Escherichia Coli from Glucose Wei Zhou1,2,3, Yibin Zhuang1,2, Yanfen Bai1,2,3, Huiping Bi1,2*, Tao Liu1,2* and Yanhe Ma1

Total Page:16

File Type:pdf, Size:1020Kb

Escherichia Coli from Glucose Wei Zhou1,2,3, Yibin Zhuang1,2, Yanfen Bai1,2,3, Huiping Bi1,2*, Tao Liu1,2* and Yanhe Ma1 Zhou et al. Microb Cell Fact (2016) 15:149 DOI 10.1186/s12934-016-0549-9 Microbial Cell Factories RESEARCH Open Access Biosynthesis of phlorisovalerophenone and 4‑hydroxy‑6‑isobutyl‑2‑pyrone in Escherichia coli from glucose Wei Zhou1,2,3, Yibin Zhuang1,2, Yanfen Bai1,2,3, Huiping Bi1,2*, Tao Liu1,2* and Yanhe Ma1 Abstract Background: Type III polyketide synthases (PKSs) contribute to the synthesis of many economically important natural products, which are typically produced by direct extraction from plants or synthesized chemically. For exam- ple, humulone and lupulone (Fig. 1a) in hops (Humulus lupulus) account for the characteristic bitter taste of beer and display multiple pharmacological effects. 4-Hydroxy-6-methyl-2-pyrone is a precursor of parasorboside contributing to insect and disease resistance of plant Gerbera hybrida, and was recently demonstrated to be a potential platform chemical. Results: In this study, we achieved simultaneous biosynthesis of phlorisovalerophenone, a key intermediate of humulone biosynthesis and 4-hydroxy-6-isobutyl-2-pyrone in Escherichia coli from glucose. First, we constructed a biosynthetic pathway of isovaleryl-CoA via hydroxy-3-methylglutaryl CoA followed by dehydration, decarboxylation and reduction in E. coli. Subsequently, the type III PKSs valerophenone synthase or chalcone synthase from plants were introduced into the above E. coli strain, to produce phlorisovalerophenone and 4-hydroxy-6-isobutyl-2-pyrone at the highest titers of 6.4 or 66.5 mg/L, respectively. Conclusions: The report of biosynthesis of phlorisovalerophenone and 4-hydroxy-6-isobutyl-2-pyrone in E. coli adds a new example to the list of valuable compounds synthesized in E. coli from renewable carbon resources by type III PKSs. Keywords: Isovaleryl-CoA, Phlorisovalerophenone, 4-Hydroxy-6-isobutyl-2-pyrone, Valerophenone synthase, Escherichia coli Background pharmacological effects [4]. Hyperforin (Fig. 1a) is one A large number of natural products are synthesized by of the main active constituents in extracts of Hypericum type III polyketide synthases (PKSs). These compounds perforatum used for the treatment of depression [5]. The play an important role in human nutrition and health, 4-hydroxy-2-pyrone analogues display multiple biological and have recently expanded their roles as platform chem- activities and are valuable pharmaceutical precursors [6]. icals. Acylphloroglucinol derivatives have been isolated 4-Hydroxy-6-methyl-2-pyrone, also known as triacetic from a number of plants [1–3]. Their chemical struc- acid lactone (TAL, Fig. 1b) is a precursor of gerberin tures and intriguing biological activities have attracted and parasorboside, which could protect Gerbera hybrid increasing attention in recent years. Humulone and lupu- from fungal pathogens and attack by insects [7]. Fistupy- lone (Fig. 1a) in hops (Humulus lupulus) account for the rone (4-hydroxy-6-isovaleryl-2-pyrone) (Fig. 1b) was characteristic bitter taste of beer and display multiple isolated from Streptomyces sp. TP-A0569 and showed inhibition of the infection of Chinese cabbage by a fun- *Correspondence: [email protected]; [email protected] gus Alternaria brassicicola [8]. Germicidin homologs 1 Tianjin Institute of Industrial Biotechnology, Chinese Academy (Fig. 1b) arisen from streptomyces inhibit spore ger- of Sciences, Tianjin 300308, China mination and Na+/K+ ATPase [9, 10]. More recently, Full list of author information is available at the end of the article © 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/ publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Zhou et al. Microb Cell Fact (2016) 15:149 Page 2 of 11 Fig. 1 Examples of phloroglucinols (a) and 2-pyrones (b) synthesized by type III PKS. PIBP phlorisobutyrophenone; PIVP phlorisovalerophenone; TAL 4-hydroxy-6-methyl-2-pyrone (triacetic acid lactone); HIPP 4-hydroxy-6-isopropyl-2-pyrone; HIBP 4-hydroxy-6-isobutyl-2-pyrone 4-hydroxy-2-pyrones were reported to be potential plat- The acylphloroglucinol cores, phlorisovalerophenone form chemicals (Additional file 1: Figure S1a) [11–13]. (PIVP) and phlorisobutyrophenone (PIBP) are formed by Advances in synthetic biology and metabolic engineer- condensation of three malonyl-CoA-derived acetate units ing greatly promoted biosynthesis of a variety of valuable with isovaleryl-CoA or isobutyryl-CoA as the starter compounds, for instance, flavonoids produced by type III units [4, 20]. The enzyme valerophenone synthase (VPS) PKSs [14, 15] in microbial hosts. Biological production involved in the formation of PIVP in the biosynthesis of phloroglucinol (Fig. 1a) and TAL (Fig. 1b) from glu- of humulone has been characterized [21–23]. VPS is a cose has also been accomplished using genetically modi- homologue of chalcone synthase (CHS). They share the fied microorganisms [6, 16–19]. However, biosynthesis same reaction mechanism namely claisen condensation, of acylphloroglucinols and TAL analogues from renew- but differ in substrate specificity. CHS catalyzes conden- able feedstocks in Escherichia coli has not been well sation of one molecule of p-coumaroyl-CoA and three investigated. molecules of malonyl-CoA to form naringenin-chalcone. Zhou et al. Microb Cell Fact (2016) 15:149 Page 3 of 11 However, VPS preferentially uses isovaleryl-CoA or simultaneously subcloned into the multiple cloning isobutyryl-CoA instead of p-coumaroyl-CoA as the sites (MCS) 1 of pETDuet-1 by Golden Gate [25] clon- starter unit to condense with three molecules of malo- ing using AarI. Subsequently, the gene product of liuC nyl-CoA to form PIVP [21, 23]. Recently, dual functional was digested and ligated into the above resulting plas- CHS/VPS have also been reported. A CHS, FvCHS2-1 mid using HindIII/AflII to yield the final plasmid pET- from strawberry (Fragaria vesca) was identified to be A. Here, the sequences of T7 promoter, lac operator responsible for acylphloroglucinols synthesis in straw- and ribosome binding site (RBS) from pETDuet-1 were berry fruit [3]. Intriguingly, in vitro experiments demon- incorporated into the primer design, so each gene was strated that type III PKSs such as VPS and CHS usually driven by a single T7 promoter. ERG10 and ERG13 were also synthesize TAL analogues, 4-hydroxy-6-isobutyl- PCR-amplified from Saccharomyces cerevisiae BY4742 2-pyrone (HIBP) and 4-hydroxy-6-isopropyl-2-pyrone genome with primer pairs ERG10-F/ERG10-R or ERG13- (HIPP) (Fig. 1b), carrying isobutyl or isopropyl at posi- F/ERG13-R, respectively. First, the ERG13 fragment was tion 6 with isovaleryl-CoA or isobutyl-CoA as the starter digested and cloned into NcoI/BamHI sites of pCDF- unit and malonyl-CoA as the extender unit. Duet-1. The ERG10 fragment was digested and ligated In this work, we engineered the synthesis of isovaleryl- into the above plasmid via NdeI/XhoI sites, generating CoA in E. coli by recruiting a biosynthetic pathway via the recombinant plasmid pCDF-E. The HlVPS gene from hydroxy-3-methylglutaryl CoA (HMG-CoA), an inter- hops (GenBank: AB015430.1) was codon optimized for mediate of the mevalonate pathway (Fig. 2a) [24]. The expression in E. coli and synthesized by Shanghai Gen- VPS from hops (Humulus lupulus) HlVPS, the CHS eray Biotech Co., Ltd. (Shanghai, China), designated from strawberry (Fragaria vesca) FvCHS2-1 and a newly as HlVPSsyn (Additional file 1: Table S2). HlVPSsyn was cloned CHS from H. perforatum HpCHS were