<<

BASF Plastics Technical Information key to your success TI-KTU/AS-28 e 102098 October 2000 Resistance of Ultramid, Ultraform and Ultradur to

® = Registered trademark of BASF Aktiengesellschaft chemicals

1 General information Notes: Miscellaneous information such as references to other publi- The information given in this publi- cations, figures, permeability data cation is based on our current (diffusion coefficient at 20 °C, D ; knowledge and experience. In view 20 permeability at 50°C, P ) is given of the many factors that may affect 50 here. Values are written in scientific processing and application, these notation, eg, 2.5E-9 means 2.5 x data do not relieve processors of 10-9. the responsibility of carrying out their own tests and experiments; The degree of saturation wt/ws of a neither do they imply any legally specimen after a given time can be binding assurance of certain prop- found from the expression: erties or of suitability for a specific w 2.256 purpose. t = Dt ws s The information given relates to where: unreinforced, unmodified base w = increase in mass at time t grades (eg, Ultramid A3K and B3S, t (in s) Ultraform N 2320, Ultradur B 4250). w = increase in mass at saturation Reinforced and impact-modified s s = wall thickness in cm grades may behave slightly differ- D = diffusion coefficient in cm2/s ently. For example, glass-fibre rein- t = time in seconds forced Ultraform is less resistant to hot water than unmodified grades, The above formula can also be or impact-modified Ultra products used to determine the diffusion may be more prone to swelling in coefficient for a particular chemical polar solvents, fuels and oils than substance by measuring the rate of unmodified ones. absorption. If you cannot find the information you require here, please contact our Technical Centre.

2 Column headings wt. %: Figures under this heading refer to the concentration in wt.% of (unless otherwise stated) an aqueous solution of the substance; SS refers to a saturated solution of the substance; a blank means the information given relates to the pure substance. °C: The temperature at which the given data is valid. RT means “room temperature” which is taken to be between 15°C and 35°C. 3 Symbols used to describe the chemical resistance +: Resistant. Only slight changes to weight, dimensions, properties. According to current knowledge, the medium causes no irreversible damage to the polymer. : Limited resistance. Noticeable change in properties. Prolonged exposure to the medium may cause irreversible damage (eg, polymer degradation). – : Not resistant. Medium attacks polymer and/or causes environ- mental stress-cracking within a short time. Irreversible damage. S: Plastic dissolved by the chemi- cal. Number after the resistance symbol: This number refers to the mass increase after the polymer specimen has been saturated. The values given are only rough values and refer to unreinforced grades. The actual weight change depends on the grade of plastic and its crystallinity. The percentage change in length can be taken as being roughly a quarter of the percentage weight change.

2 Overview of the chemical resistance of Ultramid, Ultraform and Ultradur

Rating Ultramid Ultraform Ultradur Very resistant Aliphatic and aromatic Aliphatic and aromatic Aliphatic and aromatic hydrocarbons hydrocarbons hydrocarbons

Alkalis Alkalis Brake fluids Brake fluids Ethers, esters Ethers, esters Brake fluids Greases Greases Ethers, esters Ketones Ketones Greases Fuels (, diesel) Fuels (gasoline, diesel) Ketones Paints Paints Fuels (gasoline, diesel) Acids (dilute) Lubricants Paints Detergent Lubricants Detergent Detergent Water up to approx.100 °C Water up to approx. 40 °C Not resistant (fluorine, Halogens (fluorine, Alkalis chlorine, , Iodine) chlorine, bromine, iodine) Halogens (fluorine, Mineral acids and Nitrous gases chlorine, bromine, Iodine) certain organic acids Oxidants Acids Water above approx. 60 °C Oxidants Sulfur dioxide Zinc chloride solutions Concentrated zinc chloride solutions at elevated temperature Solvent for the resin

1. Room temperature Formic acid (> 60%) Fluorinated solvents Fluorinated solvents Fluorinated solvents (eg, hexafluoroisopropanol) (eg, hexafluoroisopropanol) m-Cresol Sulfuric acid (96 %)

2. Elevated temperature Benzyl N-methylpyrrolidone Phenol Glycols Dimethylformamide Dichlorobenzene Formamide

3 Wt. % °C Ultramid Ultraform Ultradur Notes Acetaldehyde soln. 40 RT (12%) + Acetamide soln. 50 RT (7%) + [2], [11] Acetamide soln. 50 > 140 S Acetic acid 95 RT – – – Acetic acid 10 RT + + POM: up to 1000 h no damage 2 Acetic acid 5 RT + (10%) + + PA: D25 = 1.4E-8 cm /s 2 RT + (2%) + PA: creep strength see fig. 2; P20 = 0.01 (g.mm/m h) Acetone 60 + + – RT + + + Acetyl chloride RT – – Acetylene RT + + + Acrylic acid > 30 S – [11] Acrylic acid (soln. in aliphatic hydrocarbons) 3 80 (2%) – Air RT + + + Alcohols: see “”, “” etc. Aliphatic hydrocarbon blend RT + + + Alkylbenzenes (Shellsol® A) RT + + Allyl alcohol RT + Aluminium acetate soln. SS RT + + + Aluminium hydroxide soln. SS RT + + + Aluminium salts of mineral acids in soln. (eg, chloride, sulfate, nitrate)20 RT + PA: may cause stress cracking [6] Aluminium salts of mineral acids in soln. (eg, chloride, sulfate, nitrate)SS 50 – – Amines, aliphatic RT + ( 8%) + + Amino acids SS RT + + + 2 2 Ammonia soln. RT + + PA 6 (10 bar/50°C): D50 = 2E-8 cm /s [9]; PA: P20 = 1E-10 (cm /s·mbar) Ammonia soln. 70 +– 2 Ammonia soln. 20 RT +++PA:P20 = 0.06 (g·mm/m ·h) Ammonia soln. 20 60 + + – Ammonium thiocyanate soln. SS RT + + Ammonium hydrogen carbonate soln. SS RT + + + Ammonium salts of minerals acids in soln. 10 RT + + + Ammonium salts of minerals acids in soln. 10 50 4 ·h) 2 = 0.5 (g·100 µm/m 20 Weight change after 14 days’ immersion at 120 °C:Weight A3WG6 +3% Ultramid POM at 120 °C stable over 2000 h + Baking up to 30 min; particularly suitable for glass-reinforced grades + + – + ++ + PA: conc. solns. of thiocyanate cause stress cracking [9] ++ 5%) + + PA: creep strength see fig. 1 (3–30%) + +++PA:P + + + “Fruit juices”, See also “Brandy”, “Wine” Wt. % °C Ultramid Ultraform Ultradur Notes ) RT––– 3 Amyl acetateAmyl acetateAmyl alcoholAnilineAnodizing baths (30% nitric acid/10% sulfuric acid)AnthraquinoneAntifreeze: see “Coolants” Antimony trichloride soln.Aqua regina (HCl/HNO ArgonAromatic hydrocarbon blendAsphalt RT AsphaltBacteria (DIN 53739)Baking enamelsBarium salts of mineral acids RTBenzaldehyde 100 SSBenzene RT + – RTBenzoic acid soln. + ( RT Benzoic acid soln. 85 –Benzyl alcohol + 80BeveragesBitumen (DIN 51567) +Bitumen (DIN 51567) – + Bleaching agent (aqueous; 12.5% active chlorine) – Boric acid soln. RTBoron trifluoride + RT RT RTBrake fluids + > 100 Brake fluids: (DOT 3–5, FMVSS 116) + 150 + 20 + + RT SS RT + + RT RT RT – + 80 + – + RT RT + – > 100 10 RT + 125 – + RT RT + + – RT – + + (3–10%) + – + –

