(12) United States Patent (10) Patent No.: US 6,215,018 B1 Miller Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) United States Patent (10) Patent No.: US 6,215,018 B1 Miller Et Al USOO6215O18B1 (12) United States Patent (10) Patent No.: US 6,215,018 B1 Miller et al. (45) Date of Patent: Apr. 10, 2001 (54) ACRYLATE MONOMER PREPARATION 5,554,785 9/1996 Trapasso et al. .................... 560/201 USING ALKALI METALALKOXDES AS 5,606,103 2/1997 Trapasso et al. ................. 560/217 ESTER INTERCHANGE CATALYSTS AND 6,008.404 * 12/1999 Miller. RNERIT POLYMERIZATION FOREIGN PATENT DOCUMENTS 1933536 1/1971 (DE). (75) Inventors: Timothy M. Miller, East Brunswick; 2455717 5/1975 (DE). Narayanan Pondicherry, North 1274,837 5/1972 (GB). Brunswick; Louis E. Trapass0, West OTHER PUBLICATIONS Long Branch; Aaron van de Sande, Ocean, all of NJ (US) Journal of Polymer Science vol. 449-460, Hsieh et al. (73) Assignee: Ciba Specialty Chemicals * cited by examiner Corporation, Tarrytown, NY (US) Primary Examiner-Gary Geist (*) Notice: Subject to any disclaimer,- 0 the term of this ASSistant Examiner Robert W. Deemie patent is extended or adjusted under 35 (74) Attorney, Agent, or Firm-David R. Crichton U.S.C. 154(b) by 0 days. (57) ABSTRACT (21) Appl. No.: 09/416,586 The present invention relates to a process to prepare alkyl (meth) acrylate esters from corresponding alkyl/ (22) Filed: Oct. 12, 1999 methacrylate esters using an alkali metal alkoxide as an ester interchange catalyst to produce an alkyl (meth)acrylate ester Related U.S. Application Data OOC product C (62) Division of application No. 09/132,607, filed on Aug. 11, C 1998. (60) Provisional application No. 60/655.449, filed on Aug. 11, 1997. H.C=C-C-O-in-R,2u (51) Int. Cl." ................................................. CO1C 67/02 R (52) U.S. Cl. .............................................................. 560/217 4 (58) Field of Search ............................................... 560/217 The present invention further relates to the use of bromide (56) References Cited and iodide Salts as free radical polymerization inhibitors. U.S. PATENT DOCUMENTS The present invention further relates to the use of a nonin a terfering alcohol or polyol that prevents anionic polymer 4,056,580 11/1977 Lochmann et al............ 526/174 ization reactions of reactant ester B and/or alkyl (meth) 4,139,690 2/1979 Toriqoe et al. ...................... 526/174 acrylate product C. The present invention further relates to 4,672,105 : 6/1987 Schlosser. a process for inhibiting polymerization of (meth)acrylates 37. s SR al 526/174 being Synthesized in a transesterification or ester-ester inter 5,037,912 s/1991 Patterson et al... C2 change reaction system 5,424,420 6/1995 Hasenhuettlet al. ... 536/115 5,498,751 3/1996 Trapasso et al. .................... 560/217 15 Claims, No Drawings US 6,215,018 B1 1 2 ACRYLATE MONOMER PREPARATION and the camphene is a highly undesirable (because of its USING ALKALI METALALKOXDES AS odor) impurity in the product. There is an obvious need for ESTER INTERCHANGE CATALYSTS AND a new reaction Scheme which avoids the complications of an BROMIDE SALT POLYMERIZATION equilibrium reaction which cannot be driven to high con INHIBITORS version and an offensive impurity. Another approach to preparing isobornyl methacrylate involves transesterifica tion of isoborneol with methyl methacrylate; however, This is a divisional of application Ser. No. 09/132,607, isoborneol is an extremely high melting “cakey' Solid that is filed on Aug. 11, 1998, which claims the benefit under 35 difficult to handle on an industrial Scale. U.S.C. 119(e) of U.S. Provisional Application No. 60/655, A desirable methacrylate monomer is glycerol 449 filed Aug. 11, 1997. trimethacrylate, which is a trifunctional monomer having a low mass alcohol and a short distance between methacrylate SUMMARY OF THE INVENTION moieties. Due to Steric congestion Surrounding the Second The present invention relates to a process to prepare alkyl ary alcohol and its ease of elimination, industrial Syntheses (meth) acrylate esters from corresponding alkyl/ of glycerol trimethacrylate have been impractical using methacrylate esters using an alkali metal alkoxide as an ester 15 conventional reaction Sequences. interchange catalyst. Lithium methoxide or lithium Typical polymerization inhibitors are phenolic com t-butoxide, for example, catalyzes rapid formation of meth pounds Such as hydroquinone, 4-methoxyphenol, acrylate esters, Such as isobornyl methacrylate, hexyl pyrogallol, or hindered phenolics Such as butylated hydroxy