intro- PCR-amplified with primer pair VPS-F/VPS-R, and duced into the isovaleryl-CoA producing E. coli strain cloned into pET28a through NdeI/AflII sites generat- separately, led to the simultaneous production of PIVP ing the intermediate expression vector pET28a-HlVPS. and HIBP at different ratios. The highest titers of PIVP The T7-HlVPSsyn fragment with a T7 promoter and an and HIBP produced by the recombinant strains reached N-terminal His tag was PCR-amplified from pET28a- 6.4 and 66.5 mg/L, respectively. This work adds new HlVPS with primer pair T7VPS-F/T7VPS-R, digested products to the list of valuable compounds biosynthe- and ligated into pCDF-E via NotI/AflII to generate the sized in E. coli using type III PKSs and lays a foundation final recombinant plasmid pCDF-EV1. FvCHS2-1 from for microbial synthesis of not only acylphloroglucinol strawberry (GenBank: XM_004306495.1) was codon derivatives, but also potential platform chemicals. optimized for expression in E. coli and synthesized by Shanghai Generay Biotech Co., Ltd. (Shanghai, China), Methods designated as FvCHS2-1syn (Additional file 1: Table S2). Strains, plasmids and medium HpCHS was obtained from the mRNA of H. perforatum Strains and plasmids used in this study are listed in by RT-PCR. RNA of H. perforatum callus was isolated by Table 1. Luria–Bertani (LB) medium was used for the RNAprep pure Plant Kit from Tiangen Biotech Co., Ltd. propagation of E. coli cells for plasmid construction. Ter- (Beijing, China). Reverse transcription was performed rific Broth (TB) medium (12 g/L tryptone, 24 g/L yeast using the First Strand cDNA Synthesis Kit from Toyobo extract, 4 mL/L glycerol, 2.3 g/L KH2PO4, and 12.5 g/L Co., Ltd. (Osaka, Japan). PCR reactions were performed K2HPO4) and modified M9 medium (1 × M9 minimal using High Fidelity PCR system (Fermentas, Germany) salts, 20 g/L glucose, 10 g/L yeast extract, 2 mM MgSO4, with primer pair HpCHS-F/HpCHS-R. The HpCHS and 0.1 mM CaCl2) were used for protein expression and sequence was submitted into NCBI database (GenBank: PIVP production, respectively. Ampicillin (100 mg/L) KU180217).
Recommended publications
  • Hop Compounds: Extraction Techniques, Chemical Analyses, Antioxidative, Antimicrobial, and Anticarcinogenic Effects
    nutrients Review Hop Compounds: Extraction Techniques, Chemical Analyses, Antioxidative, Antimicrobial, and Anticarcinogenic Effects Maša Knez Hrnˇciˇc 1,†, Eva Španinger 2,†, Iztok Jože Košir 3, Željko Knez 1 and Urban Bren 2,* 1 Laboratory of Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia; [email protected] (M.K.H.); [email protected] (Ž.K.) 2 Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia; [email protected] 3 Slovenian Institute of Hop Research and Brewing, Cesta Žalskega Tabora 2, SI-3310 Žalec, Slovenia; [email protected] * Correspondence: [email protected]; Tel.: +386-2-2294-421 † These authors contributed equally to this work. Received: 7 December 2018; Accepted: 18 January 2019; Published: 24 January 2019 Abstract: Hop plants comprise a variety of natural compounds greatly differing in their structure and properties. A wide range of methods have been developed for their isolation and chemical analysis, as well as for determining their antioxidative, antimicrobial, and antigenotoxic potentials. This contribution provides an overview of extraction and fractionation techniques of the most important hop compounds known for their health-promoting features. Although hops remain the principal ingredient for providing the taste, stability, and antimicrobial protection of beer, they have found applications in the pharmaceutical and other food industries as well. This review focuses on numerous health-promoting effects of hops raging from antioxidative, sedative, and anti-inflammatory potentials, over anticarcinogenic features to estrogenic activity.