5 /s 2 = 3E-12 cm 20 ·d·bar) 2 ·100 µm/m 3 < 10 (cm 2200G53 +6% 20 approx. 2E-12 mol/cm·s; D 20 Weight change after 14 days’ immersion:Weight A3WG6 + 3%; Ultramid Ultraform N [16] – + –– + Dissolves PA +++PA 66:P +++PA Wt. % °C Ultramid Ultraform Ultradur Notes (BASF)(BASF) 60 120 + + + + + ® ® -Butyrolactone-Butyrolactone RT >90 + (2%) + [16] Brake fluids: Hydraulan Brake fluids: (SAE J 1703; DIN 53521)Brake fluids: Hydraulan BrandyBromine vapourBromine waterBromochlorodifluoromethaneBromotrifluoromethaneButadieneButane 150ButanediolsButanediols –Butanols1-, cis-2-butene, (liquefied gas DIN 51622)Butene glycol – Butene glycolButter, buttermilkButyl acetateButyl acrylate SS RTn-Butyl ether RTn-Butyl glycol (glycol monobutyl ether) RT RT + RT RTButyl glycolate –Butyl phthalate – +Butyric acid soln. + (10%) + + + RT – – + + RT RT Calcium chloride soln. + + > 140 Calcium chloride soln. + – +Calcium chloride soln. (alcoholic) RT – + Calcium hydroxide soln. + (lime water) RT RT + > 160 RT + (2–9%) + + + + RT + + RT RT 20 + + + + + + RT + + RT 20 RT SS SS + + SS + + + PA: P RT + RT + RT + 60 + + + (10%) + + + + + + + +

6 ·d·bar) 2 h) 3 ·h) ·10 ·h) 2 2 2 ·100 µm/m 3 /s 2 = 1E-8 cm = 40–60 (cm = 0.02 (g.mm/m = 1.0 (g·mm/m = 0.1 (g·mm/m 25 20 20 50 20 eight increase owing to alcohol uptake Dissolves PA 6 above 150 °C,Dissolves PA 66 above 170 °C PA A 60/petroleum ether” “Clophen see also –PA:P + +PA:D – – [2] 10%) (3–30%)(5–25%) + +++W +++PA:P +++PA:P Wt. % °C Ultramid Ultraform Ultradur Notes : see 1,1,1-Trichloroethane ® -Caprolactam (aqueous solution)-Caprolactam (aqueous solution)-Caprolactam (molten) 50 50 RT > 150 + > 120 + + Calcium hypochlorite and bleaching powder soln.Camphor soln. in alcohol SSCarbon dioxideCarbon disulfideCarbon disulfide RTCarbon monoxideCasein –Caustic soda soln.:“Sodium hydroxide soln.” see Cellulose lacquers 50Cement – CeresinChloral hydrate RT ChloraminesChlorinated biphenylsChlorine, chlorine waterChloroacetic acid soln.ChlorobenzeneChlorobenzene 70 Chlorobromomethane RTChlorodifluoroethylene 60Chlorodifluoromethane, chlorodifluoroethane 70 + – Chlorosulfonic acid soln. +Chlorothene RT RTChromic acid +Chromic acid + < 10 +Chromyl chloride + 10 RT RTCitric acid soln. RT 80 RT RTCitric acid soln. RT + + RT – + – + + – – + PA: P 20 + + RT <10 + 50 RT + – – RT + + +“Paint solvents” see also + + – – – 10 – RT + 1 + + [1], [8] RT 10 [11] –“Bleaching agent” see also 10 RT RT – – RT + 50 – – + ( + – – –

7 ; [6], [15] 2 , Co(SCN) 2 diethylenetriamine/NaOH/ glycol monoethyl ether (70 : 2 : 28) POM: oxidizing detergent may cause corrosion + + –+ ++ + PA: stress cracking possible eg, with CoCl PA: nitrate and chloride cause stress cracking; [6], [10] – + + – PA: see figs. 3 & 4 +++PA:[1] +++= RT + (1–2%) + Wt. % °C Ultramid Ultraform Ultradur Notes , Agfa, pH 11) RT + + + ® /Water 1 :/Water 1 106 ® ® Citric acid soln.Citrus fruit juicesCitrus oilsCleaning agent: all-purpose cleanerCleaning agent: household cleaner (Ajax, ATA, Domestos, Rilan)Cleaning agent: toilet cleaner (pH < 3) 10Cleaning agent: window cleanerA 60/petroleum ether (1 :Clophen 1)Cobalt salt solns. RTConcreteCoolants: Glysantin +Copper (II) salt solns.Coumarone and coumarone resins 20Cresols +Crude oil: RT“Petroleum” see Cutting oils: 80 see Lubricating oils RT Cycloalkanes + RTCyclohexane, + cycloheptane + RT RTCyclohexanol (and esters thereof) +Cyclohexanone RT + + + 20 – Decontaminating agent (MIL-D-50030 F) +Dekalin + 10 RT Descaler (based on formic, + acetic, RT citric acids) + +Descaler (based on formic, acetic, citric acids) +Descaler (based on sodium hydrogen sulfate) + +Detergent soln, heavy-duty RT + Detergent soln, + heavy-dutyDeveloper soln. (Rodinal + 10 +Dibutyl phthalate RT 10Dibutyl phthalate RT RT RT 10 RTp-Dichlorobenzene + (2–6%) 50 + + RT S RT + + + RT + + < 10 + + < 10 RT + 80 + + S + + + + RT 60 RT + + + + (2%) + + + –

8 ; [11] ·h) ·h) 2 2 ·h) 2 = 0.03 (g·mm/m = 0.001 (g·mm/m = 0.005 (g·mm/m 20 20 20 PA is however resistant under normal conditions of use PA – POM: oxidizing detergents may cause corrosion – + [3], [4] (15%) +++PA:P +++PA:P ++ + ++ + + + + + + [3], [4] + [3], [4] [3], [4] [3], [4] Wt. % °C Ultramid Ultraform Ultradur Notes (biphenyl and diphenyl ether) 80 + + – ® 1,2-DichloroethaneDichloroethyleneDichlorofluoromethaneDichloromethane: see “Methylene chloride” DichlorotetrafluoroethaneDiesel fuel:“Fuels” see Diethyl etherDiethylene glycolDifluoromethaneDimethyl etherDimethylacetamideDimethylacetamideDimethylamineDimethylformamideDimethylformamide RTDimethylformamideDimethylsilane RT RTDimethylsulfoxide (DMSO) + (2–5%) RTDimethylsulfoxide (DMSO) + + +Dioctyl phthalate +DioxanDioxan + – Diphyl – > 140 RTDisopropyl ether + RT SDishwasher detergent soln. + (3%) RTDisinfectant (alcohol-based) RT + – + > 150Disinfectant (aldehyde-based) + +Disinfectant (based on phenols) + + – RT RTDisinfectant (based on quaternary ammonium compounds) 90 Disinfectant (based on quaternary phosphonium compounds) + > 140Disinfectant (chlorine-based) + (5%) + + RT + < 10 + < 10Disinfection by boiling – 125 RT + RT + + RT S PA: P + < 10 + RT“Glycol” See also < 10 S < 10 + 95 < 10 RT + RT RT 6 and POM on prolonged exposure: PA RT + RT 60 < 10 + + + RT + 100 + – +

9 ·d·bar) 2 ·d·bar) 2 ·d·bar) ·d·bar) 2 2 ·h) ·100 µm/m 2 3 ·h) 2 ·100 µm/m 3 ·100 µm/m ·100 µm/m 3 3 = 50–150 (cm < 10 (cm = 0.2 (g.mm/m = 0.008 (g·mm/m < 10 (cm < 100 (cm 20 20 20 20 20 20 See also “Steam (sterilization over 50 cycles)” See also PA: P + PA: slight yellowing + PA: 30–70 °C up to 8 h: + +++PA:P +++PA:P +++PA:P + ++ + +“Edible fats and oils” see also + POM: P Wt. % °C Ultramid Ultraform Ultradur Notes ) +++ ® , Propiofan ® Disinfection by fractional vacuum processDisinfection by gas sterilization:“Ethylene oxide” see Disinfection by hot air/steam/hot airDisinfection by irradiation (25 kGy for 6 h)Dispersions,Acronal aqueous (BASF Edible fats and oilsElectroplating baths, acidicElectroplating baths, alkali (cyanides)Engine oils:“Lubricating oils” see EpichlorhydrinEthaneEthanol +Ethanol, diluteEthereal oilEthyl acetate + + + Ethyl chlorideEthyleneEthylene carbonate RTEthylene carbonate + Ethylene chlorohydrin RT + 100Ethylene oxideEthylene oxide – +Ethylene oxide (gas sterilization) Ethylenediamine + Exhaust fumes from internal combustion engine – RT + 40 vol.Fats and waxes, edible fats RTFatty acids RT Fatty alcohols + + RT +Fatty alcohols, sulfonated RTFluorinated hydrocarbons, fluorocarbons RT +(15%) RT see also: “Anodizing baths” 50 and solutions of metal salts RT + + + (1%) 100 + RT RT + + + + – + + RT + + > 80 + RT – + RT PA: P 70 + (8–15%) + – – RT RT RT + + + + + + + + +

10 /s; POM: see figs. 24–25 2 ·h) ·h); POM: see figs. 24–25 2 2 = 1E-8 cm 20 = 0.001 (g·mm/m = 0.006 (g·mm/m 40 40 creep strength see fig. 5 PA: see figs. 8–10; PBT: see figs. 26–27 Conc. 6, acid dissolves nylons (50% for PA 66); [2] 80% for PA + POM: no damage after 1000 h +“Lubricating oils”; PA: See also limits see fig. temperature/time 13 + + + [5] +++PA:P +++PA:P ++ + + + ++++PA: [19] 610 above 90 °C Solvent for PA 110 + 110 Wt. % °C Ultramid Ultraform Ultradur Notes , perhydrofluorene) 85 + + ® (BASF): see “Coolants” ® FluorineFormaldehydeFormaldehyde solutionFormamideFormamideFormic acid soln.Formic acid soln.Fruit juicesFuel, engine: DieselFuel, engine: test fuel (5% ethanol) FAM Fuel, engine: Gasoline (normal & premium grade)Fuel, engine: Gasoline (normal & premium grade)Fuel, engine: High-performance fuels (Dekalin 30Fuel, engine: M15 mixture (15% methanol)Fuel, engine: M15 mixture (15% methanol) RTFungi (DIN 53739; ISO 846) Furfural RT 10 RT + (5–15%)Furfuryl alcohol RT + 10 + 85Gas sterilization: RT – 55 RT“Ethylene oxide (gas sterilization)” see Gasoline: > 150 see Fuels 50Gear oils (EP, hypoid, + ATF, manual transmission) + (9–14%) + S + Gelatine + + 55 – –Glue 85 70 RTGlycerol + + (9–14%) + Glycerol + + + Glycolic acid soln. – + – Glycols, alkyl glycol ethersGlysantin + +synthethic oils) PA: see figs. RT 8–10; + D RT + (2–7%) + 30 RT RT RT + RT RT + + (2–10%) 170 – + + S + – + + – + “Brake fluids”, See also + “Coolants”; [11] – Grease (based on ester oils, diester oils, phosphoric acid esters,

