Development and Optimization of Algal Cultivation Systems Martin Gross Iowa State University
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Analysis of Land Suitable for Algae Production State of Hawaii
Analysis of Land Suitable for Algae Production State of Hawaii Prepared for the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability Under Award No. DE-FC26-06NT42847 Hawai‘i Distributed Energy Resource Technologies for Energy Security Subtask 12.1 Deliverable (item 1) Report on Bioenergy Analyses By the Hawai‘i Natural Energy Institute School of Ocean and Earth Science and Technology University of Hawai‘i August 2011 Acknowledgement: This material is based upon work supported by the United States Department of Energy under Award Number DE-FC-06NT42847. Disclaimer: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference here in to any specific commercial product, process, or service by tradename, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. ii Analysis of Land Suitable for Algae Production State of Hawaii Prepared by Mele Chillingworth Scott Q. Turn Hawaii Natural Energy Institute School of Ocean and Earth Sciences and Technology University of Hawaii at Manoa August 2011 Executive Summary Algae are considered to be a viable crop for biofuel production because of their projected high productivity rates, their ability to grow in a wide range of water qualities, and their potential for cultivation on land unsuitable for food production. -
Microalgae for Future Biodiesel Production: Algaculture, Environnement Impact Oumaima Ezzeroual1*, Nadia El Kadmiri1, 2
Ezzeroual et al., Maghr. J. Pure & Appl. Sci., 7 N° 1 (2021) 8- 14 Maghrebian Journal of Pure and Applied Science ISSN : 2458-715X http://revues.imist.ma/?journal=mjpas&page=index https://doi.org/10.48383/IMIST.PRSM/mjpas-v6i2.22927 Microalgae for future biodiesel production: Algaculture, Environnement impact 1* 1, 2 Oumaima Ezzeroual , Nadia El Kadmiri 1 Sciences and Technology Department, Polydisciplinary Faculty of Taroudant, IBN ZOHR University, Taroudant, Morocco. 2 Laboratory of Medical Genetics and Molecular Pathology, Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, Casablanca, Morocco. *Corresponding Author; Email: [email protected]; Phone: +212658227800. Received 21 Novembre 2020, Revised 31 January 2021, Accepted 28 February 2021 Abstract Currently, the continued use of petroleum based fuels is considered unsustainable due to resource depletion and the accumulation of greenhouse gases in the environment, in addition to land and water degradation. Therefore, biofuels from renewable sources can be an alternative to reduce the consumption of fossil fuels and contribute to maintaining a healthy global environment and economic profitability. Unfortunately, biodiesel produced from food stocks generally consumed by humans and animals can be a source of increased food market prices due to the increased use of arable land for growing biomass for the production of first and second generation biofuels. The production of biofuels from microalgae, as a third generation of biodiesel production, has some distinctive advantages, such as their rapid growth rate, greenhouse gas binding capacity and high lipid production capacity. This mini-study examines the current status of algae-based biofuels as a renewable energy source and their impact on the environment. -
Development of a Quantitative PCR Assay for the Detection And
bioRxiv preprint doi: https://doi.org/10.1101/544247; this version posted February 8, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Development of a quantitative PCR assay for the detection and enumeration of a potentially ciguatoxin-producing dinoflagellate, Gambierdiscus lapillus (Gonyaulacales, Dinophyceae). Key words:Ciguatera fish poisoning, Gambierdiscus lapillus, Quantitative PCR assay, Great Barrier Reef Kretzschmar, A.L.1,2, Verma, A.1, Kohli, G.S.1,3, Murray, S.A.1 1Climate Change Cluster (C3), University of Technology Sydney, Ultimo, 2007 NSW, Australia 2ithree institute (i3), University of Technology Sydney, Ultimo, 2007 NSW, Australia, [email protected] 3Alfred