Basic Anatomy of the Oral Cavity

Total Page:16

File Type:pdf, Size:1020Kb

Basic Anatomy of the Oral Cavity Basic Anatomy of the Oral Cavity Marin Vodanović Chapter I Learning outcomes: State and explain the functions of the oral cavity State thea most important Slap nerves in the oral cavity Explain the innervation of the oral cavity State the most important blood vessels in the oral cavity Explain the vascularisation of the oral cavity Distinguish phases in jaw growth and devel- Copyrightopment Describe the characteristics of dental arch- es Specify the parts of the jawbone Explain the Haversian canal system Explain the alveolar bone proper Explain the supporting alveolar bone Explain the trabecular bone Recognise basic structures on radiographic © Nakladimages of the maxilla and mandible Slap Copyright Naklada © 2 Chapter 1 Basic Anatomy of the Oral Cavity he oral cavity (cavum oris) is the initial part it is richly supplied with blood vessels. The Tof the digestive system and has a digestive, colour of the oral mucosa varies from light to phonative, sensory, protective, respiratory, dark pink. It is continuous with the skin of and social function. The digestive function in- the lips and the mucosa of the soft palate and cludes mastication, saliva secretion, preparing pharynx. The palate (palatum) constitutes bolus for deglutition, and deglutition in itself. the roof of the oral cavity and comprises a The phonation includes the creation and ar- hard palate (anterior part) and a soft palate ticulation of sounds in conjunction with other (posterior part). A longitudinal suture runs speech organs. The sensory function of the along the middle of the hard palate connect- oral cavity refers to sensations of taste, smell, ing the left and right parts of the upper jaw touch, pain, and thermal changes. The pro- (maxilla). Shallow transverse palatine folds tective function is primarily linked to the oral (rugae palatinae) can be found on the mucosa mucosa which mechanically protects deeper of the anterior part of the hard palate behind oral tissues, and to saliva which contains cer- the incisors. The soft palate is composed of a tain antimicrobial substances. During strenu- musculotendinous plate which is covered on ous physical work, when there is an increased the underside by the oral mucosa and by the need for air or in case of nasal airway obstruc- nasal mucosa superiorly. The tongue (lingua) tion, the oral cavity assumes a respiratory is a muscular organ which is covered with oral function. The social function of the oral cavity mucosa and is involved in mastication, deglu- is realised not only through speech (phonative function) but also through facial expressions Slap and social contacts such as kissing. The oral cavity is divided into the oral vestibule and the oral cavity proper (cavum oris proprium). The oral cavity proper is also Nasal cavity referred to as the oral cavity in the narrower Hard palate sense. The entrance to the oral cavity is referred Soft palate to as oral fissure (rima oris) and is bounded by Upper lip Vertebral the lips. Posteriorly, the oral cavity terminates column Teeth at the entrance to the pharynx. The cheeks constitute the lateral walls of the oral cavity. Lower lip AnteriorlyCopyright and laterally, the oral cavity proper Pharynx is bounded by the U-shaped maxillary and Tongue mandibular dental arches. While the hard and soft palate constitute the roof of the oral cavity proper, the so-called diaphragma oris formed by both mylohyoid muscles, the anterior bel- ly of the two-bellied (digastric) muscles, and Windpipe Oesophagus (respiratory tract) (digestive tract) the geniohyoid andNaklada genioglossus muscles, together with parts of the tongue, constitute Figure 1.1 Cross-section of the oral cavity and the the floor of the oral cavity. The tongue consti- pharynx (Adapted from: Vodanović, M. Uvod u anato- miju i fiziologiju usne šupljine (Introduction to the Anat- tutes most of the oral cavity proper (Figures omy and Physiology of the Oral Cavity). In: Vodanović, 1.1 and© 1.2). The mucosa of the oral cavity is M. Osnove stomatologije (The Essentials of Dental Medi- relatively thick and consists of a multi-layered cine). Jastrebarsko: Naklada Slap; 2015. 19-32. Printed squamous epithelium and connective tissue; with permission of the publisher.) 