Citizen Science and Online Data: Opportunities and Challenges for Snake
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Is the Martinique Ground Snake Erythrolamprus Cursor Extinct?
Is the Martinique ground snake Erythrolamprus cursor extinct? S TEPHANE C AUT and M ICHAEL J. JOWERS Abstract The Caribbean Islands are a biodiversity hotspot throughout Martinique during the th and th centuries where anthropogenic disturbances have had a significant (Moreau de Jonnès, ). It was last observed on the impact, causing population declines and extinction of en- Martinique mainland in , when a single individual demic species. The ground snake Erythrolamprus cursor is was caught near Fort-de-France. There are two potential a dipsadid endemic to Martinique; it is categorized as reasons for its decline: people may have mistaken it for Critically Endangered on the IUCN Red List and is known the venomous lancehead Bothrops lanceolatus, which may only from museum specimens. The snake was common on have led to its eradication, and the small Indian mongoose Martinique during the th and th centuries but there Herpestes javanicus auropunctatus, an invasive predator, have been no reliable sightings since , suggesting it was introduced to the West Indies at the end of the th cen- may have gone extinct, probably as a result of the introduc- tury, resulting in declines and extirpations of reptile species tion of the small Indian mongoose Herpestes javanicus aur- (Henderson, ). opunctatus. However, the islet known as Diamond Rock, To the south-west of Martinique, c. km from the coast, south-west of Martinique, is mongoose-free and the last re- lies a volcanic islet (spanning . ha, with a maximum ele- ported sighting of E. cursor there was in . The islet was vation of m; Fig. a; Plate ) known as Diamond Rock. -
(2007) a Photographic Field Guide to the Reptiles and Amphibians Of
A Photographic Field Guide to the Reptiles and Amphibians of Dominica, West Indies Kristen Alexander Texas A&M University Dominica Study Abroad 2007 Dr. James Woolley Dr. Robert Wharton Abstract: A photographic reference is provided to the 21 reptiles and 4 amphibians reported from the island of Dominica. Descriptions and distribution data are provided for each species observed during this study. For those species that were not captured, a brief description compiled from various sources is included. Introduction: The island of Dominica is located in the Lesser Antilles and is one of the largest Eastern Caribbean islands at 45 km long and 16 km at its widest point (Malhotra and Thorpe, 1999). It is very mountainous which results in extremely varied distribution of habitats on the island ranging from elfin forest in the highest elevations, to rainforest in the mountains, to dry forest near the coast. The greatest density of reptiles is known to occur in these dry coastal areas (Evans and James, 1997). Dominica is home to 4 amphibian species and 21 (previously 20) reptile species. Five of these are endemic to the Lesser Antilles and 4 are endemic to the island of Dominica itself (Evans and James, 1997). The addition of Anolis cristatellus to species lists of Dominica has made many guides and species lists outdated. Evans and James (1997) provides a brief description of many of the species and their habitats, but this booklet is inadequate for easy, accurate identification. Previous student projects have documented the reptiles and amphibians of Dominica (Quick, 2001), but there is no good source for students to refer to for identification of these species. -
CAT Vertebradosgt CDC CECON USAC 2019
Catálogo de Autoridades Taxonómicas de vertebrados de Guatemala CDC-CECON-USAC 2019 Centro de Datos para la Conservación (CDC) Centro de Estudios Conservacionistas (Cecon) Facultad de Ciencias Químicas y Farmacia Universidad de San Carlos de Guatemala Este documento fue elaborado por el Centro de Datos para la Conservación (CDC) del Centro de Estudios Conservacionistas (Cecon) de la Facultad de Ciencias Químicas y Farmacia de la Universidad de San Carlos de Guatemala. Guatemala, 2019 Textos y edición: Manolo J. García. Zoólogo CDC Primera edición, 2019 Centro de Estudios Conservacionistas (Cecon) de la Facultad de Ciencias Químicas y Farmacia de la Universidad de San Carlos de Guatemala ISBN: 978-9929-570-19-1 Cita sugerida: Centro de Estudios Conservacionistas [Cecon]. (2019). Catálogo de autoridades taxonómicas de vertebrados de Guatemala (Documento técnico). Guatemala: Centro de Datos para la Conservación [CDC], Centro de Estudios Conservacionistas [Cecon], Facultad de Ciencias Químicas y Farmacia, Universidad de San Carlos de Guatemala [Usac]. Índice 1. Presentación ............................................................................................ 