    [Show full text]
  • Chalcone Synthase Homologues from Humulus Lupulus: Some Enzymatic Properties and Expression
    BIOLOGIA PLANTARUM 50 (1): 48-54, 2006 Chalcone synthase homologues from Humulus lupulus: some enzymatic properties and expression P. NOVÁK*,**, K. KROFTA*** and J. MATOUŠEK*,1 Institute of Plant Molecular Biology AS CR, Branišovská 31, CZ-37005 České Budějovice, Czech Republic* South Bohemian University, Biological Faculty, Branišovská 31, CZ-37005 České Budějovice, Czech Republic** Hop Research Institute, Kadaňská 2525, CZ-43846, Žatec, Czech Republic*** Abstract The enzymatic properties of four chalcone synthase homologues CHS_H1, VPS, CHS 2 and CHS 4 from Humulus lupulus L. were investigated after heterologous expression in Escherichia coli. It was found that both VPS and CHS_H1 can utilize isovaleryl-CoA and isobutyryl-CoA as substrates producing compounds with positions in thin layer chromatography characteristic for phloroisovalerophenone and phloroisobutyrophenone. These reactions are accompanied by the formation of associated byproducts. The formation of naringenin chalcone can be catalyzed primarily by CHS_H1. Comparatively the ability of VPS to perform chalcone synthase reaction is very limited. Since only CHS_H1 has true chalcone synthase activity, this enzyme can be considered a key enzyme in prenylflavonoid biosynthesis. Both CHS 2 and CHS 4 utilize isovaleryl-CoA and isobutyryl-CoA as substrates, but the reactions were prematurely terminated. In comparison with VPS and CHS_H1, the optimum pH of CHS 2 was shifted to lower value. High expression of chalcone synthase-like genes were found in maturating hop cones of cultivars with high bitter acid content (Agnus, Magnum, Target) by Northern and Western blotting using probes specific for vps, chs_H1, chs 4 and polyspecific serum risen against recombinant protein CHS4, respectively. It was also found that these cultivars maintained expression of CHS homologues for a longer period of time during cone development in contrast to time- limited expression of CHS homologues in cultivars with low bitter acids content.
    [Show full text]
  • Cannabinoids
    Orcinols and Phloroglucinols Prof. Dr. Ali Hikmet Meriçli Cannabidis strobouli (cannabis) Indian hemp, hashish esrar Cannabis sativa Cannabaceae A drug of ancient use in the Ayurvedic and Chinese systems of medicines (among other things, as an analgesic and anesthetic). The inconsistensy of its therapeutic activity, the poor conversation of its preparations, the difficulty in deciding optimal doses, and the emergence of synthetic analgesics and hypnotics lead to the gradual abandon of its use, and to its disappearance. A resin (cannabis) is obtained mostly from the female flowers (Cannabidis strobouli), which contain hundreds of different compounds : sugars, fatty acids, essential oil with terpenoid compounds, flavonoids, fatty acids, etc. The most intersting constituents are the cannabinoids. Cannabinoids are terpenephenolics classified as a function of their structure. The chief representatives of these groups are : - Δ9-tetrahydrocannabinol (Δ9-THC or THC, a benzotetrahydropyran - Cannabinol (CBN), a dibenzopyran (a degradation product of THC) - Cannabidiol (CBD), a diphenol THC and CBD occur in the fresh plant. Cannabigenol is a precursor of these compounds. CBN is a degradation product of THC. Pharmacological Properties : The activity of Cannabis is based on 9 Δ -tetrahydrocannabinol (THC) alone. Other cannabinoids seem biologically inactive. THC is particularly lipophilic, and is rapidly absorbed (peak plasma concentration after inhalation : 7-8 min). It is metabolized in liver to hydroxylated compounds (e.g., 11-hydroxy-THC), and excreted in the feces or urine. Acute Manifestations: A single dose of THC (or of Cannabis) may cause only a few somatic symptoms, which remain minor in the vast majority of cases : blood-shot eyes, dry mouth, tachycardia, increased appetite, and only at high doses, orthostatic hypotension.