3 BIOLOGY AND MORPHOLOGY OF HUMAN TEETH Anterior palatine arch Maxillary dental arch Palatine tonsils Posterior palatine arch Hard palate Longitudinal palatine Tongue suture Mandibular dental arch Soft palate Uvula Pharynx Figure 1.2 The oral cavity tition, drinking, speech, and the perception vary glands exist in pairs. The minor salivary of taste. Anatomically, the tongue is divided glands are found in the cheeks, lips, tongue, into three parts, namely, the root, the dorsum, palate, tonsils, and pharynx. and the apex. It is composed of seven muscles Slap which extend perpendicular to its surface and are transverse and parallel to its longitudinal Innervation of the oral axis. cavity The mucosa of the dorsum of the tongue is permeated by numerous visible protrusions, The oral cavity and the organs contained referred to as lingual papillae; they play a role therein are innervated by several cranial in mechanical, tactile, or gustatory recogni- nerves with their sensory and motor fibres, tion, which is important for mixing food. The which are the following: nervus trigeminus lips (labia oris) are composed of muscles and (fifth cranial nerve), nervus facialis (seventh connective tissue. They are richly supplied cranial nerve), nervus glossopharyngeus with Copyrightblood vessels and nerves. The red part of (ninth cranial nerve), and nervus vagus (tenth the lip is covered by mucosa which constitutes cranial nerve). the transition between the skin of the face The trigeminal nerve (nervus trigeminus) and oral mucosa. The salivary glands in the is a nerve of the first pharyngeal arch which oral cavity are divided into major and minor consists of a sensory and a motor part and salivary glands. The labial mucosa contains innervates the masticatory muscles and some minor salivary glands the size of pin heads. pharyngeal and supralingual muscles. It Nakladatransmits general sensory information from The largest part of the total saliva volume is secreted by the major salivary glands. The the face and a large part of the forehead, teeth, parotid gland (glandula parotis), the subman- lips, and the nasal cavity. The main branches dibular gland (glandula submandibularis), of the trigeminal nerve are the ophthalmic and© the sublingual gland (glandula sublingua- nerve (nervus ophtalmicus), the maxillary lis) are the major salivary glands. As opposed nerve (nervus maxillaris), and the mandibular to the minor salivary glands, the major sali- nerve (nervus mandibularis). 4 Chapter 1 Basic Anatomy of the Oral Cavity The ophthalmic nerve innervates the eye- the lesser palatine nerve (nervus palatinus balls, sockets, frontal sinuses, nose, forehead, minor), which innervates the soft palate and the vertex. It is the first and smallest the nasopalatine nerve (nervus nasopalati- branch of the trigeminal nerve and contains nus), which innervates the nose and the only sensory nerve fibres. The branches of the palatine gingiva of maxillary anterior teeth ophthalmic nerve are as follows: the middle superior alveolar nerve (nervus the lacrimal nerve (nervus lacrimalis), alveolaris superior medius), which inner- which innervates the sockets and the skin vates the maxillary sinuses and the maxil- of the upper eyelids and receives anasto- lary premolars moses from the post-ganglionic fibres of the anterior superior alveolar nerve (ner- the pterygopalatine ganglion via the zygo- vus alveolaris superior anterior), which in- matic nerve nervates the maxillary anterior teeth the frontal nerve (nervus frontalis), which the infraorbital nerve (nervus infraorbital- innervates the forehead and vertex is), which innervates the skin on the front the nasociliary nerve (nervus nasociliaris), part of the cheeks, the lower eyelids, the which innervates the eyeballs, the ethmoi- lateral nasal surfaces, the upper lip, and dal chambers, the nose, and the skin of the the upper labial mucosa nasal bridge and the tip The mandibular nerve is the third and the The maxillary nerve is the second branch largest branch of the trigeminal nerve. It pro- of the trigeminal nerve, which has purely sen- vides sensory innervationSlap to the mandibular sory fibres which innervate the cheeks, lower teeth and gingiva, the skin of the temples, a eyelids, the lateral sides of the nose, the upper part of the ear, the lower lip, the lower part of lip, teeth, the maxillary mucosa, the inlet of the face, the anterior two-thirds of the tongue, the sphenoid bone, the maxillary sinuses, the and the mucosa of the oral cavity floor. It pro- posterior ethmoidal chambers, the superior vides motor innervation to the masticatory and middle nasal conchae, the palate and pal- muscles and the other muscles which develop atine tonsils, the roof of the pharynx, and the from the first pharyngeal arch. The branches dura mater of the middle cranial fossa. The of the mandibular nerve are as follows: branches of the maxillary nerve are as follows: the buccal nerve (nervus buccalis), which the posteriorCopyright superior alveolar nerve (ner- innervates the mucosa and skin of the vus alveolaris superior posterior), which cheeks innervates the maxillary molars and the the lingual nerve (nervus lingualis), which maxillary sinuses innervates the floor of the oral cavity and the zygomatic nerve (nervus zygomaticus), the anterior two-thirds