Wegener-Institut Helmholtz-Zentrum fr Polar- und Meeresforschung, Am Handelshafen 12, 27570, Bremerhaven, Germany Abstract Ciguatera fish poisoning is an illness contracted through the ingestion of seafood containing ciguatoxins. It is prevalent in tropical regions worldwide, including in Australia. Ciguatoxins are produced by some species of Gambierdiscus. Therefore, screening of Gambierdiscus species identification through quantitative PCR (qPCR), along with the determination of species toxicity, can be useful in monitoring potential ciguatera risk in these regions. In Australia, the identity, distribution and abundance of ciguatoxin producing Gambierdiscus spp. is largely unknown. In this study we developed a rapid qPCR assay to quantify the presence and abundance of Gambierdiscus lapillus, a likely ciguatoxic species. We assessed the specificity and efficiency of the qPCR assay. The assay was tested on 25 environmental samples from the Heron Island reef in the southern Great Barrier Reef, a ciguatera endemic region, in triplicate to determine the presence and patchiness of these species across samples from Chnoospora sp., Padina sp. -
Industrial Photobioreactors and Scale-Up Concepts Jeremy Pruvost, François Le Borgne, Arnaud Artu, Jean-François Cornet, Jack Legrand
Industrial Photobioreactors and Scale-Up Concepts Jeremy Pruvost, François Le Borgne, Arnaud Artu, Jean-François Cornet, Jack Legrand To cite this version: Jeremy Pruvost, François Le Borgne, Arnaud Artu, Jean-François Cornet, Jack Legrand. Industrial Photobioreactors and Scale-Up Concepts. Elsevier. Advances Chemical Engineering, 48, pp.257-310, 2016, Photobioreaction Engineering, 10.1016/bs.ache.2015.11.002. hal-02539887 HAL Id: hal-02539887 https://hal.archives-ouvertes.fr/hal-02539887 Submitted on 10 Apr 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. CHAPTER FIVE Industrial Photobioreactors and Scale-Up Concepts Jeremy Pruvost*,1, Francois Le Borgne†, Arnaud Artu*,†, Jean-Franc¸ois Cornet{, Jack Legrand* *GEPEA, Universite de Nantes, CNRS, UMR6144, Bd de l’Universite, Saint-Nazaire Cedex, France †AlgoSource Technologies, Bd de l’Universite, Saint-Nazaire Cedex, France { Universite Clermont Auvergne, ENSCCF, Clermont-Ferrand, France and CNRS, Institut Pascal, Aubiere, France 1Corresponding author: e-mail address: [email protected] Contents 1. Introduction 258 2. PBR Engineering and Scaling Rules 259 2.1 Main Parameters Affecting PBR Biomass Productivity 259 3. Modeling PBRs 274 3.1 Introduction 274 3.2 Overview of Light-Limited Growth Modeling in a PBR 275 3.3 Kinetic Growth Model 276 3.4 Modeling of Radiative Transfer 279 3.5 Determination of Radiative Properties 281 3.6 Solar PBR Modeling 281 4. -
A New Dawn for Industrial Photosynthesis
A New Dawn for Industrial Photosynthesis The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Robertson, Dan E., Stuart A. Jacobson, Frederick Morgan, David Berry, George M. Church, and Noubar B. Afeyan. 2011. A new dawn for industrial photosynthesis. Photosynthesis Research 107(3): 269-277. Published Version doi://10.1007/s11120-011-9631-7 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:5130453 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Photosynth Res (2011) 107:269–277 DOI 10.1007/s11120-011-9631-7 REGULAR PAPER A new dawn for industrial photosynthesis Dan E. Robertson • Stuart A. Jacobson • Frederick Morgan • David Berry • George M. Church • Noubar B. Afeyan Received: 5 October 2010 / Accepted: 26 January 2011 / Published online: 13 February 2011 Ó The Author(s) 2011. This article is published with open access at Springerlink.com Abstract Several emerging technologies are aiming to conversion. This analysis addresses solar capture and meet renewable fuel standards, mitigate greenhouse gas conversion efficiencies and introduces a unique systems emissions, and provide viable alternatives to fossil fuels. approach, enabled by advances in strain engineering, Direct conversion of solar energy into fungible liquid fuel photobioreactor design, and a process that contradicts is a particularly attractive option, though conversion of that prejudicial opinions about the viability of industrial pho- energy on an industrial scale depends on the efficiency of tosynthesis. -