    [Show full text]
  • WO 2018/037361 Al 01 March 2018 (01.03.2018) W !P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/037361 Al 01 March 2018 (01.03.2018) W !P O PCT (51) International Patent Classification: Published: A 31/04 (2006.01) A01N 35/08 (2006.01) — with international search report (Art. 21(3)) A0 43/16 (2006.01) A01N 25/02 (2006.01) A01N 65/00 (2009.01) A01N 25/30 (2006.01) A01N 65/08 (2009.01) A01P 7/02 (2006.01) (21) International Application Number: PCT/IB20 17/055094 (22) International Filing Date: 23 August 2017 (23.08.2017) (25) Filing Language: English (26) Publication Language: English (30) Priority Data: 62/378,259 23 August 2016 (23.08.2016) US (71) Applicant: ECOFLORA AGRO SAS [CO/CO]; Mall In diana Center, Oficina 279, Via Medellin-Rionegro, Rio N e gro, Alto de las Palmas (CO). (72) Inventors: JIMENEZ MARTINEZ, James; Calle 27D sur #27C-5 1, Medellin, Antioquia (CO). GIL ROMERO, Juan Fernando; Calle 56A #81-33, Medellin, Antioquia (CO). CHACON, Camilo; Carrera 79 #34-26, Medellin, Antioquia (CO). JARAMILLO, Gladis; Calle 18 #33-09, El Carmen de Viboral, Antioquia (CO). (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW,KZ, LA, LC, LK, LR, LS, LU, LY,MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • Towards the Total Synthesis of 7-Epi-Clusianone
    University of Kentucky UKnowledge Theses and Dissertations--Chemistry Chemistry 2017 TOWARDS THE TOTAL SYNTHESIS OF 7-EPI-CLUSIANONE Shubhankar Dutta University of Kentucky, [email protected] Digital Object Identifier: https://doi.org/10.13023/ETD.2017.266 Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Dutta, Shubhankar, "TOWARDS THE TOTAL SYNTHESIS OF 7-EPI-CLUSIANONE" (2017). Theses and Dissertations--Chemistry. 79. https://uknowledge.uky.edu/chemistry_etds/79 This Doctoral Dissertation is brought to you for free and open access by the Chemistry at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Chemistry by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known. I agree that the document mentioned above may be made available immediately for worldwide access unless an embargo applies.
    [Show full text]
  • Low-Field NMR for Quality Control and Fraud Detection: Application to the Analysis of Dietary Supplements and E-Liquids
    Low-field NMR for quality control and fraud detection : application to the analysis of dietary supplements and e-liquids Nao Wu To cite this version: Nao Wu. Low-field NMR for quality control and fraud detection : application to the analysis ofdietary supplements and e-liquids. Food engineering. Université Paul Sabatier - Toulouse III, 2020. English. NNT : 2020TOU30044. tel-02979720 HAL Id: tel-02979720 https://tel.archives-ouvertes.fr/tel-02979720 Submitted on 27 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Acknowledgments First, my deepest gratitude goes to my supervisors Prof. Véronique Gilard and Dr. Stéphane Balayssac. Thanks for their supervision and careful guidance in my personal development and academic research over the past three years. I would like to thank also Prof. Myriam Martino for welcoming me into the Biomedical NMR group of SPCMIB. Their profound knowledge and philosophy in science have led me into the door of this research area and will always accompany me in my career. Here, I would like to extend my sincere respect and gratitude to my three tutors. I would like to thanks Dr. Gaetan Assemat for his patient and professional advice, which helps me adapt my doctoral life quickly in the first year.
    [Show full text]
  • Transformation of Humulone by UV-Visible Spectroscopy with Introduction of Magnesium
    University of Northern Colorado Scholarship & Creative Works @ Digital UNC Undergraduate Honors Theses Student Research 5-12-2020 Transformation of Humulone By UV-Visible Spectroscopy with Introduction of Magnesium Erin Munder [email protected] Follow this and additional works at: https://digscholarship.unco.edu/honors Recommended Citation Munder, Erin, "Transformation of Humulone By UV-Visible Spectroscopy with Introduction of Magnesium" (2020). Undergraduate Honors Theses. 34. https://digscholarship.unco.edu/honors/34 This Article is brought to you for free and open access by the Student Research at Scholarship & Creative Works @ Digital UNC. It has been accepted for inclusion in Undergraduate Honors Theses by an authorized administrator of Scholarship & Creative Works @ Digital UNC. For more information, please contact [email protected]. University of Northern Colorado Greeley, Colorado TRANSFORMATION OF HUMULONE BY UV-VISIBLE SPECTROSCOPY WITH INTRODUCTION OF MAGNESIUM A Thesis Submitted in Partial Fulfillment for Graduation with Honors Distinction and the Degree of Bachelor of Science Erin Munder College of Natural and Health Sciences MAY 2020 TRANSFORMATION OF HUMULONE BY UV-VISIBLE SPECTROSCOPY WITH INTRODUCTION OF MAGNESIUM PREPARED BY: Erin Munder APPROVED BY THESIS ADVISOR: Dr. Michael Mosher HONORS DEPT LIAISON: Dr. Michael Mosher HONORS DIRECTOR: Loree Crow RECEIVED BY THE UNIVERSITY THESIS/CAPSTONE PROJECT COMMITTEE ON: May/ 09/ 2020 3 Abstract In the brewing industry, there are four main ingredients that are required to produce beer: water, yeast, barley, and hops. Hops are used in many different stages of brewing. The key reason for their use is the conversion of humulone (-acids) during the boiling process to cis- and trans-iso- humulone (iso--acid).