11 ·d·bar) 2 ·100 µm/m ·h) 3 2 = 0.1 (g·mm/m = 300–400 (cm 20 20 temp./time limits correspond to fig. 13; grease may cause increased swelling under some circumstances. + PA, POM: chemical attack possible under extreme conditions + PA: figs. 1 & 12; [17] 11%) + ( +++PA:P +++PA:P 110 +110+++PA: + Wt. % °C Ultramid Ultraform Ultradur Notes Grease (based on polyphenylester) Grease (based on silicone oils):“Silicone oils” see Grease: antifriction bearing grease DIN 51825 (based on metal soaps) Hair dyesHardening oilsHeating oil (DIN 51603)HeliumHeptaneHexachloroethaneHexachlorobenzeneHexafluoroisopropanolHexamethylenetetramineHexaneHumic acidsHydraulic fluidsHydraulic oil (DIN 51525)Hydraulic oil (MIL-H 5606)Hydraulic oil (VDMA 24318)Hydrazine RTHydriodic acid, hydrogen iodide soln. soln. RT RT Hydrochloric acid +Hydrochloric acid +Hydrofluoric acid RT 80 RTHydrofluosilicic acid RT + RT RTHydrogen + +Hydrogen chloride gas + (1%) + SHydrogen fluoride + Hydrogen peroxide soln. + 100 + Hydrogen peroxide soln. + 100 + RT RT RT 100 100 S + + 10 + + + – + RT S > 20 + 2 + RT RT + – – 40 30 RT – + RT RT + + + 0.5 + – – 30 – RT – – RT + RT RT RT – + – – – – – + – – – – – + + – “Hydrochloric acid” see also

12 /s 2 = 1E-11 cm 20 ·d); D 2 /s·mbar) 2 = 2.4E-12 (cm = 20 (g·100 µm/m 20 20 temperature/time limits see fig. 13 PA: creep strength see fig. 7 + & POM: PA possible damage by sulfuric acid formed oxidation + + + PA: environmental stress-cracking in saturated solutions +++PA:P 130+++PA: Wt. % °C Ultramid Ultraform Ultradur Notes (BASF): see “Brake fluids” ® Hydrogen sulfideHydrogen sulfide (dry)Hydroquinone soln.Hyraulan Impregnating oilsInkIodine (alcoholic solution)Iron (III) chlorideIron (III) chloride soln., acidicIron (III) chloride soln., neutralIron (III) thiocyanate soln.Isocyanates, aromatic < 10IsooctaneIsopropanol 5 RT Isopropanol RT RTKetones (aliphatic) – 10Lactic acid 10Lactic acid RT RT SSLaughing gas: RT“” see 10 RT Lead acetate soln. + – RTLime: see “Cement” – RT + (4–10%)Linseed oil RTLithium , soln. – (aqueous) +Lithium chloride soln. + – (alcoholic) RT – +Lithium hydroxide + + LPG (DIN 516222):“, see ” + Lubricating oils 10 80 + RTLubricating oil: gear oil (eg, ATF) 60 + RT RT + + (5–15%) + + + 10 + 20 + + 10 RT 90 RT + + + + + – + 10 S 10 PA: RT P + 20 + – 80 + + + – + + + + + + + –

13 /s; creep strength see fig. 11 2 = 1E-8 cm 20 ·h) 2 ·h); D 2 /s·mbar) 2 = 0.001 (g·mm/m = 6E-13 (cm = 0.2 (g·mm/m 20 60 20 temperature/time limits see fig. 13; PBT see fig. 28. PA: P PA: see fig. 13 + Possible attack by acids formed oxidation + +PA:P – – 130+++PA: 110 + RT + + Wt. % °C Ultramid Ultraform Ultradur Notes (BASF) RT + + + ® aliphatic hydrocarbons) RT + + + 4 ,C 3 ® , Lutensol ® Lubricating oil: HD engine oils, hydraulic oils, transformer oils Lubricating oil: hypoid gear oil (with EP additives, MIL-L 2105 B) Lubricating oil: hypoid gear oil (with EP additives, MIL-L 2105 B)Lubricating oil: without HD or EP additives (ASTM reference oil)Lutensit Magnesium salt solns. (chloride, 120 nitrate, sulfate)Maleic acid soln. 100 Malic acid – MaltManganese salt solns (chloride, sulfate)MAPP gas (C 10MercuryMercury (II) chloride RTMersolates Methane + (5–10%)MethanolMethyl acetate + 10Methyl chlorideMethyl chloroform:“1,1,1-Trichloroethane” see RT 25Methyl ethyl ketone + Methyl formate + RT Methyl glycol SSMethylamineMethylaniline RT SSMethylbromide +Methylene chloride + N-methylpyrrolidone RT RTN-methylpyrrolidone + Microbes – RT +MilkMineral oils:“Lubricating oils” see + RT RT + RT RT + RT + + (2%) + (9–14%) + + + RT + (2%) + + RT + + RT + + RT + RT RT + RT + (7%) + + (3–15%) > 150 + + + + RT + + S RT + + + PA: P + + +

14 ·d·bar) 2 ·100 µm/m ·d·bar) 3 2 = 340 (cm ·100 µm/m 20 3 = 6 (cm helium P 20 see fig. 1 creep strength see fig. 1 PA: environmental stress-cracking possible; [6] + + –– + [8] +++PA: + + + [19] +++PA:P +++PA:for +++PA: Wt. % °C Ultramid Ultraform Ultradur Notes surfactants (BASF) < 10 50 ® , Nekal ® MolassesMortars: see “Cement” A,Moulds (DIN 53739; ISO 846 B; MIL-T 18404)NaphthaNaphthaleneNaphthalenesulfonic acidsNaphthenic acidsNaphtholsNatural gas RT Nekanil NeonNickel nitrateNickel plating baths:“Electroplating baths” see Nickel salt solns. (chloride, sulfate)Nitric acidNitric acidNitrilotriacetic acid (sodium salt) RTNitrobenzene, nitrotolueneNitrobenzene, nitrotoluene RT +Nitrocellulose lacquers (alcoholic,A I) hazard class Nitrocellulose lacquers (alcohol-free,A II) hazard class – RT RTNitrogen (200 bar) RT 10 + oxides (dinitrogen tetraoxide) + +Nitrogen oxides (under pressure) + RT – Nitromethane, RT nitropropane 10 RTNitrous fumes + +Nitrous oxide + + – RT RT RT + +Noble gases (argon, helium, neon) RT > 50 RT +Octane, octene 2 + + + RT +Oil, for transformers, switchgear (DIN 51507) RT + + + > 100 RT – + RT S + + + + – RT – RT + – RT + – RT 50 – + RT RT [12] + RT + + + + +