methacrylate, and glycerol trimethacrylate, from their toluene and its derivatives. The oxygen in air Serves as the acetate esters in high yields with high Selectivity. The initial radical chain Stopper in these reactions Since it reacts present invention further relates to the use of polymerization at diffusion controlled rates with carbon centered radicals inhibitors, Li Br, MgBr and bromide salts of related metals which propagate chains in free radical polymerizations. The or counterions. Bromide Salts are useful as proceSS poly oxygen combines with the carbon centered radical to pro merization inhibitors in the preparation of methacrylate or duce a much longer lived peroxy radical. The peroxy radical 25 oxidizes a phenolic inhibitor and chain reactions are halted. acrylate esters from alcohols by transesterification or meth Other classes of inhibitors include metal ions such as Cu(II), acrylate esters from alkyl acetates by ester interchange. The aromatic nitro compounds, nitrous oxide, nitroxyl bromide Salts disclosed herein can be used to prevent compounds, aromatic amines, and aromatic heterocycles polymerization of the starting methyl (meth)acrylate or other such as phenothiazine (PTZ). Some of these require air to lower esters of (meth)acrylic acid in the reactor or distilla function effectively and others do not. Some have great tion column. utility for Some classes of monomers and others are not BACKGROUND OF THE INVENTION particularly useful for that class. The utility of Some proceSS inhibitors for a given class of monomers is even found to Methacrylate or acrylate monomers are generally made by depend upon the reaction conditions being used for their direct esterification of an alcohol or polyol with methacrylic 35 preparation. For instance, phenolic inhibitorS Such as hyd acid or acrylic acid, or by transesterification of an alcohol or roquinone are particularly useful for preparation of (meth) polyol with a lower ester of (meth)acrylic acid Such as acrylate esters by acid catalyzed direct esterification. Hyd methyl methacrylate or ethyl acrylate. In Such a process, a roquinone is a poor inhibitor for base catalyzed reactor is charged with the alcohol along with the desired transesterifications because it rapidly oxidizes under basic (meth)acrylate reactant and a Suitable catalyst. For instance, 40 conditions in the presence of air yielding dark reactions dodecanol is converted into dodecyl methacrylate with mixtures. methacrylic acid and methane Sulfonic acid. The reaction Polymerization inhibitors generally must be removed or mixture is heated and the water produced as a byproduct in diminished Substantially in concentration before the product the process is removed as its azeotrope with a hydrocarbon can be sold or polymerized by the end user. The high levels Solvent Such as heptane. In the case of transesterification, an 45 of inhibitor required to prevent polymerization during manu alcohol and methyl acrylate are heated in the presence of a facture prevent effective polymerization. In the case of tetraalkyl titanate, for instance, and the reaction is driven by Volatile monomers, Such as allyl methacrylate, removal of the byproduct, methanol. These reactions are dimethylaminoethylmethacrylate, hexyl acrylate, or methyl widely practiced in industry using a large variety of Specific acrylate, polymerization inhibitors can be removed via frac catalysts, reaction conditions and equipment optimized for 50 tional distillation. Most inhibitors have significantly higher the particular monomers being manufactured. Ester inter boiling points than distillable monomers and Separation can change reactions are also well-known, particularly for the be obtained. On the other hand, polymerization inhibitors randomization of fats and oils. The use of alkali metal cannot be removed from involatile monomerS Such as iso alkoxides is known for ester interchange reactions for fats decyl acrylate, lauryl methacrylate, Stearyl methacrylate, and oils. See also U.S. Pat. No. 5,424,420, which discloses 55 trimethylolpropane triacrylate and the like by distillation. a method for preparing Saccharide polyesters by transesteri Here, polymerization inhibitors must be removed via wash fication using an alkali metal alkoxide. ing for example by removing a phenolic inhibitor with Isobornyl methacrylate is a common monomer having aqueous Sodium hydroxide. In Some cases it is undesirable utility because of the high glass transition temperature of its to remove inhibitors via Washing because of yield losses, (co)polymers. It is conventionally prepared by acid cata 60 miscibility, process complexity, or the desire for waste lyzed addition of methacrylic acid to camphene. This reac minimization. In other cases, low volatility of the monomer tion proceeds, in the presence of an appropriate catalyst, makes it difficult to remove low levels of a powerful rapidly and cleanly but to low conversion because it is an inhibitor such as PTZ by distillation. Manufacturers of equilibrium reaction which cannot be driven by removal of monomers are always interested in inhibitors which permit a product. Thus, the