Recommended publications
  • The Evolution of the Lepilemuridae-Cheirogaleidae Clade
    The evolution of the Lepilemuridae-Cheirogaleidae clade By Curswan Allan Andrews Submitted in fulfilment of the requirements for the degree of DOCTOR OF PHILOSOPHY In the Faculty of SCIENCE at the NELSON MANDELA UNIVERSITY Promoters Prof. Judith C. Masters Dr. Fabien G.S. Génin Prof. Graham I.H. Kerley April 2019 1 i Dedication To my mothers’ Cecelia Andrews & Johanna Cloete ii DECLARATION FULL NAME: Curswan Allan Andrews STUDENT NUMBER: 214372952 QUALIFICATION: Doctor of Philosophy DECLARATION: In accordance with Rule G5.6.3, I hereby declare that the above-mentioned thesis is my own work and that it has not previously been submitted for assessment to another University or for another qualification. Signature ________________ Curswan Andrews iii ABSTRACT The Lepilemuridae and the Cheirogaleidae, according to recent molecular reconstructions, share a more recent common ancestor than previously thought. Further phylogenetic reconstructions have indicated that body size evolution in this clade was marked by repeated dwarfing events that coincided with changes in the environment. I aimed to investigate the morphological implications of changes in body size within the Lepilemur-cheirogaleid clade, testing four predictions. Together with Dr. Couette, I collected data on the overall palate shape and predicted that shape is likely to be influenced by several factors including phylogeny, body size and diet. Geometric morphometric analyses revealed that, although a strong phylogenetic signal was detected, diet had the major effect on palate shape. In a similar vein, when examining the arterial circulation patterns in these taxa, I predicted that changes in body size would result in changes and possible reductions in arterial size, particularly the internal carotid artery (ICA) and stapedial artery (SA).
    [Show full text]
  • Arteria Carotis Externa ACE External Carotid Artery
    Common carotid artery CCA External Carotid artery ECA Internal carotid artery, ICA Subclavian artery SA and veins Ivo Klepáček ´tooth ache´ Salisbury cathedrale Three vascular systems are finally formed: Intraembryonic (cardinal); aortic sac (later gives rise aortic arches) Vitelline (aa. + vv.) Development of the vascular Placental system (umbilical Day 27 aa. + vv.) 1st – maxillary artery 2nd – hyoid, stapedial aa. 3rd – common carotid a. and first part of the internal carotid a., external carotid a. 4th – part of the subclavian aa. some of intersegmental arteries Common carotid artery Anterolaterally – skin, fascia, sternocleidomastoid muscle, sternohyoid, sternothyroid, superior belly of the omohyoid Posteriorly – transverse process of the C4 vertebrae, prevertebral muscles, sympathetic trunk Medially – wall of the pharynx and larynx, trachea, esophagus, the lobe of the thyroid gland Laterally – the internal jugular vein, vagus nerve (posterolaterally) Fascia pretrachealis a ACC Pretracheal fascia and ACC Sympathetic plexus surrounding arteries comes from sympathetic trunk External carotid artery ECA Anterolaterally – sternocleidomastoid muscle, XII. nerve, within parotid gland is crossed by VII. nerve, fascia, skin Medially – wall of the pharynx, internal carotid artery, stylopharyngeus, pharyngeal branch of the vagus For head without orbit, inner ear and brain Internal jugular Styloid vein lies septum dorsally and laterally from internal carotid artery behind m. m. stylohyoideus and styloglossus External carotid artery lies ventrally
    [Show full text]
  • The Anatomy of Th-E Blood Vascular System of the Fox ,Squirrel