15 /s 2 = 1.3E-9 cm 20 ·d·bar); D 2 ·100 µm/m 3 = 10–15 (cm 20 [11] Alcoholic solvents cause PA to swell Alcoholic solvents cause PA + [8] –+ –– +++PA:P Wt. % °C Ultramid Ultraform Ultradur Notes grades (BASF) RT + + + ® , Palatinol resins (BASF):“Polyester resins” see ® ® Oils (vegetable, ethereal, mineral)Oleic acidOleumOxalic acid soln.Oxalic acid soln.Oxygen (atmospheric pressure)Oxygen (high pressure)OzoneOzone (1 ppm in water)Ozone (20 ppm in air)Paint solvents RTPaints:“Paint solvents”, see “Baking enamels” Palamoll +Palatal Palmitic acid 10Paraffin wax, liquid paraffin 10Peracetic acid RT + RT Perchloroethylene: see “Tetrachloroethylene” RT 80Perfume (alcoholic solution) RT RTPerhydrol:“Hydrogen peroxide soln.” see + +Petroleum – RTPetroleum ether, petroleum solvents – (*) SPhenol RT +Phenol +“Lubricating oils” See also – – (*)Phenol (alcoholic soln.) RT –Phenyl ether (guaiacol, cresol)Phenylethyl alcohol RT + – – (*)Phenylethyl alcoholPhosphate (inorganic) solns. RT (neutral and alkaline) – +Phosphate esters:“Hydraulic fluids” see (*): not BAM-approved (German materials testing institute) –Phosphine + (<0.2%) + 80 RT + + 80 RT + 10 + – + – + RT 70 + + RT + RT RT + – 88 + + – + > 43 RT + RT + S > 160 S – + S + – – + RT – + [11], [12] + +

16 ·d); 2 ·d·bar) for propane 2 ·h) = 20 (g·100 µm/m 2 20 /s; P 2 ·100 µm/m 3 = 1E-11 cm < 10 (cm = 0.0002 (g·mm/m 20 20 20 PA: P creep strength see fig. 7 – & POM: Unfilled PA +; glass fibres attacked in reinforced grades. + ++ ++ + –+ (15–20%) +++PA:P 60 + Wt. % °C Ultramid Ultraform Ultradur Notes ” ® resins) RT + + + ® , Palatinol ® (adipates, BASF) DDA, NA, DIDA RT + + + ® Propanol (n-, iso-) RT + (5–15%) + + PA: D Phosphoric acidPhosphoric acidPhotographic developerPhotographic fixerPhthalic acid soln.Plasticizers: see “Palamoll Plastomoll Polyester resins (eg, BASF Palatal Polyglycols, polyolsPotassium bromide soln.Potassium chloride soln.Potassium chloride soln.Potassium dichromate soln. 10Potassium hydroxide soln. 85Potassium nitrate soln.Potassium permanganate soln. RT RTPotassium thiocyanate soln. RT SSPropane, propene – + RT S RT 10Propanol (n-, iso-) +Propionic acid soln. – 10 +Propionic acid soln. – 10 RT 5Propionic acid soln. RT RT 50Protein solutions + 70 – 1 RT Pulp slurries + 10 + – + RT Pulp slurries SS + RT + RTPyridine RT + +Pyrocatechol soln. – + +Pyrrolidone – Pyruvic acid soln. + + RT + 5 + – 10 50 > 100 RT + RT S + RT + – – RT + 6 + 95 – 10 RT – + RT – + 80 RT – + RT + + –

17 see figs. 14–15 and POM may be attacked by any zinc chloride that forms POM: damage after more than 1000 h PA: see fig. 15 – – adhesive solvent –– & POM: Unfilled PA +; glass fibres attacked in reinforced grades. +++PA +++PA 80+++PA: Wt. % °C Ultramid Ultraform Ultradur Notes Rainwater (acidic)Refrigerator oilResorcinol (alcoholic soln.)Resorcinol/methanol/benzene/water (40 : 35 : 10 : 5)Road salt, road-salt solutionsSalicylic acid soln.Seawater: see “Water” Silane (tetramethylsilane)Silicone oils Silicone oils RT Soap solutionSoda soln. 50Sodium bromide soln.Sodium chlorate soln. RT Sodium chlorite soln. RTSodium dodecylbenzenesulfonate soln. RT RTSodium hydrogen carbonate soln. +Sodium hydrogen sulfate soln. SSSodium hydrogen sulfite soln. +Sodium hydroxide soln. RT +Sodium hydroxide soln. RTSodium hydroxide soln. + +Sodium hypochlorite soln. +Sodium hypophosphite soln. + 10 < 10Sodium lauryl sulfate paste 10 10 + Sodium lignosulfonate – 80 10 RT 10 RT > 100 Sodium nitrilotriacetate soln. 10 RT RTSodium oleate + RT + 10 RT Sodium pentachlorophenolate + RT + +Sodium perborate soln. + (3–10%) RT + Sodium pyrosulfite soln. 10 + + + + 50 + 10 + RT + 10 10 RT + + 30 + 80 + RT RT – + 10 + RT – + + RT + + + RT 3 + RT + 10 – + + + RT RT RT + + + + + + + + + +