    [Show full text]
  • Three LC-MS Plant Metabolomics Studies of Hop (Humulus) Species: Wild H
    City University of New York (CUNY) CUNY Academic Works Dissertations, Theses, and Capstone Projects CUNY Graduate Center 9-2021 Three LC-MS Plant Metabolomics Studies of Hop (Humulus) Species: Wild H. neomexicanus, Drought Stress, and Agricultural Terroir Taylan Morcol The Graduate Center, City University of New York How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/gc_etds/4443 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] THREE LC-MS PLANT METABOLOMICS STUDIES OF HOP (HUMULUS) SPECIES: WILD H. NEOMEXICANUS, DROUGHT STRESS, AND AGRICULTURAL TERROIR by TAYLAN BARIŞ MORÇÖL A dissertation submitted to the Graduate Faculty in Biology in partial fulfillment of the requirements for the degree of Doctor of Philosophy, The City University of New York 2021 © 2021 TAYLAN BARIŞ MORÇÖL All Rights Reserved ii Three LC-MS Plant Metabolomics Studies of Hop (Humulus) Species: Wild H. neomexicanus, Drought Stress, and Agricultural Terroir by Taylan Barış Morçöl This manuscript has been read and accepted for the Graduate Faculty in Biology in satisfaction of the dissertation requirement for the degree of Doctor of Philosophy. ____________________ _______________________________________ Date Renuka P. Sankaran Chair of Examining Committee ____________________ _______________________________________ Date Cathy Savage-Dunn Executive Officer Supervisory Committee: Edward J. Kennelly, Advisor Paul D. Matthews Renuka P. Sankaran Damon Little Michael Balick THE CITY UNIVERSITY OF NEW YORK iii ABSTRACT Three LC-MS Plant Metabolomics Studies of Hop (Humulus) Species: Wild H. neomexicanus, Drought Stress, and Agricultural Terroir by Taylan Barış Morçöl Advisor: Edward J.
    [Show full text]
  • Transcriptome Analysis of Bitter Acid Biosynthesis and Precursor Pathways in Hop (Humulus Lupulus)
    Clark et al. BMC Plant Biology 2013, 13:12 http://www.biomedcentral.com/1471-2229/13/12 RESEARCH ARTICLE Open Access Transcriptome analysis of bitter acid biosynthesis and precursor pathways in hop (Humulus lupulus) Shawn M Clark1, Vinidhra Vaitheeswaran1, Stephen J Ambrose1, Randy W Purves1 and Jonathan E Page1,2* Abstract Background: Bitter acids (e.g. humulone) are prenylated polyketides synthesized in lupulin glands of the hop plant (Humulus lupulus) which are important contributors to the bitter flavour and stability of beer. Bitter acids are formed from acyl-CoA precursors derived from branched-chain amino acid (BCAA) degradation and C5 prenyl diphosphates from the methyl-D-erythritol 4-phosphate (MEP) pathway. We used RNA sequencing (RNA-seq) to obtain the transcriptomes of isolated lupulin glands, cones with glands removed and leaves from high α-acid hop cultivars, and analyzed these datasets for genes involved in bitter acid biosynthesis including the supply of major precursors. We also measured the levels of BCAAs, acyl-CoA intermediates, and bitter acids in glands, cones and leaves. Results: Transcripts encoding all the enzymes of BCAA metabolism were significantly more abundant in lupulin glands, indicating that BCAA biosynthesis and subsequent degradation occurs in these specialized cells. Branched-chain acyl-CoAs and bitter acids were present at higher levels in glands compared with leaves and cones. RNA-seq analysis showed the gland-specific expression of the MEP pathway, enzymes of sucrose degradation and several transcription factors that may regulate bitter acid biosynthesis in glands. Two branched-chain aminotransferase (BCAT) enzymes, HlBCAT1 and HlBCAT2, were abundant, with gene expression quantification by RNA-seq and qRT-PCR indicating that HlBCAT1 was specific to glands while HlBCAT2 was present in glands, cones and leaves.