Recommended publications
  • Direct Preparation of Some Organolithium Compounds from Lithium and RX Compounds Katashi Oita Iowa State College
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1955 Direct preparation of some organolithium compounds from lithium and RX compounds Katashi Oita Iowa State College Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Organic Chemistry Commons Recommended Citation Oita, Katashi, "Direct preparation of some organolithium compounds from lithium and RX compounds " (1955). Retrospective Theses and Dissertations. 14262. https://lib.dr.iastate.edu/rtd/14262 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overiaps.
    [Show full text]
  • Syntheses and Eliminations of Cyclopentyl Derivatives David John Rausch Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1966 Syntheses and eliminations of cyclopentyl derivatives David John Rausch Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Organic Chemistry Commons Recommended Citation Rausch, David John, "Syntheses and eliminations of cyclopentyl derivatives " (1966). Retrospective Theses and Dissertations. 2875. https://lib.dr.iastate.edu/rtd/2875 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. This dissertation has been microfilmed exactly as received 66—6996 RAUSCH, David John, 1940- SYNTHESES AND ELIMINATIONS OF CYCLOPENTYL DERIVATIVES. Iowa State University of Science and Technology Ph.D., 1966 Chemistry, organic University Microfilms, Inc., Ann Arbor, Michigan SYNTHESES AND ELIMINATIONS OF CYCLOPENTYL DERIVATIVES by David John Rausch A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject: Organic Chemistry Approved : Signature was redacted for privacy. Signature was redacted for privacy. Head of Major Department Signature was redacted for privacy. Iowa State University Of Science and Technology Ames, Iowa 1966 ii TABLE OF CONTENTS VITA INTRODUCTION HISTORICAL Conformation of Cyclopentanes Elimination Reactions RESULTS AND DISCUSSION Synthetic Elimination Reactions EXPERIMENTAL Preparation and Purification of Materials Procedures and Data for Beta Elimination Reactions SUMMARY LITERATURE CITED ACKNOWLEDGEMENTS iii VITA The author was born in Aurora, Illinois, on October 24, 1940, to Mr.
    [Show full text]
  • Chemical Resistance: Deco-Trowel
    CHEMICAL RESISTANCE DECO-TROWEL ® SERIES 223 Tnemec Company, Inc. 6800 Corporate Drive Kansas City, Missouri 64120-1372 +1 816-483-3400 www.tnemec.com © December 16, 2019 by Tnemec Company, Inc. Chem223 Page 1 of 19 CHEMICAL RESISTANCE DECO-TROWEL ® | SERIES 223 COMMON PROBLEM AREAS FOR COATINGS AND SOLUTIONS Problem: Coating Solution: Points of failure Carefully and due to thin spots fully coat in coating Problem: Rough Pinhole Solution: Uneven Undercut Grind smooth welds Problem: Gaps between Solution: plates, coating Continuous can not cover welds Problem: Gaps between Solution: plates, coating Continuous can not cover welds Problem: Coating Sharp surface Solution: contours create Round the thin spots in contours coating Problem: Skip welding Solution: creates gaps Continuous that coating welds can not cover Problem: Skip welding Solution: creates gaps Continuous that coating welds can not cover 2 channels back to back IMPORTANT: Definitions for the terms and acronyms used in this guide to describe the recommended exposures, along with other important information, can be found on the cover page of this guide or by contacting Tnemec Technical Service. Coatings should not be applied in a chemical exposure environment until the user has thoroughly read and understood the product information and full project details have been discussed with Tnemec Technical Service. Tnemec Company, Inc. 6800 Corporate Drive Kansas City, Missouri 64120-1372 +1 816-483-3400 www.tnemec.com © December 16, 2019 by Tnemec Company, Inc. Chem223 Page 2 of 19 CHEMICAL RESISTANCE DECO-TROWEL ® | SERIES 223 ¹ Product is NOT suitable for direct or indirect food contact. Intended Use and temperature information relates to product’s performance capabilities only.