18 /s·mbar) [13]; high absorption under 2 = 2.3E-11 (cm 20 Sterilization (DIN 58946 parts 1–5): 66: PA 6: +; PA – [18] high pressure [16] +“Humic acids” see also ++ POM: no damage caused by 5% solution up to 1000 h + – [18] +– + –+ + +++[7] + + + Surface may be eaten into slightly Wt. % °C Ultramid Ultraform Ultradur Notes Sodium salt solns. (neutral, eg, chloride, nitrate, sulfate)Soil (acidic: pH 3)Soil (neutral; alkaline: pH 10)Soldering fluid 10SteamSteam (50-µm film)Steam (sterilization over 50 cycles) RTStearic acid, stearate, alkyl stearateSterilization,“Disinfectant” sterilizing agent see +Stoving enamels:“Baking enamels” see StyreneSulfolane (tetramethylenesulfone) +Sulfolane (tetramethylenesulfone)Sulfonates (eg, alkyl aryl sulfonate)Sulfur RTSulfur dioxide (dry) + RTSulfur dioxide (moist) + 134 Sulfur hexafluoride (20 bar) RT + Sulfuric acid RTSulfuric acid 116 + +Sulfurous acid soln. – <10 –Sweat (DIN 54020) 100 RT RT > 80 oil +Tall + + (1%)Tallow – S +Tar: see “Bitumen” acidTartaric +“Bacteria”, see also + “Moulds” acid 80Tartaric + Termites +Tetrachloroethylene + RT + RTTetrachloroethylene RT RT + + > 80 SS Evidence of molecular degradation after 5 cycles + + 2 RT + RT – RT + S RT + + – + + – 10 + 50 RT PA: RT P RT – RT + RT + (4–10%) + 80 + RT + – + + + +

19 h) h) 2 2 ·d) h) 2 2 = 0.08 (g·mm/m = 0.001 (g·mm/m = 0.005 (g·mm/m = 0.02 (g·mm/m 20 20 20 50 +PA:P +PA:P – ++ – – 66: PA 6: limited resistance; PA not resistant (4–10%) – – PA: P +++PA:P 180 + RT + (2–3%) + + Wt. % °C Ultramid Ultraform Ultradur Notes ) 45 + + [18] ® A, B (BASF)A, B (BASF) 10 10 RT 60 + + + + ® ® ® TetrachloromethaneTetrafluoromethaneTetrafluoropropanolTetrahydrofuranTetralin (II) salts of mineral acidsTin TolueneToluene gasTown acid ethyl esterTrichloroacetic acid soln.Trichloroacetic (Chlorothene 1,1,1-Trichloroethane Trichloroethanol, trifluoroethanolTrichloroethyleneTrichloroethylene RT 10Trichlorotrifluoroethane RTTriethanolamine RT + (1–4%)Trilon RT Trilon + RTTrimethylamine – phosphateTri-p-cresyl 50 + (2–10%) oilTurpentine RT + substitute (white spirit)Turpentine RT RT RTUranium fluoride 100Uric acid soln. – RTUrine – + +Vacuum RT – RTVaseline > 40 +Vinyl chloride, bromide, fluoride +Vulcanization – + RT – RT – – + RT + – + RT + + [11] + RT + + – 20 + + (1%) RT + RT + + + – 80 + + + RT + + – RT + + RT + + – + + + + + + + + +

20 see figs. 1, 17, 18, 19; POM: see figs. 22 & 23 (see “Zinc chloride”) POM: corrosion under certain circumstances above 60°C + POM: corrosion possible above 60°C –+ + + PA: stress cracking under certain circumstances (see figs. 20–21); +++PA: Wt. % °C Ultramid Ultraform Ultradur Notes 0.5 mg/l) 80 + + Water (including seawater)Water (including seawater),Water chlorinated ( glassWater Wax polishesWax WC cleaner (pH < 3)WineXyleneXyleneYeast 80+++ Zinc (galvanized metal surfaces) exposed to weather RT Zinc chlorideZinc chloride soln.Zinc chloride soln.Zinc thiocyanate, bromide, RT iodide, nitrate RT RT RT + + + + RT + 30 RT + + 100 + RT 10 + + + RT + 37 + – RT RT + + RT + Formation of zinc chloride possible on exposure to salt water + + – + – + + + +

21 70 50

60 1 40 5 A3 50 Tensile stress [MPa] Tensile stress [MPa]

30 40 6

Ultramid B5 B3 30 4 20

20

3 10 2 ° 10 Temp. 23 C

1 day 1 week 1 month 1 year 0 0 1 5 10 50 100 500 1000 10000 100 101 102 103 104 Time [hours] Time [hours]

Fig 1: Creep behaviour of Ultramid B5 in air and Fig 2: Creep behaviour of Ultramid A and B grades in various chemicals at 23, 40 and 50°C. acetone at 23°C. Test specimens: DIN 53455, no. 3, made from Test specimens: DIN 53455, no. 3. extruded sheet. 1 air, 23 °C/50 r.h. 3 hydrochloric acid, pH 1.5, 2 water (distilled), 23 °C 23 °C 4 Nikanil W Extra, 5%, 50 °C 5 transformer oil, 50 °C 6 , 23 °C

25 200

180

20 160

140 Tensile stress [MPa]

a Stress at break [MPa] 15 120

° 15 100 A3HG6 HR/108 C ° 10 A3WG6 Q76/108 C 10 80 7.0 60 5.0 ε 4.0 (%) 5 40 A3HG6 HR/130 °C 3.0

2.0 20 ° 1.0 A3WG6 Q76/130 C 0 0 0.1 1.0 10 102 103 0 1020304050 Time [hours] Time [days]

Fig 3: Creep behaviour of Ultramid A4K in a boiling Fig. 4: Mechanical data after immersion in 1 : 1 Glysantin®/water mixture at 106 °C. 1 : 1 Glysantin/water mixture at 108 °C and 130 °C. Test specimens: 118 mm x 13 mm x 8 mm (initially dry). Weight increase at saturation (150 h): 11.5%. a = creep-to-rupture curve; = strain

22 ]

60 2 120

100 B3WG7 Black

80 50 60 Ultramid A3 B4 B3 A3HG7 Black

Tensile stress [MPa] 40

Impact strength [kJ/m 20 Test temperature: 23 °C 40 Test method: ISO 179/1eU 0

30 250 A3HG7 Black 200 B3WG7 Black 150 20 ϑ 23° C 100

50 Test temperature: 23 °C 1 day 1 week 1 month 1 year Stress at break [MPa] Test method: ISO 527 10 0 100 101 102 103 104 0 500 1000 1500 2000 Time [hours] Time [h]