4 2. Directrices generales para uso del CAT .............................................. 5 2.1 El grupo objetivo ..................................................................... 5 2.2 Categorías taxonómicas ......................................................... 5 2.3 Nombre de autoridades .......................................................... 5 2.4 Estatus taxonómico -
Xenosaurus Tzacualtipantecus. the Zacualtipán Knob-Scaled Lizard Is Endemic to the Sierra Madre Oriental of Eastern Mexico
Xenosaurus tzacualtipantecus. The Zacualtipán knob-scaled lizard is endemic to the Sierra Madre Oriental of eastern Mexico. This medium-large lizard (female holotype measures 188 mm in total length) is known only from the vicinity of the type locality in eastern Hidalgo, at an elevation of 1,900 m in pine-oak forest, and a nearby locality at 2,000 m in northern Veracruz (Woolrich- Piña and Smith 2012). Xenosaurus tzacualtipantecus is thought to belong to the northern clade of the genus, which also contains X. newmanorum and X. platyceps (Bhullar 2011). As with its congeners, X. tzacualtipantecus is an inhabitant of crevices in limestone rocks. This species consumes beetles and lepidopteran larvae and gives birth to living young. The habitat of this lizard in the vicinity of the type locality is being deforested, and people in nearby towns have created an open garbage dump in this area. We determined its EVS as 17, in the middle of the high vulnerability category (see text for explanation), and its status by the IUCN and SEMAR- NAT presently are undetermined. This newly described endemic species is one of nine known species in the monogeneric family Xenosauridae, which is endemic to northern Mesoamerica (Mexico from Tamaulipas to Chiapas and into the montane portions of Alta Verapaz, Guatemala). All but one of these nine species is endemic to Mexico. Photo by Christian Berriozabal-Islas. amphibian-reptile-conservation.org 01 June 2013 | Volume 7 | Number 1 | e61 Copyright: © 2013 Wilson et al. This is an open-access article distributed under the terms of the Creative Com- mons Attribution–NonCommercial–NoDerivs 3.0 Unported License, which permits unrestricted use for non-com- Amphibian & Reptile Conservation 7(1): 1–47. -
On the Role of Plant Nurseries Introducing Indotyphlops Braminus
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Herpetozoa Jahr/Year: 2017 Band/Volume: 30_1_2 Autor(en)/Author(s): Zamora-Camacho Francisco Javier Artikel/Article: On the role of plant nurseries introducing Indotyphlops braminus (DAUDIN, 1803), in Spain 69-72 All_Short_Notes_(Seiten 59-112):SHORT_NOTE.qxd 07.08.2017 18:41 Seite 11 SHORT NOTE HERPETOZOA 30 (1/2) Wien, 30. Juli 2017 SHORT NOTE 69 On the role of plant nurseries in June 2015, publicly available pro - introducing Indotyphlops braminus fessional e-mail addresses from 403 nursery managers from most provinces of Spain (DAuDiN , 1803), in Spain were compiled; no e-mail address was found from the nursery managers of the A key step in the management of Autonomous cities of ceuta and melilla, human-induced introduction of organisms is and the Province of Zamora. To facilitate release interception or, at least, control identification by non-experts, a description (PERRiNgS et al. 2005), as introductions are of the species was sent to the managers, easier to manage when the potential sources with emphasis on easily distinguishable of propagules are identified ( HulmE 2006). diagnostic characters, as well as two photo - in the case of the typhlopid Flowerpot graphs and one video, along with a ques - Blind snake Indotyphlops braminus (DAu- tionnaire including four questions: (1) Was DiN , 1803), nurseries are widely considered the Flowerpot Blindsnake seen in your nurs - the main (if not the only) propagule reser - ery? (2) if yes, how many individuals? (3) voir and potential vector for introductions When were they seen and (4) were they seen (e. -