    THE ANATOMY OF TH-E BLOOD VASCULAR SYSTEM OF THE FOX ,SQUIRREL. §CIURUS NlGER. .RUFIVENTEB (OEOEEROY) Thai: for the 009m of M. S. MICHIGAN STATE COLLEGE Thomas William Jenkins 1950 THulS' ifliillifllfllilllljllljIi\Ill\ljilllHliLlilHlLHl This is to certifg that the thesis entitled The Anatomy of the Blood Vascular System of the Fox Squirrel. Sciurus niger rufiventer (Geoffroy) presented by Thomas William Jenkins has been accepted towards fulfillment of the requirements for A degree in MEL Major professor Date May 23’ 19500 0-169 q/m Np” THE ANATOMY OF THE BLOOD VASCULAR SYSTEM OF THE FOX SQUIRREL, SCIURUS NIGER RUFIVENTER (GEOFFROY) By THOMAS WILLIAM JENKINS w L-Ooffi A THESIS Submitted to the School of Graduate Studies of Michigan State College of Agriculture and Applied Science in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Department of Zoology 1950 \ THESlSfi ACKNOWLEDGMENTS Grateful acknowledgment is made to the following persons of the Zoology Department: Dr. R. A. Fennell, under whose guidence this study was completed; Mr. P. A. Caraway, for his invaluable assistance in photography; Dr. D. W. Hayne and Mr. Poff, for their assistance in trapping; Dr. K. A. Stiles and Dr. R. H. Manville, for their helpful suggestions on various occasions; Mrs. Bernadette Henderson (Miss Mac), for her pleasant words of encouragement and advice; Dr. H. R. Hunt, head of the Zoology Department, for approval of the research problem; and Mr. N. J. Mizeres, for critically reading the manuscript. Special thanks is given to my wife for her assistance with the drawings and constant encouragement throughout the many months of work.
    [Show full text]
  • Variant Position of the Facial Nerve in Parotid Gland
    eISSN 1308-4038 International Journal of Anatomical Variations (2011) 4: 3–4 Case Report Variant position of the facial nerve in parotid gland Published online January 14th, 2011 © http://www.ijav.org Rajesh B. ASTIK ABSTRACT Urvi H. DAVE The division of the parotid gland into superficial and deep lobes by facial nerve has an important implication in parotid Krishna Swami GAJENDRA gland neoplasm. This plane is used in superficial or total parotidectomy to avoid damage to the facial nerve. During routine dissection in the Department of Anatomy, we found variably located facial nerve in the parotid gland of the left side. The main trunk of the facial nerve was located between maxillary vein and superficial temporal vein. It was divided into temporofacial and cervicofacial divisions. Both divisions crossed maxillary vein superficially instead Department of Anatomy, GSL Medical College, Rajahmundry, District- East Godavari, of retromandibular vein which was formed outside the parotid gland substance. Andhra Pradesh, INDIA. The operating surgeon should be familiar with this variation during parotidectomy to reduce the iatrogenic injury to the facial nerve. © IJAV. 2011; 4: 3–4. Dr. Rajesh B. Astik Associate Professor Department of Anatomy GSL Medical College NH-5, Rajahmundry District- East Godavari. Andhra Pradesh, 533296, INDIA. +91 883 2484999 [email protected] Received July 15th, 2010; accepted January 4th, 2011 Key words [facial nerve] [parotid gland] [retromandibular vein] [total parotidectomy] Introduction vein superficially instead of the retromandibular vein. The The retromandibular vein is formed by union of the maxillary retromandibular vein was formed by union of maxillary and and superficial temporal veins in the parotid gland [1].
    [Show full text]
  • Head and Neck
    DEFINITION OF ANATOMIC SITES WITHIN THE HEAD AND NECK adapted from the Summary Staging Guide 1977 published by the SEER Program, and the AJCC Cancer Staging Manual Fifth Edition published by the American Joint Committee on Cancer Staging. Note: Not all sites in the lip, oral cavity, pharynx and salivary glands are listed below. All sites to which a Summary Stage scheme applies are listed at the begining of the scheme. ORAL CAVITY AND ORAL PHARYNX (in ICD-O-3 sequence) The oral cavity extends from the skin-vermilion junction of the lips to the junction of the hard and soft palate above and to the line of circumvallate papillae below. The oral pharynx (oropharynx) is that portion of the continuity of the pharynx extending from the plane of the inferior surface of the soft palate to the plane of the superior surface of the hyoid bone (or floor of the vallecula) and includes the base of tongue, inferior surface of the soft palate and the uvula, the anterior and posterior tonsillar pillars, the glossotonsillar sulci, the pharyngeal tonsils, and the lateral and posterior walls. The oral cavity and oral pharynx are divided into the following specific areas: LIPS (C00._; vermilion surface, mucosal lip, labial mucosa) upper and lower, form the upper and lower anterior wall of the oral cavity. They consist of an exposed surface of modified epider- mis beginning at the junction of the vermilion border with the skin and including only the vermilion surface or that portion of the lip that comes into contact with the opposing lip.