    [Show full text]
  • WO 2016/044805 Al 24 March 2016 (24.03.2016) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/044805 Al 24 March 2016 (24.03.2016) P O P C T (51) International Patent Classification: DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, A61K 9/107 (2006.01) A61K 31/00 (2006.01) HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, A61K 9/48 (2006.01) A23L 1/29 (2006.01) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (21) International Application Number: PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, PCT/US20 15/05 1083 SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, (22) International Filing Date: TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. 18 September 2015 (18.09.201 5) (84) Designated States (unless otherwise indicated, for every (25) Filing Language: English kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, (26) Publication Language: English TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (30) Priority Data: TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, 62/052,435 18 September 2014 (18.09.2014) US DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, 62/052,450 18 September 2014 (18.09.2014) US LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, (71) Applicant: VIRUN, INC.
    [Show full text]
  • 2-Methyloxolane As a Bio-Based Solvent for Green Extraction of Aromas from Hops (Humulus Lupulus L.)
    molecules Article 2-Methyloxolane as a Bio-Based Solvent for Green Extraction of Aromas from Hops (Humulus lupulus L.) Vincent Rapinel 1,2, Aziadé Chemat 1, Cyrille Santerre 3, Justine Belay 3, Farnaz Hanaei 3, Nadine Vallet 3 , Laurence Jacques 2 and Anne-Sylvie Fabiano-Tixier 1,* 1 Green Extraction Team, Avignon University, INRAE, UMR408, F-84000 Avignon, France; [email protected] (V.R.); [email protected] (A.C.) 2 Pennakem Europa, 224 avenue de la Dordogne, F-59944 Dunkerque, France; [email protected] 3 Institut Supérieur International du Parfum, de la Cosmétique et de l’Aromatique alimentaire (ISIPCA), 34-36 rue du parc de Clagny, F-78000 Versailles, France; [email protected] (C.S.); [email protected] (J.B.); [email protected] (F.H.); [email protected] (N.V.) * Correspondence: [email protected] Received: 22 January 2020; Accepted: 6 April 2020; Published: 9 April 2020 Abstract: The potential of using the bio-based solvent 2-methyloxolane, also known as 2- methyltetrahydrofuran or 2-MeTHF, as an alternative to petroleum solvents such as hexane, was investigated for the extraction of volatile compounds from hop cones (Humulus lupulus L.). Lab scale extractions were coupled with in silico prediction of solutes solubility to assess the technical potential of this bio-based solvent. The predictive approach was performed using the simulation software COSMO-RS (conductor like screening model for real solvants) and showed that the 2-methyloxolane is as good as or better than hexane to solubilize the majority of aromas from hop cones. The experimental results indicated that the highest aroma yield was obtained with 2-methyloxolane with 20.2% while n-hexane was only able to extract 17.9%.
    [Show full text]
  • WO 2012/129450 Al 27 September 2012 (27.09.2012) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2012/129450 Al 27 September 2012 (27.09.2012) P O P C T (51) International Patent Classification: (74) Agents: WILLIS, Michael, A. et al; Wilson Sonsini CUP 1/00 (2006.01) Goodrich & Rosati, 650 Page Mill Road, Palo Alto, CA 94304-1050 (US). (21) International Application Number: PCT/US20 12/030209 (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, (22) Date: International Filing AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, 22 March 2012 (22.03.2012) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, (25) Filing Language: English DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, (26) Publication Language: English KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, (30) Priority Data: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 61/466,363 22 March 201 1 (22.03.201 1) US OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, 61/466,433 22 March 201 1 (22.03.201 1) US SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, 61/539,378 26 September 201 1 (26.09.201 1) us TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]