Indiana Aquatic Nuisance Species (ANS) Management Plan
Indiana Aquatic Nuisance Species (ANS) Management Plan Aruana caught by angler in Lake George, Lake County, Indiana Photo credit: Brian Breidert, IDNR Indiana Department of Natural Resources Funded by: Division of Fish and Wildlife Edited by: Phil Seng and Gwen White, D.J. Case & Associates, Mishawaka, Indiana October 1, 2003 Indiana Aquatic Nuisance Species (ANS) Management Plan Table of Contents Page Executive summary 3 Introduction 6 Why should we be concerned? 6 Why are we hearing about more nuisance exotics? 6 Are all exotic species causing problems? 7 Why do some of these species become nuisances? 7 What principles should guide invasive species management in Indiana? 8 Which species are top priorities for management in Indiana? 8 Table 1. Aquatic nuisance species on the watch list and detected 9 Nuisance fish 10 Nuisance insects and crustaceans 13 Nuisance mussels and snails 14 Diseases, pathogens and parasites 15 Aquarium pets caught from Indiana waters 17 Nuisance plants 20 Which programs are engaged in management of invasive species? 23 What regulatory authorities control management of exotic species? 29 Federal role 30 Regional role 32 State role 33 Designing an integrated comprehensive regulatory approach 33 What can Hoosiers do to prevent and control the impacts of ANS? 40 Index to the strategic management plan 41 Description of strategic management plan 44 How will we know if we succeed? 58 Literature cited 60 Glossary of terms 63 List of agency and organization acronyms 64 Appendix A. List of introduced fish and crayfish 65 Appendix B. List of invasive aquatic plants 67 Appendix C. Priority list of ANS in the Great Lakes basin 69 Appendix D. -
Periodic Optimal Control for Biomass Productivity Maximization in a Photobioreactor Using Natural Light
Periodic optimal control for biomass productivity maximization in a photobioreactor using natural light Frédéric Grognard, Andrei R. Akhmetzhanov, Olivier Bernard arXiv:1204.2906v1 [math.OC] 13 Apr 2012 RESEARCH REPORT N° 7929 April 12th, 2012 Project-Teams Biocore ISSN 0249-6399 ISRN INRIA/RR--7929--FR+ENG Periodic optimal control for biomass productivity maximization in a photobioreactor using natural light Frédéric Grognard∗, Andrei R. Akhmetzhanovy, Olivier Bernard∗ Project-Teams Biocore Research Report n° 7929 — April 12th, 2012 — 25 pages Abstract: We address the question of optimization of the microalgal biomass long term produc- tivity in the framework of production in photobioreactors under the influence of day/night cycles. For that, we propose a simple bioreactor model accounting for light attenuation in the reactor due to biomass density and obtain the control law that optimizes productivity over a single day through the application of Pontryagin’s maximum principle, with the dilution rate being the main control. An important constraint on the obtained solution is that the biomass in the reactor should be at the same level at the beginning and at the end of the day so that the same control can be applied everyday and optimizes some form of long term productivity. Several scenarios are possible depending on the microalgae’s strain parameters and the maximal admissible value of the dilution rate: bang-bang or bang-singular-bang control or, if the growth rate of the algae is very strong in the presence of light, constant maximal dilution. A bifurcation diagram is presented to illustrate for which values of the parameters these different behaviors occur. -
And Macro-Algae: Utility for Industrial Applications