Fig 5: Creep behaviour of Ultramid A and B grades in Fig. 6: Ultramid A3HG7 Black and B3WG7 Black glycerol at 23 °C. Resistance to engine oil (Elf XT 3341) at 150 °C Test specimens: DIN 53455, no. 3

20 70

15 60 1 10 9

Hoop stress [MPa] 50

8 Tensile stress [MPa] 7 6 40 2 5 4 30 3 3

20 2 ϑ = 70 °C 4 10 1.5 cwo = 10 %

1 0 0 0.1 1 10 100001000100 0 10 100 1000 10000 Time [hours] Time [hours]

Fig. 7: Creep behaviour of water-saturated Ultramid Fig. 8: Creep behaviour of Ultramid B grades in M15 B5 pipes in isopropanol at 70 °C fuel (85 : 15 gasoline/methanol), in water and in 23/50 standard atmosphere. Test specimens: DIN 53455, no. 3 1 Ultramid B3S, B5 (conditioned at 23°C/50 r.h.) 2 Ultramid B3S (dry) in premium-grade gasoline at 23 °C 3 Ultramid B3S (dry) in M15 fuel at 23 °C 4 Ultramid B3S (initially dry) in water at 23 °C

23 ]

16 2 160

B3WG7 Black, Fluid O 14 140 c (%) s A3HG7 Black, Fluid O B3S 12 12 120 B3WG7 Black, Fluid C Weight increase [%]

10 Impact strength [kJ/m 100 B3EG6 8 A3HG7 Black, Fluid C 8 80 A3EG6 6,5 6 60

4 40

2 20 ϑ = 50 °C Test temperature: 23 °C Test method: ISO 179/1eU 0 0 01 5101520304050607080 0 500 1000 1500 2000 Time [days] Time [h]

Fig. 9: Relative increase in weight of Ultramid grades Fig. 10: Ultramid A3HG7 Black and B3WG7 Black in M15 fuel (85:15 gasoline/methanol) at 50 °C. Resistance to fuel mixtures at 70 °C: Fluid C (50% Cs (%) is the relative increase in weight at saturation. isooctane + 50% ); Fluid O (85% Fluid C + 15% Test specimens: DIN 53455, no. 3 methanol).

50 10.000

40 Mol [kg] 1.000 Ultramid A3 Tensile stress [MPa]

30

0.100

20

0.010 10 ϑ = 23 °C B3, B4 ϑ = 40 °C

1 day 1 week 1 month 1 year 0 0.001 100 101 102 103 104 012345678 Time [hours] pH

Fig. 11: Creep behaviour of Ultramid A and B in Fig. 12: Absorption of hydrochloric acid by Ultramid B3 methanol. as a function of the pH at 40 °C. Test specimens: DIN 53455, no. 3; temp.: 23 °C Test specimens: disks (Ø 60 mm x 1 mm) injection- moulded with a cold mould

24 180 60 C] ° 170 Ultramid A3HG5 A3EG5 160 A4H, A3W

50 150 in air; HD, SG, ATF, Hy Temperature [

140 2 Tensile stress [MPa] 130 A3HG5 3 A4H- ° 40 120

110 HD 130 °

100 ° Ultramid B3 B4 A3 30

90 ATF 120 1 80 EP SG 100

70 ° 20 ϑ = 23 °C

60 Hy 80 50

1 day 1 week 1 month 1 year 40 10 100 200 400 1000 2000 3000 hours 100 101 102 103 104 5000 10000 20000 50000 100000 150000 km Time [hours]

Fig. 13: Typical temperature and endurance data for Fig. 14: Creep behaviour of Ultramid in silicone oil Ultramid in contact with automotive lubricants AK 1000 (Wacker) HD = HD engine oil Test specimens: DIN 53455, no. 3 SG = Transmission oil (mechan.) ATF = Transmission oil (autom.) EP = EP hypoid-gear oil SAE90 Hy = Hydraulic oil (corresp. HD)

1 Long term temp. in driving operation (Peak temp. approx. + 130 °C) 2 In accordance with IEC-216 3 In EP hypoid-gear oil

ϑ = 80 °C 300 0.4 110 °C

Weight loss [%] 0.3

Flexural strength [MPa]Impact strength [a Flexural strength [MPa]Impact 250 140 °C

80 °C 0.2 ]

n 50 Ultramid A3K ϑ = 120 °C p = 10–5 mbar 40 110 °C 0.1

30

140 °C

20 0 0 10203040506070 0 100 200 300 500400 Time [days] Time [hours]

Fig. 15: Change in impact and flexural strength of Fig. 16: Relative loss in weight of Ultramid A3K Black Ultramid A3EG10 Black 564 in contact with silicone oil 464 (dry) at 120 °C in a 10-5-mbar vacuum. at 80, 110 and 140 °C (measured at 23 °C) (GLC analysis of volatile matter: 80% oligomers, 7% water).

25 50

40

ϑ (°C) 100 10 Tensile stress [MPa] A3 30 60 Depth of water penetration [mm]

20 1 23 B3, B4

10 ϑ = 23 °C

1 day 1 week 1 month 1 year 0.1 0 1 10 100 1000 10000 100 101 102 103 104 Time [days] Time [hours]

Fig. 17 Penetration of water into Ultramid B at 23, Fig. 18 Creep behaviour of Ultramid in distilled water 60 and 100°C at 23 °C Test specimens: DIN 53455, no. 3

2500 100

9.3 % H O 2 ϑ = 23 °C 2000 σz = 70 MPa Time-to-failure [h]

10

Torsionals modulus [MPa] 1500

0 % H2O 3.3 % H2O

1000

1.0

500

0 0.1 –200 –150 –100 –50 0 50 100 140 160 180 200 220 240 Temperature [°C] Viscosity number [ml/g] Fig. 19: Variation in torsional shear modulus of Fig. 20: Time-to-failure of dry PA 66 in 37.5% zinc Ultramid B3 as a function of temperature. Water chloride solution under a tensile stress of 70 MPa as a content of specimens: 0%, 3.3% and 9.3% function of the viscosity number (DIN 53727, H2SO4 (DIN 53445) 96 %).