The Continuing March of Common Green Iguanas: Arrival on Mainland Asia
Journal for Nature Conservation 57 (2020) 125888 Contents lists available at ScienceDirect Journal for Nature Conservation journal homepage: www.elsevier.com/locate/jnc The continuing march of Common Green Iguanas: arrival on mainland Asia Matthijs P. van den Burg a,*, Steven M. Van Belleghem b, Christina N. De Jesús Villanueva c,d a Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales, Spanish National Research Council (CSIC), c/ Jos´e Guti´errez Abascal 2, 28006 Madrid, Spain b Department of Biology, University of Puerto Rico, Río Piedras, San Juan, Puerto Rico c College of Environmental and Life Science. University of Rhode Island, Kingston, Rhode Island, USA d International Institute of Tropical Forestry, United States Forest Service, United States Department of Agriculture, San Juan, Puerto Rico ARTICLE INFO ABSTRACT Keywords: The popularity of the Common Green Iguana (Iguana iguana) as a pet has contributed to its global occurrence as Citizen science an invasive alien species. Early detection and control of alien I. iguana populations is necessary to prevent the Invasive alien species need for large and financially demanding eradication actions. Here, we first collated information from digital Legislation footage and interviews regarding sightings of free roaming I. iguana specimens in Singapore and Thailand. We Range expansion use this information to report and discuss an ongoing invasion with early stage establishment being facilitated by Social media Wildlife trade release of pets and escape from recreational parks, as well as the resulting conservation implications. Using species-distribution modeling to assess the potential distribution in Southeast Asia, we identify large regions with suitable habitat that could aid the expansion of these alien populations in the absence of future control measures. -
Squamata: Tropiduridae) Predation by Erythrolamprus Poecilogyrus (Colubridae
Herpetology Notes, volume 14: 133-134 (2021) (published online on 22 January 2021) First record of Tropidurus hispidus (Squamata: Tropiduridae) predation by Erythrolamprus poecilogyrus (Colubridae) Monique Celião de Oliveira1,*, Rivanilda Gonçalves Duarte2, Érica Gomes da Silva2, Diêgo Alves Teles3, João Antonio de Araujo Filho3, and Waltécio de Oliveira Almeida4 The genus Erythrolamprus currently comprises 51 in its stomach. The lizard was identified at the species species (Murphy et al., 2019; Uetz et al., 2020), 35 level according to the literature of Rodrigues (1987). of which occur in Brazil (Costa and Bérnils, 2015). According to this author Tropidurus hispidus are easily Erythrolamprus poecilogyrus (Wied-Neuwied, 1825) identified through the covered and interwoven dorsal is widely distributed in South America, including scales and by the absence of a differentiated middle regions of Bolivia, Uruguay, Argentina, Paraguay and dorsal crest. Brazil, (occurring in moist forest, Amazonian forest, Tropidurus hispidus is distributed throughout the the Cerrado and semi-arid regions, such as the Caatinga Caatinga (a semi-arid environment), being quite [Uetz et al., 2020]). abundant, occupying a great variety of microhabitats, Erythrolamprus poecilogyrus (Fig. 1) has nocturnal such as rocks, trunks, foliage and bromeliads (Vanzolini and diurnal habits, being a terrestrial and oviparous et al., 1980). species that feeds mainly on fish, birds, small rodents Lizards of the genus Tropidurus are known as sit and and amphibians (Silva-Junior et al., 2003), among wait foragers with opportunistic eating habits (Passos them Bufonidae (Bufo granulosus, B. paracnemis) and et al., 2016). Although their diet is primarily composed Leptodactylidae (Leptodactylus fuscus, L. ocellatus and of arthropods, several species of tropidurids also feed Physalaemus cuvieri) (Norman and Naylor, 1994). -
BIB 13484.Pdf
