Coastal Modelling Environment version 1.0: a framework for integrating landform-specific component models in order to simulate decadal to centennial morphological changes on complex coasts Andrés Payo1, 2, 3*, David Favis-Mortlock1, Mark Dickson4, Jim W. Hall1, Martin D. Hurst3, 5†, Mike 5 J.A. Walkden6, Ian Townend7, Matthew C. Ives1, Robert J. Nicholls2, Michael A. Ellis3 1Oxford University Centre for the Environment, South Parks Road, Oxford, OX1 3QY, UK 2Faculty of Eng. & the Env. Energy & Climate Change, Southampton Univ., Southampton, SO17 1BJ, UK 3British Geological Survey, Keyworth, NG12 5GD, UK (current address) * 4School of Env. University of Auckland, 10 Symonds St, Auckland Private Bag 92019, NZ 10 5University of Glasgow, East Quad, Glasgow, G12 8QQ, UK (current address) † 6WSP|Parsons Brinckerhoff, Keble House, Southernhay Gardens, Exeter EX1 1NT, UK 7National Oceanography Centre, Southampton University, SO14 3ZH UK Correspondence to: Andres Payo (
[email protected]) Abstract. The ability to model morphological changes on complex, multi-landform, coasts during decadal to centennial time 15 scales is essential for sustainable coastal management world-wide. One approach involves coupling of landform-specific simulation models (e.g. cliffs, beaches, dunes, estuaries, etc.) that have been independently developed. An alternative, novel, approach explored in this paper is to capture the essential characteristics of the landform-specific models using a common spatial representation within an appropriate software framework. This avoid the problems that result from the model- coupling approach due to between-model differences in the conceptualisations of geometries, volumes and locations of 20 sediment. In the proposed framework, the Coastal Modelling Environment (CoastalME), change in coastal morphology is represented by means of dynamically linked raster and geometrical objects.