    [Show full text]
  • Studies on Isotope Separation of Lithium by Electromigration in Fused Lithium Bromide and Potassium Bromide Mixture, (II) Composition of Salt in Anode Compartment
    Journal of NUCLEARSCIENCE and TECHNOLOGY,7 (10), p. 522~526 (October 1970). Studies on Isotope Separation of Lithium by Electromigration in Fused Lithium Bromide and Potassium Bromide Mixture, (II) Composition of Salt in Anode Compartment Yoshinobu YAMAMURA* and Shin SUZUKI* Received May 13, 1970 Accurate knowledge on the salt composition in the anode compartment is indispensable when 6Li is to be highly enriched by electromigration in fused LiBr-KBr mixture. A study was made on the dependence on temperature shown by the salt composition in the anode com- partment. It was observed that sustained electromigration led to a salt composition in the anode compartment that was determined by the prevailing temperature. The composition was observed for various temperatures between 380- and 740-C: In terms of the ratio Li/K in chemical equivalent, the values were 1.31 at 380-C, 1.29 at 420-C, 1.31 at 460-C, 1.41 at 500-C, 1.76 at 540-C, 1.82 at 580-C, 1.95 at 620-C, 2.16 at 680-C and 2.34 at 740-C. These results can be explained by assuming that the fused LiBr-KBr mixture is a system composed of two simple salts and their eutectic, and that at temperatures below 550-C, which is the melting point of LiBr, LiBr and KBr are dissolved in fused eutectic, while KBr is dissolved in the fused eutectic and LiBr at temperatures between 550- and 738-C, which latter is the melting point of KBr. I. INTRODUCTION . EXPERIMENTAL In a previous study(1), one of authors suc- 1.
    [Show full text]
  • Global Lithium Sources—Industrial Use and Future in the Electric Vehicle Industry: a Review
    resources Review Global Lithium Sources—Industrial Use and Future in the Electric Vehicle Industry: A Review Laurence Kavanagh * , Jerome Keohane, Guiomar Garcia Cabellos, Andrew Lloyd and John Cleary EnviroCORE, Department of Science and Health, Institute of Technology Carlow, Kilkenny, Road, Co., R93-V960 Carlow, Ireland; [email protected] (J.K.); [email protected] (G.G.C.); [email protected] (A.L.); [email protected] (J.C.) * Correspondence: [email protected] Received: 28 July 2018; Accepted: 11 September 2018; Published: 17 September 2018 Abstract: Lithium is a key component in green energy storage technologies and is rapidly becoming a metal of crucial importance to the European Union. The different industrial uses of lithium are discussed in this review along with a compilation of the locations of the main geological sources of lithium. An emphasis is placed on lithium’s use in lithium ion batteries and their use in the electric vehicle industry. The electric vehicle market is driving new demand for lithium resources. The expected scale-up in this sector will put pressure on current lithium supplies. The European Union has a burgeoning demand for lithium and is the second largest consumer of lithium resources. Currently, only 1–2% of worldwide lithium is produced in the European Union (Portugal). There are several lithium mineralisations scattered across Europe, the majority of which are currently undergoing mining feasibility studies. The increasing cost of lithium is driving a new global mining boom and should see many of Europe’s mineralisation’s becoming economic. The information given in this paper is a source of contextual information that can be used to support the European Union’s drive towards a low carbon economy and to develop the field of research.