Russian Journal of Herpetology Vol. 26, No. 5, 2019, pp. 247 – 260 DOI: 10.30906/1026-2296-2019-26-5-247-260 REAPPRAISAL OF HERPETOFAUNA RECORDED FROM JAFFNA PENINSULA IN NORTHERN SRI LANKA WITH REMARKS ON CONSERVATION, DIVERSITY, AND DISTRIBUTION Majintha Madawala,1 Thilina Surasinghe,2* Anslem De Silva,3 Dinesh Gabadage,4 Madhava Botejue,4 Indika Peabotuwage,5 Dushantha Kandambi,5 and Suranjan Karunarathna5 Submitted January 11, 2017 Jaffna peninsula is quite an unexplored area of Sri Lanka’s lowland dry zone. We constructed a species checklist for all herpetofauna of this area based on a short-term field survey, a comprehensive literature review, museum specimens, and observations made by field herpetologists. Based on 200 × 10 m belt transects, we surveyed herpetofauna both during day and night time, in 10 different types of habitats. The species checklist we compiled comprised 44 species of reptiles (including three nationally threatened, one globally threatened, and eight endemic species) and 15 species of amphibians (including one nationally threatened and three endemic species). Based on published literature, museum specimens, expert opinions, and current field survey, we documented 85 species of herpetofauna in this area. Of this entire list, we were unable to record the presence of 25 species through our field survey. Our field survey documented 18 species that were not previously reported from Jaffna Peninsula. Our study revealed that inland water bodies, cultivated lands, home gardens, and coastal beaches are of high impor- tance for native herpetofauna of Jaffna peninsula. Many human disturbances, such as habitat alterations, vengeful killing, consumption overexploitation, and road mortality are the key threats encountered by herpetofauna in Jaffna. -
Report on Biodiversity and Tropical Forests in Indonesia
Report on Biodiversity and Tropical Forests in Indonesia Submitted in accordance with Foreign Assistance Act Sections 118/119 February 20, 2004 Prepared for USAID/Indonesia Jl. Medan Merdeka Selatan No. 3-5 Jakarta 10110 Indonesia Prepared by Steve Rhee, M.E.Sc. Darrell Kitchener, Ph.D. Tim Brown, Ph.D. Reed Merrill, M.Sc. Russ Dilts, Ph.D. Stacey Tighe, Ph.D. Table of Contents Table of Contents............................................................................................................................. i List of Tables .................................................................................................................................. v List of Figures............................................................................................................................... vii Acronyms....................................................................................................................................... ix Executive Summary.................................................................................................................... xvii 1. Introduction............................................................................................................................1- 1 2. Legislative and Institutional Structure Affecting Biological Resources...............................2 - 1 2.1 Government of Indonesia................................................................................................2 - 2 2.1.1 Legislative Basis for Protection and Management of Biodiversity and -
A Molecular Phylogeny of the Lamprophiidae Fitzinger (Serpentes, Caenophidia)
Zootaxa 1945: 51–66 (2008) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2008 · Magnolia Press ISSN 1175-5334 (online edition) Dissecting the major African snake radiation: a molecular phylogeny of the Lamprophiidae Fitzinger (Serpentes, Caenophidia) NICOLAS VIDAL1,10, WILLIAM R. BRANCH2, OLIVIER S.G. PAUWELS3,4, S. BLAIR HEDGES5, DONALD G. BROADLEY6, MICHAEL WINK7, CORINNE CRUAUD8, ULRICH JOGER9 & ZOLTÁN TAMÁS NAGY3 1UMR 7138, Systématique, Evolution, Adaptation, Département Systématique et Evolution, C. P. 26, Muséum National d’Histoire Naturelle, 43 Rue Cuvier, Paris 75005, France. E-mail: [email protected] 2Bayworld, P.O. Box 13147, Humewood 6013, South Africa. E-mail: [email protected] 3 Royal Belgian Institute of Natural Sciences, Rue Vautier 29, B-1000 Brussels, Belgium. E-mail: [email protected], [email protected] 4Smithsonian Institution, Center for Conservation Education and Sustainability, B.P. 48, Gamba, Gabon. 5Department of Biology, 208 Mueller Laboratory, Pennsylvania State University, University Park, PA 16802-5301 USA. E-mail: [email protected] 6Biodiversity Foundation for Africa, P.O. Box FM 730, Bulawayo, Zimbabwe. E-mail: [email protected] 7 Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, INF 364, D-69120 Heidelberg, Germany. E-mail: [email protected] 8Centre national de séquençage, Genoscope, 2 rue Gaston-Crémieux, CP5706, 91057 Evry cedex, France. E-mail: www.genoscope.fr 9Staatliches Naturhistorisches Museum, Pockelsstr. 10, 38106 Braunschweig, Germany. E-mail: [email protected] 10Corresponding author Abstract The Elapoidea includes the Elapidae and a large (~60 genera, 280 sp.) and mostly African (including Madagascar) radia- tion termed Lamprophiidae by Vidal et al. -