MICRO- AND MACRO-ALGAE: UTILITY FOR INDUSTRIAL APPLICATIONS Outputs from the EPOBIO project September 2007 Prepared by Anders S Carlsson, Jan B van Beilen, Ralf Möller and David Clayton Editor: Dianna Bowles cplpressScience Publishers EPOBIO: Realising the Economic Potential of Sustainable Resources - Bioproducts from Non-food Crops © September 2007, CNAP, University of York EPOBIO is supported by the European Commission under the Sixth RTD Framework Programme Specific Support Action SSPE-CT-2005-022681 together with the United States Department of Agriculture. Legal notice: Neither the University of York nor the European Commission nor any person acting on their behalf may be held responsible for the use to which information contained in this publication may be put, nor for any errors that may appear despite careful preparation and checking. The opinions expressed do not necessarily reflect the views of the University of York, nor the European Commission. Non-commercial reproduction is authorized, provided the source is acknowledged. Published by: CPL Press, Tall Gables, The Sydings, Speen, Newbury, Berks RG14 1RZ, UK Tel: +44 1635 292443 Fax: +44 1635 862131 Email: [email protected] Website: www.cplbookshop.com ISBN 13: 978-1-872691-29-9 Printed in the UK by Antony Rowe Ltd, Chippenham CONTENTS 1 INTRODUCTION 1 2 HABITATS AND PRODUCTION SYSTEMS 4 2.1 Definition of terms 4 2.2 Macro-algae 5 2.2.1 Habitats for red, green and brown macro-algae 5 2.2.2 Production systems 6 2.3 Micro-algae 9 2.3.1 Applications of micro-algae 9 2.3.2 Production -
This Is Not a Citeable Document
This Meeting was Cancelled. THIS IS NOT A CITEABLE DOCUMENT NATIONAL SHELLFISHERIES ASSOCIATION Program and Abstracts of the 112th Annual Meeting March 29 – April 2, 2020 Baltimore, Maryland NSA 112th ANNUAL MEETING 1DWLRQDO6KHOO¿VKHULHV$VVRFLDWLRQ 7KH&URZQH3OD]D%DOWLPRUH,QQHU+DUERU+RWHO%$/7,025(0$5</$1' 0DUFK±$SULO 681'$<0$5&+ 6:30 PM 678'(1725,(17$7,21 DO NOT &DUUROO CITE 7:00 PM 35(6,'(17¶65(&(37,21 ,QWHUQDWLRQDO$%& 021'$<0$5&+ 678'(17%5($.)$67 VWXGHQWVRQO\ 6:30-8:00 AM +DOORI)DPH 3/(1$5</(&785(5RJHU0DQQ(9LUJLQLD,QVWLWXWHRI0DULQH6FLHQFH 8:00-8:50 AM ,QWHUQDWLRQDO$%& ,QWHUQDWLRQDO$ ,QWHUQDWLRQDO% ,QWHUQDWLRQDO& &DUUROO 21(+($/7+(3,*(120(6 6+(//),6+ 6+(//),6+*(1(7,&6 9:00-10:30 AM $1'0,&52%,20(6)520 5(6725$7,21$1' MUSSELS $1'*(120,&6 62,/723(23/(:25.6+23 &216(59$7,21 10:30-11:00AM 0251,1*%5($. 21(+($/7+(3,*(120(6 6+(//),6+ 6+(//),6+*(1(7,&6 6+(//),6+$48$&8/785( 11:00-12:30PM $1'0,&52%,20(6)520 5(6725$7,21$1' $1'*(120,&6 %86,1(66$1'(&2120,&6 62,/723(23/(:25.6+23 &216(59$7,21 12:30-1:30 PM /81&+%5($. 21(+($/7+(3,*(120(6 6+(//),6+ 6+(//),6+*(1(7,&6 1:30-2:15 PM $1'0,&52%,20(6)520 5(6725$7,21$1' /($6,1*$1'3(50,77,1* $1'*(120,&6 62,/723(23/(:25.6+23 &216(59$7,21 21(+($/7+(3,*(120(6 6+(//),6+ 6+(//),6+*(1(7,&6 2:15-3:00 PM $1'0,&52%,20(6)520 5(6725$7,21$1' /($6,1*$1'3(50,77,1* $1'*(120,&6 62,/723(23/(:25.6+23 &216(59$7,21 3:00-3:30 PM $)7(51221%5($. -
ORAL PRESENTATIONS Michael P. Acquafredda, Ximing Guo, And
ORAL PRESENTATIONS Michael P. Acquafredda, Ximing Guo, and Daphne Munroe PHENOTYPIC AND TRANSCRIPTOMIC RESPONSE OF FARMED ATLANTIC SURFCLAMS (SPISULA SOLIDISSIMA) TO REPEATED HEAT STRESS AND THE FEASIBILITY OF SELECTIVE BREEDING FOR GREATER HEAT TOLERANCE Michael P. Acquafredda, Nicole Deck, Michael Whiteside, Daphne Munroe, Lisa M. Ragone Calvo, David Bushek, Michael De Luca, and Ximing Guo DIVERSIFICATION OF BIVALVE AQUACULTURE IN THE NORTHEAST: TESTING SURVIVAL AND GROWTH OF BAY SCALLOPS (ARGOPECTEN IRRADIANS) IN NEW JERSEY M. Victoria Agnew, Colleen A. Burge, Morgan E. Eisenlord, and Carolyn S. Friedman CAN PACIFIC OYSTERS BE USED TO MITIGATE EELGRASS WASTING DISEASE? Ali A. Albadran and Masami Fujiwara DEVELOPMENTAL AND BEHAVIORAL CHANGES OF THE WHITE SHRIMP, LITOPENAEUS SETIFERUS, UNDER THE EXPOSURE OF PHENYLPYRAZOLE FIPRONIL Ali A. Albadran and Masami Fujiwara EFFECTS OF INSECTICIDES, FIPRONIL, AND IMIDACLOPRID ON THE GROWTH, SURVIVAL, AND BEHAVIOR OF BROWN SHRIMP, FARFANTEPENAEUS AZTECUS Pedro Alcivar-Marcillo, Miriam Alcivar-Arteaga, Gober Asunción, Mayra Galindo, Christian Saltos, Sofía Figueroa, Diana Villota, Diana Calvache, Benjamin Hall, Brenna Kelley, Joe Singh, Shana Singh, Cristian Argandona, Liliana Zuniga, Daniela Espinoza, Arturo Ruiz Luna, Cesar Alejandro Berlanga-Robles, Jorge Echevarria, Chika F. Ikeogu, and Acacia Alcivar-Warren THE MANGROVE GENOME AND EPIGENOME (MANGROVEENCODE) PROJECT: EFFORTS TO CONSERVE HEALTHY MANGROVES AND WETLANDS ECOSYSTEMS Acacia Alcivar-Warren ONE HEALTH EPIGENOMICS AND MICROBIOMES: FROM SOIL TO PEOPLE WORKSHOP: RECOGNITION TO WINNERS OF STUDENT TRAVEL AWARDS AND OUTSTANDING RESEARCHERS IN AQUACULTURE – ONE HEALTH PIONEERS ADDRESSING ECOSYSTEM, ANIMAL, AND PUBLIC HEALTH Acacia Alcivar-Warren THE SHRIMP GENOME AND EPIGENOME: A REVIEW OF GENOME SIZES, TRANSPOSABLE ELEMENTS, SIMPLE SEQUENCE REPEATS, INTEGRATED VIRUSES AND EPIGENETIC COMPONENTS OF PENAEIDS Ricky J. -