    [Show full text]
  • Thermoeconomics of Lithium Bromide/Water Absorption Chillers and Heat Transformers
    THERMOECONOMICS OF LITHIUM BROMIDE/WATER ABSORPTION CHILLERS AND HEAT TRANSFORMERS By SHUN-FU LEE A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 1999 ACKNOWLEDGMENTS My sincerest gratitude goes to all of those who have been directly and indirectly involved. First, 1 would like to thank my advisor Dr. S. A. Sherif for his constant encouragement, assistance, and patient guidance. He encouraged me throughout my study. I would also like to thank Dr. D. Y. Goswami, Dr. C. K. Hsieh, and Dr. H. A. Ingley for their suggestions, and Dr. C. D. Baird for the time and effort he devoted to the dissertation review. Support from the Department of Mechanical Engineering at the University of Florida is also gratefully acknowledged. Most importantly, my deep appreciation goes to my family for their abundant love, support, and inspiration they have always provided. Finally, I would like to acknowledge my wife, Hsiao-Yun, for her love, encouragement, and tolerance. This would not have been possible solely by myself. ^ 11 1 TABLE OF CONTENTS Page ACKNOWLEDGMENTS ii ABSTRACT vi CHAPTERS 1 INTRODUCTION I 1.1 Background 1 1 .2 Literature Survey 7 1.2.1 Studies of Working Fluid Pairs 8 1.2.2 Studies of Various Absorption Systems 9 1 .2.3 Studies of Applications and Economics of Absorption Systems 1 1 .3 Objectives of Research 1 2 THERMODYNAMIC ANALYSIS OF ABSORPTION SYSTEMS AND METHODOLOGY OF SIMULATION 14 2.1 Background 14 2.2
    [Show full text]
  • Physical and Electrochemical Properties of 1-Butyl-3-Methylimidazolium Bromide, 1-Butyl-3-Methylimidazolium Iodide, and 1-Butyl-3-Methylimidazolium Tetrafluoroborate
    Korean J. Chem. Eng., 21(5), 1010-1014 (2004) Physical and Electrochemical Properties of 1-Butyl-3-methylimidazolium Bromide, 1-Butyl-3-methylimidazolium Iodide, and 1-Butyl-3-methylimidazolium Tetrafluoroborate Ki-Sub Kim, Bae-Kun Shin and Huen Lee† Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea (Received 12 December 2003 • accepted 10 May 2004) Abstract−The density, viscosity, refractive index, heat capacity, heat of dilution, ionic conductivity, and electrochemi- cal stability of 1-butyl-3-methylimidazolium bromide ([bmim][Br]), 1-butyl-3-methylimidazolium iodide ([bmim][I]), and 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]) were measured at room temperature or over a tem- perature range of 293.2 to 323.2 K. The density and refractive index values of [bmim][I] appeared to be the highest among three ionic liquids (ILs). However, the experimental viscosity values of [bmim][Br] were higher than those of [bmim][BF4], while the heat capacities and heats of dilution of [bmim][BF4] were higher than those of [bmim][Br]. The cyclic voltammogram of [bmim][br] and [bmim][BF4] indicated electrochemical windows in the stability range from 2.7 V of [bmim][[Br] to 4.7 V of [bmim][BF4]. Key words: Physical Property, Electrochemical Property, 1-Butyl-3-methylimidazolium Bromide, 1-Butyl-3-methylimidazo- lium Tetrafluoroborate, and 1-Butyl-3-methylimidazolium Iodide INTRODUCTION The 1-methylimidazole (99%), 1-chlorobutane (99.5%), 1-bro- mobutane (99%), 1-iodobutan(99%), 1,1,1-trichloroethane (99.5%), Ionic Liquids (ILs) are generally salts based on a substituted het- ethylacetate, and sodium tetrafluoroborate (98%) were supplied by − − erocyclic cation and an inorganic anion such as [AlCl4] , [BF4] , or Aldrich.