    [Show full text]
  • Basic Histology (23 Questions): Oral Histology (16 Questions
    Board Question Breakdown (Anatomic Sciences section) The Anatomic Sciences portion of part I of the Dental Board exams consists of 100 test items. They are broken up into the following distribution: Gross Anatomy (50 questions): Head - 28 questions broken down in this fashion: - Oral cavity - 6 questions - Extraoral structures - 12 questions - Osteology - 6 questions - TMJ and muscles of mastication - 4 questions Neck - 5 questions Upper Limb - 3 questions Thoracic cavity - 5 questions Abdominopelvic cavity - 2 questions Neuroanatomy (CNS, ANS +) - 7 questions Basic Histology (23 questions): Ultrastructure (cell organelles) - 4 questions Basic tissues - 4 questions Bone, cartilage & joints - 3 questions Lymphatic & circulatory systems - 3 questions Endocrine system - 2 questions Respiratory system - 1 question Gastrointestinal system - 3 questions Genitouirinary systems - (reproductive & urinary) 2 questions Integument - 1 question Oral Histology (16 questions): Tooth & supporting structures - 9 questions Soft oral tissues (including dentin) - 5 questions Temporomandibular joint - 2 questions Developmental Biology (11 questions): Osteogenesis (bone formation) - 2 questions Tooth development, eruption & movement - 4 questions General embryology - 2 questions 2 National Board Part 1: Review questions for histology/oral histology (Answers follow at the end) 1. Normally most of the circulating white blood cells are a. basophilic leukocytes b. monocytes c. lymphocytes d. eosinophilic leukocytes e. neutrophilic leukocytes 2. Blood platelets are products of a. osteoclasts b. basophils c. red blood cells d. plasma cells e. megakaryocytes 3. Bacteria are frequently ingested by a. neutrophilic leukocytes b. basophilic leukocytes c. mast cells d. small lymphocytes e. fibrocytes 4. It is believed that worn out red cells are normally destroyed in the spleen by a. neutrophils b.
    [Show full text]
  • Ministry of Health of Ukraine Ukrainian Medical Stomatolgical Academy
    Ministry of Health of Ukraine Ukrainian Medical Stomatolgical Academy Methodical Instructions for independent work of students during the training for the practical studies Academic discipline Surgical stomatology Моdule № 6 The topic of the stadies Benign tumors and cysts of the salivary glands. № 10 Management of salivary fistulas. Benign tumors of the soft tissues. Vascular tumors and birthmarks. Immunological concept of tumor development. Course V Faculty Foreign Students Training, Stomatological Poltava -2020 1. Relevance of the topic: Problems of the salivary glands are uncommon; however, the spectrum is quite varied and challenging. The salivary glands consists of the major and minor salivary glands; the parotid, submandibular, and sublingual glands constitute the major salivary glands and the minor salivary glands are found essentially anywhere in the upper aerodigestive tract, including the trachea and paranasal sinuses. When functioning properly, the salivary glands are rarely noticed, but when affected by neoplastic disease, they can be a challenge in diagnosis and treatment. Salivary gland enlargement is less often caused by neoplasia than by inflammatory or other nonneoplastic conditions. Less than 3% of all tumors of the head and neck are salivary gland neoplasms. Of all neoplasms of salivary gland origin, about 85% occur in the parotid gland. Of these, 80% are benign, whereas only about 50% of the submandibular tumors and approximately 25% of the minor salivary gland neoplasms are benign. Although extremely rare, tumors of the sublingual gland are almost always malignant. The salivary glands neoplasms are rare and represent a variable group of benign and malign tumors with different behavioral characteristics . The pathologic diagnosis is critical for the correct management of these lesions since the aggressivity grade depends on their histological types.