Environmental Quality Standards for Barium in Surface Water Proposal for an Update According to the Methodology of the Water Framework Directive
Environmental quality standards for barium in surface water Proposal for an update according to the methodology of the Water Framework Directive This report contains an erratum d.d. 29-01-2021 on page 111 RIVM letter report 2020-0024 E.M.J. Verbruggen | C.E. Smit | P.L.A. van Vlaardingen Environmental quality standards for barium in surface water Proposal for an update according to the methodology of the Water Framework Directive This report contains an erratum d.d. 29-01-2021 on page 111 RIVM letter report 2020-0024 E.M.J. Verbruggen | C.E. Smit | P.L.A. van Vlaardingen RIVM letter report 2020-0024 Colophon © RIVM 2020 Parts of this publication may be reproduced, provided acknowledgement is given to: National Institute for Public Health and the Environment, along with the title and year of publication. DOI 10.21945/RIVM-2020-0024 E.M.J. Verbruggen (author), RIVM C.E. Smit (author), RIVM P.L.A. van Vlaardingen. (author), RIVM Contact: Els Smit Centre for Safety of Substances and Products [email protected] This investigation has been performed by order and for the account of Ministry of Infrastructure and Water Management, within the framework of the project ‘Chemical substances, standard setting and Priority Substances Directive’. Published by: National Institute for Public Health and the Environment, RIVM P.O. Box1 | 3720 BA Bilthoven The Netherlands www.rivm.nl/en Page 2 of 111 RIVM letter report 2020-0024 Synopsis Environmental quality standards for barium in surface water Proposal for an update according to the methodology of the Water Framework Directive RIVM is proposing new water quality standards for barium in surface water. -
John Benemann Institute for Environmental Management, Inc
IEA Bioenergy ExCo64, Liege, Belgium,, 1/10/20091/10/2009 Algae – The Future for Bioenergy? Algae Biofuels: Challenges in Scale-up, Productivity and Harvesting (and Economics too!) John R. Benemann Benemann Associates Walnut Creek [email protected] 1 The Energy Journal, Vol. 1, No.1, 1980 Challenges to Algae Biofuels Development Microalgae are currently cultivated commercially (>100 mt/y) mainly in open shallow ponds, mostly in raceway-type, paddle wheel mixed ponds, for high value nutritional supplements, ~10,000 t/yr produced, with typical plant gate cost >$10,000/t. The biofuels challenge: producing millions of tons at <$1,000/t Microalgae are very small, grow as very dilute (<1 g/l) cultures in suspension, have very low standing biomass (<100 g/m2), require daily harvesting from large volumes of liquid, with the harvested biomass at <10% solids, must immediately process. Microalgae cultures requires a source of CO2, either purchased or “free” (power plant flue gases, biogas or ethanol plants, etc.) Not often there were we want. CO2 use is a need not a virtue! Microalgae require good climate – for a long cultivation season. For biofuels these must be produced at very high productivity And expand the number of species cultivated from four to more. 2 OUTLINE OF TALK 1. Historical development of microalgae technology 2. Current commercial reality of microalgae production 3. Scale-up: closed photobioreactors vs. open ponds 4. Harvesting: wastewater treatment by microalgae 5. Productivity: reality, fantasy and genetic engineering 6. Economics: projections for microalgae biofuels 7. Conclusions: just a few more R&D challenges First algal mass culture Inoculum Tubes project (for Chlorella) Plastic bag-type photobioreactors (PBRs) Roof of MIT Building~ 1950 3 Jack Bessel Myers Kok 2006, Austin, TX 1956, Stanford 40 hectare design based on MIT Rooftop pilot plant Fisher (1956), A.D.