    [Show full text]
  • A History of the Pharmacological Treatment of Bipolar Disorder
    International Journal of Molecular Sciences Review A History of the Pharmacological Treatment of Bipolar Disorder Francisco López-Muñoz 1,2,3,4,* ID , Winston W. Shen 5, Pilar D’Ocon 6, Alejandro Romero 7 ID and Cecilio Álamo 8 1 Faculty of Health Sciences, University Camilo José Cela, C/Castillo de Alarcón 49, 28692 Villanueva de la Cañada, Madrid, Spain 2 Neuropsychopharmacology Unit, Hospital 12 de Octubre Research Institute (i+12), Avda. Córdoba, s/n, 28041 Madrid, Spain 3 Portucalense Institute of Neuropsychology and Cognitive and Behavioural Neurosciences (INPP), Portucalense University, R. Dr. António Bernardino de Almeida 541, 4200-072 Porto, Portugal 4 Thematic Network for Cooperative Health Research (RETICS), Addictive Disorders Network, Health Institute Carlos III, MICINN and FEDER, 28029 Madrid, Spain 5 Departments of Psychiatry, Wan Fang Medical Center and School of Medicine, Taipei Medical University, 111 Hsin Long Road Section 3, Taipei 116, Taiwan; [email protected] 6 Department of Pharmacology, Faculty of Pharmacy, University of Valencia, Avda. Vicente Andrés, s/n, 46100 Burjassot, Valencia, Spain; [email protected] 7 Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University, Avda. Puerta de Hierro, s/n, 28040 Madrid, Spain; [email protected] 8 Department of Biomedical Sciences (Pharmacology Area), Faculty of Medicine and Health Sciences, University of Alcalá, Crta. de Madrid-Barcelona, Km. 33,600, 28871 Alcalá de Henares, Madrid, Spain; [email protected] * Correspondence: fl[email protected] or [email protected] Received: 4 June 2018; Accepted: 13 July 2018; Published: 23 July 2018 Abstract: In this paper, the authors review the history of the pharmacological treatment of bipolar disorder, from the first nonspecific sedative agents introduced in the 19th and early 20th century, such as solanaceae alkaloids, bromides and barbiturates, to John Cade’s experiments with lithium and the beginning of the so-called “Psychopharmacological Revolution” in the 1950s.
    [Show full text]
  • 47 Lithium and Its Role in Psychiatry Roy H
    47 Lithium and Its Role in Psychiatry Roy H. Perlis, MD, MSc, and Michael J. Ostacher, MD, MPH, MMSc KEY POINTS formation. This effect is reversed by addition of myoinositol, providing some support for the importance of InsP3 in lithi- • Lithium remains a first-line treatment for all phases um’s effect. In the second, lithium inhibits glycogen synthesis kinase of bipolar disorder, including mania, depression, and 4–7 prevention of recurrence. 3-beta (GSK3B), an important enzyme in pathways includ- ing the Wnt signaling cascade.8 ,Notably mice expressing lower • While not examined in a controlled trial, abundant levels of GSK3B exhibit behaviors similar to mice treated evidence supports a role for lithium in decreasing the chronically with lithium.9 Signaling through the GSK3B risk of suicide. pathway may also be central to the observed neuroprotective 10 • Lithium has a narrow therapeutic window, effects of lithium. ,Of course both InsP3 and GSK3B pathways necessitating careful titration and close monitoring of have convergent effects—both influence the serine/threonine plasma levels. kinase Akt-1,4 for example. Expression of other genes (typi- • Lithium toxicity may cause confusion and ataxia. cally in lymphocytes) has been shown in single studies to be influenced by lithium administration, though the relevance of • Drugs that affect lithium levels include non-steroidal these effects to lithium’s effects on mood or other phenotypes anti-inflammatory drugs (NSAIDs) and diuretics. is unknown. PHARMACOKINETICS AND PHARMACODYNAMICS HISTORICAL CONTEXT Lithium is absorbed through the gut and distributes rapidly The history of lithium’s use in psychiatry parallels the develop- through body water, achieving peak plasma concentrations 1 ment of modern psychopharmacology.
    [Show full text]
  • Acroseal Packaging Your Solution for Air- and Moisture- Sensitive Reagents
    AcroSeal Packaging Your solution for air- and moisture- sensitive reagents Extra dry solvents Deuterated solvents Organometallic compounds Reagents in solution Organics Introduction Since the launch of AcroSealTM packaging we have introduced a new septum, which helps preserve product quality for longer. In addition, our AcroSeal portfolio has been expanded to include a broad range of solvents, organometallics, reagents in solution and organic compounds. In this brochure we have categorized our products under chemical families to make it easier to locate the product you need. Introduction Page no. AcroSeal packaging highlights 3 AcroSeal packaging performance 4 New 25mL AcroSeal packaging 4 Solvents Extra dry solvents 5-7 Solvents for biochemistry 7 Deuterated solvents 7 Organometallics Grignard reagents 8-10 Organoaluminiums 11 Organolithiums 11 Organosodiums 12 Organotins 12 Organozincs 12 Reagents in solution Amines 13 Boranes 13 Halides 14-15 Hydrides 15 Oxides 16 Silanes 16 Other reagents in solution 17 Organics Aldehydes 18 Amines 18 Epoxides 18 Halides 19 Phosphines 19 Silanes 19 Other organics 20 How to use AcroSeal packaging 21 Alphabetical index 22-23 2 Introduction AcroSeal packaging: drier reagents for longer When using air- and moisture-sensitive solvents and reagents, it is essential that these products are not only as dry as possible when you first use them, but they should remain dry in storage as well. Through the innovative quadrant-style screw cap and specially designed septum, AcroSeal packaging ensures that you have access to high-quality and low-moisture products every use, guaranteeing improved yield and consistency of your research experiments while reducing chemical waste. AcroSeal packaging highlights New septum developed from a polymeric elastomer with an inert fluoropolymer-coated surface, preserves product quality for longer with better re-seal around needle punctures.