    [Show full text]
  • Oral Cavity Histology Histology > Digestive System > Digestive System
    Oral Cavity Histology Histology > Digestive System > Digestive System Oral Cavity LINGUAL PAPILLAE OF THE TONGUE Lingual papillae cover 2/3rds of its anterior surface; lingual tonsils cover its posterior surface. There are three types of lingual papillae: - Filiform, fungiform, and circumvallate; a 4th type, called foliate papillae, are rudimentary in humans. - Surface comprises stratified squamous epithelia - Core comprises lamina propria (connective tissue and vasculature) - Skeletal muscle lies deep to submucosa; skeletal muscle fibers run in multiple directions, allowing the tongue to move freely. - Taste buds lie within furrows or clefts between papillae; each taste bud comprises precursor, immature, and mature taste receptor cells and opens to the furrow via a taste pore. Distinguishing Features: Filiform papillae • Most numerous papillae • Their role is to provide a rough surface that aids in chewing via their keratinized, stratified squamous epithelia, which forms characteristic spikes. • They do not have taste buds. Fungiform papillae • "Fungi" refers to its rounded, mushroom-like surface, which is covered by stratified squamous epithelium. Circumvallate papillae • Are also rounded, but much larger and more bulbous. • On either side of the circumvallate papillae are wide clefts, aka, furrows or trenches; though not visible in our sample, serous Ebner's glands open into these spaces. DENTITION Comprise layers of calcified tissues surrounding a cavity that houses neurovascular structures. Key Features Regions 1 / 3 • The crown, which lies above the gums • The neck, the constricted area • The root, which lies within the alveoli (aka, sockets) of the jaw bones. • Pulp cavity lies in the center of the tooth, and extends into the root as the root canal.
    [Show full text]
  • Venous Arrangement of the Head and Neck in Humans – Anatomic Variability and Its Clinical Inferences
    Original article http://dx.doi.org/10.4322/jms.093815 Venous arrangement of the head and neck in humans – anatomic variability and its clinical inferences SILVA, M. R. M. A.1*, HENRIQUES, J. G. B.1, SILVA, J. H.1, CAMARGOS, V. R.2 and MOREIRA, P. R.1 1Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais – UFMG, Av. Antonio Carlos, 6627, CEP 31920-000, Belo Horizonte, MG, Brazil 2Centro Universitário de Belo Horizonte – UniBH, Rua Diamantina, 567, Lagoinha, CEP 31110-320, Belo Horizonte, MG, Brazil *E-mail: [email protected] Abstract Introduction: The knowledge of morphological variations of the veins of the head and neck is essential for health professionals, both for diagnostic procedures as for clinical and surgical planning. This study described changes in the following structures: retromandibular vein and its divisions, including the relationship with the facial nerve, facial vein, common facial vein and jugular veins. Material and Methods: The variations of the veins were analyzed in three heads, five hemi-heads (right side) and two hemi-heads (left side) of unknown age and sex. Results: The changes only on the right side of the face were: union between the superficial temporal and maxillary veins at a lower level; absence of the common facial vein and facial vein draining into the external jugular vein. While on the left, only, it was noted: posterior division of retromandibular, after unite with the common facial vein, led to the internal jugular vein; union between the posterior auricular and common facial veins to form the external jugular and union between posterior auricular and common facial veins to terminate into internal jugular.