Download Download
HAMADRYAD Vol. 27. No. 2. August, 2003 Date of issue: 31 August, 2003 ISSN 0972-205X CONTENTS T. -M. LEONG,L.L.GRISMER &MUMPUNI. Preliminary checklists of the herpetofauna of the Anambas and Natuna Islands (South China Sea) ..................................................165–174 T.-M. LEONG & C-F. LIM. The tadpole of Rana miopus Boulenger, 1918 from Peninsular Malaysia ...............175–178 N. D. RATHNAYAKE,N.D.HERATH,K.K.HEWAMATHES &S.JAYALATH. The thermal behaviour, diurnal activity pattern and body temperature of Varanus salvator in central Sri Lanka .........................179–184 B. TRIPATHY,B.PANDAV &R.C.PANIGRAHY. Hatching success and orientation in Lepidochelys olivacea (Eschscholtz, 1829) at Rushikulya Rookery, Orissa, India ......................................185–192 L. QUYET &T.ZIEGLER. First record of the Chinese crocodile lizard from outside of China: report on a population of Shinisaurus crocodilurus Ahl, 1930 from north-eastern Vietnam ..................193–199 O. S. G. PAUWELS,V.MAMONEKENE,P.DUMONT,W.R.BRANCH,M.BURGER &S.LAVOUÉ. Diet records for Crocodylus cataphractus (Reptilia: Crocodylidae) at Lake Divangui, Ogooué-Maritime Province, south-western Gabon......................................................200–204 A. M. BAUER. On the status of the name Oligodon taeniolatus (Jerdon, 1853) and its long-ignored senior synonym and secondary homonym, Oligodon taeniolatus (Daudin, 1803) ........................205–213 W. P. MCCORD,O.S.G.PAUWELS,R.BOUR,F.CHÉROT,J.IVERSON,P.C.H.PRITCHARD,K.THIRAKHUPT, W. KITIMASAK &T.BUNDHITWONGRUT. Chitra burmanica sensu Jaruthanin, 2002 (Testudines: Trionychidae): an unavailable name ............................................................214–216 V. GIRI,A.M.BAUER &N.CHATURVEDI. Notes on the distribution, natural history and variation of Hemidactylus giganteus Stoliczka, 1871 ................................................217–221 V. WALLACH. -
A Taxonomic Framework for Typhlopid Snakes from the Caribbean and Other Regions (Reptilia, Squamata)
caribbean herpetology article A taxonomic framework for typhlopid snakes from the Caribbean and other regions (Reptilia, Squamata) S. Blair Hedges1,*, Angela B. Marion1, Kelly M. Lipp1,2, Julie Marin3,4, and Nicolas Vidal3 1Department of Biology, Pennsylvania State University, University Park, PA 16802-5301, USA. 2Current address: School of Dentistry, University of North Carolina, Chapel Hill, NC 27599-7450, USA. 3Département Systématique et Evolution, UMR 7138, C.P. 26, Muséum National d’Histoire Naturelle, 57 rue Cuvier, F-75231 Paris cedex 05, France. 4Current address: Department of Biology, Pennsylvania State University, University Park, PA 16802-5301 USA. *Corresponding author ([email protected]) Article registration: http://zoobank.org/urn:lsid:zoobank.org:pub:47191405-862B-4FB6-8A28-29AB7E25FBDD Edited by: Robert W. Henderson. Date of publication: 17 January 2014. Citation: Hedges SB, Marion AB, Lipp KM, Marin J, Vidal N. 2014. A taxonomic framework for typhlopid snakes from the Caribbean and other regions (Reptilia, Squamata). Caribbean Herpetology 49:1–61. Abstract The evolutionary history and taxonomy of worm-like snakes (scolecophidians) continues to be refined as new molec- ular data are gathered and analyzed. Here we present additional evidence on the phylogeny of these snakes, from morphological data and 489 new DNA sequences, and propose a new taxonomic framework for the family Typhlopi- dae. Of 257 named species of typhlopid snakes, 92 are now placed in molecular phylogenies along with 60 addition- al species yet to be described. Afrotyphlopinae subfam. nov. is distributed almost exclusively in sub-Saharan Africa and contains three genera: Afrotyphlops, Letheobia, and Rhinotyphlops. Asiatyphlopinae subfam. nov. is distributed in Asia, Australasia, and islands of the western and southern Pacific, and includes ten genera:Acutotyphlops, Anilios, Asiatyphlops gen.