26 70 80

60

NK 23/50 70 50 Yield stress [MPa] Tensile stress [MPa] 80 °C

40 60

30 100 °C

cw < 0.2 % cw = 2.7 % 20 50

10 ϑ = 23 °C 1 day 1 week 1 month 1 year 0 40 100 101 102 103 104 0 2 46 8 10 12 Time [hours] Time [months]

Fig. 21: Creep behaviour of stabilized high-molecu- Fig. 22: Immersion of Ultraform N 2320 003 in water. lar-weight PA 66 (dry and 2.7% water content) in 37.5% aqueous zinc chloride solution at 23 °C Test specimens: DIN 53455, no. 3

140 7 M 15

135 6 Ultraform N 2320 003 130 Ultraform N 2640 Z4 5 Weight increase [%] Stress at break [MPa] 125 Premium-grade gasoline 4

120 M 15 3 115

2 110 Normal-grade gasolione

105 1 Premium-grade gasoline Normal-grade gasoline 100 0 0 1428 42 56 70 84 98112 126 140 154 0 200400 600 800 1000 Time [days] Time [h]

Fig. 23: Immersion of Ultraform N 2200 G53 in water Fig. 24: Immersion of Ultraform in engine fuels at at 40 °C 50 °C

27 70 7 at 80 °C

6 60 Ultraform N 2320 003

Yield stress [MPa] 5 Weight increase [%]

50 4

Ultraform N 2640 Z2 Ultradur B 4520 3 40 Ultradur B 4300 G2 Ultradur B 4300 G6

Ultraform N 2640 Z4 2 ° Vacuum drying at 23 C 30 for 14 days at 60 °C 1

20 0 01020 30 40 50 6070 0 1020 30 40 50 60 70 80 90 100 110 120 Time [days] Time [days] Fig. 25: Stress at yield after immersion in M15 fuel at Fig. 26: Relative increase in weight of Ultradur after 60 °C immersion in M15 fuel at 23 °C and 80 °C

Ultradur B 4520 uncoloured 60 140

50 at + 23 °C

40 120

Yield stress [MPa]Stress at break [MPa] Yield stress [MPa]Stress 30 ° 100 20 at + 80 C B 4300 G4, 130 °C Stress at break [MPa]

Ultradur B 4300 G2 uncoloured 80 140 Ultradur B 4300 G6 uncoloured 120 B 4300 G4, 160 °C at + 23 °C 60 100 at + 23 °C 80 40 B 4500, 130 °C 60 at + 80 °C

40 20 at + 80 °C 20 B 4500, 160 °C 0 0 0 500 1000 1500 2000 0 2000 4000 6000 Time [h] Time [h]

Fig. 27: Yield and breaking stress of Ultradur after Fig. 28: Stress at break of Ultradur after immersion in immersion in M15 fuel at 23 °C and 80 °C synthetic engine oil (Castrol TXT Softec 10W-40)

28 Bibliography [13] Diels, K. und R. Jaeckel Leybold-Vakuumtaschenbuch, [1] Schubert, H. E., Berlin, 1972 (Ref. Kunstst. 64 Bericht TU München, (1974), 4, S. 167) PA6-Dübel (14. 08. 72); Plank, A., Bundesanstalt für [14] Frohn, H. und F. Stelzer Materialprüfung – Techn. Mit- (KFA, Jülich) teilung-BMT 6, Juni 1977, „Untersuchungen zur Eignung S. 406 – 416 und BAM-Amts- von Kunststoffen in Kryo- und Mitteilungsblatt Bd. 7 kabeln“ (1977), Nr. 2, S. 91– 95 [15] Andrews, R. D. u. a., [2] Kunststoff-Handbuch, Bd. 6, Polymer Preprints Am. Chem. Polyamide, C. Hanser Verl., Soc., Vol. 14 (1973), München, 1966, S. 490 und S. 1260 –1269 677 [16] Krejcar, E. [3] Liste der vom Bundesgesund- Chem. Premsyl 15 (1965), heitsamt geprüften und aner- 2, S. 77– 79 (Ref.: Chemical kannten Desinfektionsmittel Abstracts 62 [1965], 11183 g) und -Verfahren, Stand [17] Luck, A. P. (BASF), 01. 06. 78 (7. Ausg.) Bundes- Kolloid-Zeitschr. 223 (1968), gesundheitsbl. 21, Nr. 16 vom 2, S. 110 –117 04 .08. 78; Hygiene und Medi- „Über die Säureaufnahme von zin Bd. 4 (1979), S. 7– 39 Polyamid“ [4] 4. Desinfektionsmittelliste, [18] Hertel, H., Kunststoffe 71 Stand 01. 01. 74 (1981), 4, S. 240 – 241, Pharm. Ind. 36 (1974), 3, „Chlorierte Lösemittel in der S. 179 –194 Kunststoff-Praxis“ [5] Kunkel, H., (SKF-Schweinfurt) [19] Kerner-Gang, W., „Warum Kunststoff-Käfige“; BAM-Mitt. 14 (1984), 1, S. Wälzlagertechn. Sonderschrift 3 – 7 SKF-Schweinfurt WTS 770301 (1977); „Plastic cages – why?“ Ball Bearing Journal 191 (April 1977) [6] Dunn, P. und G.F. Sansom (Austral. Def. Sci. Serv., Melbourne) J. Appl. Pol. Sci. 13 (1969), S. 1641–1688 und 14 (1970), S. 1799 –1806; Reimschüssel, A. C., und Y.J. Kim, J. Mat. Sci. 13 (1978), S. 243 – 252 [7] Hinterhofer, O.G. Kunstst. Rundschau 21 (1974) 8, S. 313 – 315 [8] Jellinek, H. G. u. a. Polymer Journal 4 (1973), 6, S. 601– 606 J. Polymer Sci. A1, 10 (1972), S. 1773 –1788 [9] Zachariades, A. E. und R. S. Porter, J. Polymer Sci.-Poly- mer Letters 17 (1979), S. 277– 279 [10] Hughin, B. u. J. Smith Angew. Makromol. Chemie 12 (1970), Nr. 172, S. 205 – 208 [11] Burke, J. S. u. T.A. Orofino J. Pol. Sci. 7 (1969), S. 1– 25 [12] Gechele, G. B. und L. Crescentini J. Appl. Pol. Sci. 7 (1963), S. 1349 –1357

29 BASF Aktiengesellschaft 67056 Ludwigshafen, Germany