    [Show full text]
  • 14 'The R. M. Johnston Memorial Lecture, 1925. The
    I _...-, ·-~· ) \_ 14 DY PROFESSOR F. \VOOD JOXES, D.S~ F.R.S. 15 in this office, Professor Sir Edgeworth Dav~d, delivered what might be termed the R. M. Johnston Memorial Lecture. There is no man who might be better trusted to place an appropriate verbal wreath upon the tomb of a scientific 'THE R. M. JOHNSTON MEMORIAL LECTURE, 1925. ioneer; no man who could better strew the pathway of THE MAMMALIAN TOILET AND SOME CON. ~ emory with the petals of well merited praise than Sir SIDERATIONS ARISING FROM IT. Edcreworth1 David. It might be said that, as a memorial has left this office a barren one ·by virtue of his ), By lect'ure, he -own tribute. FREDERIC WooD JoNES, D.Sc., F.R.S., I feel, therefore, that I am absolved from attempting a Elder Professor of Anatomy in the University of Adelaide. task such as Sir Edgeworth David accomplished. But I With 23 Text Figures. feel also that Sir Edgeworth's tribute is only one aspect of a memorial lecture; the other is to offer up, in memory of (Read 7th May, 1925.) a great man, that which in one's present occupation seems Few ways of honouring a departed pioneer in science most fitted to constitute a subject for philosophical reflection could be conceived as more appropriate than the establish~ and for possible suggestion as to future lines of research. ment of a memorial lecture. Among the memorial lectures I shall, therefore, elect, as the R. M. Johnston Memorial that have been founded the world over to commemorate the Lecturer for 1925, to pay my homage rather in the form of life and work of outstanding men in the realm of Science, a lecture which introduces certain matters for homely con­ the R.
    [Show full text]
  • What Is the Sublingual Gland? What Does the Operation Involve? Will
    This leaflet aims to improve understanding of your How long will the operation take? forthcoming treatment and contains answers to Bleeding - Bleeding from the wound is unlikely many commonly asked questions. If you have any It will normally take about 30 minutes, unless it is to be a problem. If it occurs it usually does so other concerns that the leaflet does not answer, unusually complicated. within the first 12 hours of surgery which is why or would like further explanation, please ask your you need to stay in hospital overnight. surgeon. What can I expect after the operation? Infection - Infection is uncommon but your surgeon may prescribe you a short course of What is the sublingual gland? You will usually have to stay overnight in hospital. antibiotics if they think it is necessary. You are unlikely to feel very sore but painkillers will The sublingual gland is a salivary gland, about be arranged for you. There is usually a little swelling Numbness of the tongue – The lingual nerve the size of an almond, which lies underneath the following sublingual gland removal. tongue in the floor of the mouth. Saliva drains is the nerve that supplies feeling to the side of from it through a number of small tubes that open the tongue. It is rarely bruised, but if bruising on the inside of the mouth under the tongue. The Do I need any time off work? occurs it results in a tingly or numb feeling in the most common reason for removing the sublingual tongue, similar to the sensation after having an Most people take a week off work to recover from the gland is as a result of blockage to these drainage injection at the dentist.
    [Show full text]
  • Pygmy Lorises (Nycticebus Pygmaeus) Without Sublingua Về Những Các Thể Cu Li Nhỏ (Nycticebus Pygmaeus) Không Có Lư
    Vietnamese Journal of Primatology (2013) vol. 2(2), 83-86 Pygmy lorises ( Nycticebus pygmaeus ) without sublingua Tilo Nadler 1, Elke Schwierz 2 and Ulrike Streicher 3 1 Endangered Primate Rescue Center, Cuc Phuong National Park, Nho Quan District, Ninh Binh Province, Vietnam. <[email protected]> 2 Zoo Leipzig, Pfaffendorfer Straße 29, 04105 Leipzig, Germany. <[email protected]> 3 Wildlife Management Consultant, Danang, Vietnam. <[email protected]> Key words: Pygmy loris, Nycticebus pygmaeus , sublingua. Summary Since establishment of the Endangered Primate Rescue Center (EPRC) in 1993 the center received a total of 89 pygmy lorises ( Nycticebus pygmaeus ) and 9 northern slow lorises (Nycticebus bengalensis ). The animals are mostly confiscated from Forest Protection Departments in cooperation with the EPRC or through activities of the organization Education for Nature Vietnam (ENV). Some animals also donated from private persons after they realize that it is illegal to keep the lorises, or they are donated from tourists which bought the animals from hunters, traders or in an illegal market with the intention to rescue the animals but unaware that buying protecting animals is an illegal and criminal act. On arrival at the EPRC all animals undergo a health check and are quarantined for a six week period. During these routine health checks, we accidentally discovered that two pygmy lorises did not have a sublingua, which is a special morphological feature of some mammals, including lorises. We have only just started to look systematically for this feature and can to date not determine how many of the pygmy lorises kept at the EPRC do lack a sublinga and it what the ecological implications of the lack of this feature are.
    [Show full text]