    [Show full text]
  • EPDM & FKM Chemical Resistance Guide
    EPDM & FKM Chemical Resistance Guide FIRST EDITION EPDM & FKM CHEMICAL RESISTANCE GUIDE Elastomers: Ethylene Propylene (EPDM) Fluorocarbon (FKM) Chemical Resistance Guide Ethylene Propylene (EPDM) & Fluorocarbon (FKM) 1st Edition © 2019 by IPEX. All rights reserved. No part of this book may be used or reproduced in any manner whatsoever without prior written permission. For information contact: IPEX, Marketing, 1425 North Service Road East, Oakville, Ontario, Canada, L6H 1A7 ABOUT IPEX At IPEX, we have been manufacturing non-metallic pipe and fittings since 1951. We formulate our own compounds and maintain strict quality control during production. Our products are made available for customers thanks to a network of regional stocking locations from coast-to-coast. We offer a wide variety of systems including complete lines of piping, fittings, valves and custom-fabricated items. More importantly, we are committed to meeting our customers’ needs. As a leader in the plastic piping industry, IPEX continually develops new products, modernizes manufacturing facilities and acquires innovative process technology. In addition, our staff take pride in their work, making available to customers their extensive thermoplastic knowledge and field experience. IPEX personnel are committed to improving the safety, reliability and performance of thermoplastic materials. We are involved in several standards committees and are members of and/or comply with the organizations listed on this page. For specific details about any IPEX product, contact our customer service department. INTRODUCTION Elastomers have outstanding resistance to a wide range of chemical reagents. Selecting the correct elastomer for an application will depend on the chemical resistance, temperature and mechanical properties needed. Resistance is a function both of temperatures and concentration, and there are many reagents which can be handled for limited temperature ranges and concentrations.
    [Show full text]
  • Open AFLAS ® Technical Data Leaflet
    Contents 1.Introduction 1. Introduction 1 Since the arrival of VdF-HFP based elastomer (FKM) in the 1950s, a variety of fluoroelastomers have been 2. Commercial Polymer developed and commercialized. In 1975 a new fluoroelastomer family, based on an alternating copolymer of TFE and propylene (FEPM) was introduced by Asahi Glass Co., Ltd, under the trade name AFLAS®. Types and AFLAS® Grades 2 The polymer structure of AFLAS® gives unique properties in that it offers excellent heat resistance with a continuous 3. Properties of AFLAS® 3 service temperature of 200℃ and a maximum peak exposure temperature of 250℃, outstanding chemical 4. Standard Formulation resistance with no or little deterioration even in contact with strong acids and bases at high temperatures and high and Vulcanisation 4 15 16 electrical resistivity of the order of 10 ~10 Ω・cm. AFLAS® is used worldwide in many industrial fields where rubber 5. Heat Resistance 6 components come into contact with harsh environments. 6. Acid/Base Resistance 7 Reflecting the recent trend of increasing power in automotive engines, the use of high performance engine oils is 7. Other Chemical Resistance 10 now essential to cope with increasing engine temperatures. These engine oils are heavily formulated with amine- 8. Oil Resistance 12 based additives and therefore elastomer components are now required to have greater heat and engine oil resistance than previously experienced. Therefore AFLAS® has been attracting more attention as a material which 9. Electrical Properties 17 can survive in such harsh conditions. 10. Other Properties 18 AFLAS® has been finding new applications in wire & cable industries as an elastomeric insulating material with the 11.
    [Show full text]