family 4 Cgm4 57 5073 NM_012525 1q21 89.73 0.001 carcinoembryonic antigen-related cell 1368996_at adhesion molecule 3 Ceacam3 202 17879 NM_012702 1q21 88.71 0.001 1392832_at similar to angiopoietin-like 1 LOC684489 17 1398 XM_001068284 --- 83.66 0.001 1377666_at choline dehydrogenase Chdh 26 1571 NM_198731 16p16 60.59 0.003 cytochrome P450, family 11, subfamily a, 1368468_at polypeptide 1 Cyp11a1 196 9216 NM_017286 8q24 47.11 0.000 1376934_x_at similar to brain carcinoembryonic antigen Cgm4 53 2146 BI285801 1 40.22 0.000 stimulated by retinoic acid gene 6 homolog 1390525_a_at (mouse) Stra6 28 1037 NM_001029924 8q24 37.44 0.001 1382690_at carcinoembryonic antigen gene family 4 Cgm4 81 2729 NM_012525 1q21 33.86 0.001 1367809_at prolactin family 4, subfamily a, member 1 Prl4a1 683 22573 NM_017036 17p11 33.05 0.004 calcium channel, voltage-dependent, L type, 1383458_at alpha 1D subunit Cacna1d 26 802 BF403759 16 30.89 0.001 1370852_at spleen protein 1 precursor LOC171573 692 20968 NM_138537 8q21 30.29 0.003 1376036_at transporter
    [Show full text]
  • And Pancreatic Cancer: from the Role of Evs to the Interference with EV-Mediated Reciprocal Communication
    biomedicines Review Extracellular Vesicles (EVs) and Pancreatic Cancer: From the Role of EVs to the Interference with EV-Mediated Reciprocal Communication 1, 1, 1 1 1 Sokviseth Moeng y, Seung Wan Son y, Jong Sun Lee , Han Yeoung Lee , Tae Hee Kim , Soo Young Choi 1, Hyo Jeong Kuh 2 and Jong Kook Park 1,* 1 Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; [email protected] (S.M.); [email protected] (S.W.S.); [email protected] (J.S.L.); [email protected] (H.Y.L.); [email protected] (T.H.K.); [email protected] (S.Y.C.) 2 Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-33-248-2114 These authors contributed equally. y Received: 29 June 2020; Accepted: 1 August 2020; Published: 3 August 2020 Abstract: Pancreatic cancer is malignant and the seventh leading cause of cancer-related deaths worldwide. However, chemotherapy and radiotherapy are—at most—moderately effective, indicating the need for new and different kinds of therapies to manage this disease. It has been proposed that the biologic properties of pancreatic cancer cells are finely tuned by the dynamic microenvironment, which includes extracellular matrix, cancer-associated cells, and diverse immune cells. Accumulating evidence has demonstrated that extracellular vesicles (EVs) play an essential role in communication between heterogeneous subpopulations of cells by transmitting multiplex biomolecules. EV-mediated cell–cell communication ultimately contributes to several aspects of pancreatic cancer, such as growth, angiogenesis, metastasis and therapeutic resistance.
    [Show full text]