View a Copy of This Licence, Visit Iveco Mmons. Org/ Licen Ses/ By/4. 0/
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
7Fa228ee469dc6254b4b09b017
GBE Multigenomic Delineation of Plasmodium Species of the Laverania Subgenus Infecting Wild-Living Chimpanzees and Gorillas Weimin Liu1, Sesh A. Sundararaman1,2, Dorothy E. Loy1,2, Gerald H. Learn1,YingyingLi1, Lindsey J. Plenderleith3, Jean-Bosco N. Ndjango4, Sheri Speede5,RebecaAtencia6,DebbyCox6,7, George M. Shaw1,2, Ahidjo Ayouba8, Martine Peeters8,JulianC.Rayner9, Beatrice H. Hahn1,2,and Paul M. Sharp3,* 1Department of Medicine, Perelman School of Medicine, University of Pennsylvania 2Department of Microbiology, Perelman School of Medicine, University of Pennsylvania 3Institute of Evolutionary Biology, and Centre for Immunity, Infection and Evolution, University of Edinburgh, United Kingdom 4Faculty of Sciences, University of Kisangani, Democratic Republic of the Congo 5Sanaga-Yong Chimpanzee Rescue Center, IDA-Africa, Portland, Oregon 6Tchimpounga Chimpanzee Rehabilitation Center, Pointe-Noire, Republic of the Congo 7Africa Programmes, Jane Goodall Institute, Vienna, Virginia 8UMI 233, Institut de Recherche pour le De´veloppement (IRD), INSERM U1175, and University of Montpellier, France 9Malaria Programme, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK *Corresponding author: E-mail: [email protected]. Accepted: May 24, 2016 Data deposition: This project has been deposited at NCBI GenBank under the accession numbers listed in supplementary table S5, Supplementary Material online. Abstract Plasmodium falciparum, the major cause of malaria morbidity and mortality worldwide, is only distantly related -
Integrating Single-Step GWAS and Bipartite Networks Reconstruction Provides Novel Insights Into Yearling Weight and Carcass Traits in Hanwoo Beef Cattle
animals Article Integrating Single-Step GWAS and Bipartite Networks Reconstruction Provides Novel Insights into Yearling Weight and Carcass Traits in Hanwoo Beef Cattle Masoumeh Naserkheil 1 , Abolfazl Bahrami 1 , Deukhwan Lee 2,* and Hossein Mehrban 3 1 Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj 77871-31587, Iran; [email protected] (M.N.); [email protected] (A.B.) 2 Department of Animal Life and Environment Sciences, Hankyong National University, Jungang-ro 327, Anseong-si, Gyeonggi-do 17579, Korea 3 Department of Animal Science, Shahrekord University, Shahrekord 88186-34141, Iran; [email protected] * Correspondence: [email protected]; Tel.: +82-31-670-5091 Received: 25 August 2020; Accepted: 6 October 2020; Published: 9 October 2020 Simple Summary: Hanwoo is an indigenous cattle breed in Korea and popular for meat production owing to its rapid growth and high-quality meat. Its yearling weight and carcass traits (backfat thickness, carcass weight, eye muscle area, and marbling score) are economically important for the selection of young and proven bulls. In recent decades, the advent of high throughput genotyping technologies has made it possible to perform genome-wide association studies (GWAS) for the detection of genomic regions associated with traits of economic interest in different species. In this study, we conducted a weighted single-step genome-wide association study which combines all genotypes, phenotypes and pedigree data in one step (ssGBLUP). It allows for the use of all SNPs simultaneously along with all phenotypes from genotyped and ungenotyped animals. Our results revealed 33 relevant genomic regions related to the traits of interest. -
Plasmodium Falciparum Is Not As Lonely As Previously Considered
AUTOPHAGIC PUNCTUM ARTICLE ADDENDUM Virulence 2:1, 71-76; January/February 2011; © 2011 Landes Bioscience Plasmodium falciparum is not as lonely as previously considered Franck Prugnolle,1,* Francisco Ayala,2 Benjamin Ollomo,3 Céline Arnathau,1 Patrick Durand1 and François Renaud1,* 1Laboratoire MIVEGEC; UM1-CNRS 5290-IRD 224, IRD Montpellier, France; 2Department of Ecology and Evolutionary Biology; University of California; Irvine, CA USA; 3Centre International de Recherches Médicales de Franceville; Franceville, Gabon ntil very recently, only one species The identification of Plasmodium spe- U(P. reichenowi) was known to be a cies circulating in great apes in Africa phylogenetic sister lineage of P. falciparum, was primarily done during the first half the main malignant agent of human of the twentieth century, on the basis of malaria. In 2009 and 2010, new studies morphological features.1 This approach have revealed the existence of several new has several limitations.4 First, phenotypic phylogenetic species related to this deadly plasticity can lead to incorrect identifica- parasite and infecting chimpanzees and tions. Second, morphological keys are gorillas in Africa. These discoveries invite often effective only for a particular life us to explore a whole set of new questions, stage which cannot always be observed which we briefly do in this article. or is difficult to be. Finally, and perhaps most important, this approach overlooks The Plasmodium species infecting morphologically cryptic taxa. These limi- humans and non-human primates cluster tations, together with the difficulty to into two distinct phylogenetic lineages collect and manipulate great apes, were (Fig. 1). One of these lineages (in yellow certainly, at least in part, responsible for in Fig. -
The Nuclear 18S Ribosomal Dnas of Avian Haemosporidian Parasites Josef Harl1, Tanja Himmel1, Gediminas Valkiūnas2 and Herbert Weissenböck1*
Harl et al. Malar J (2019) 18:305 https://doi.org/10.1186/s12936-019-2940-6 Malaria Journal RESEARCH Open Access The nuclear 18S ribosomal DNAs of avian haemosporidian parasites Josef Harl1, Tanja Himmel1, Gediminas Valkiūnas2 and Herbert Weissenböck1* Abstract Background: Plasmodium species feature only four to eight nuclear ribosomal units on diferent chromosomes, which are assumed to evolve independently according to a birth-and-death model, in which new variants origi- nate by duplication and others are deleted throughout time. Moreover, distinct ribosomal units were shown to be expressed during diferent developmental stages in the vertebrate and mosquito hosts. Here, the 18S rDNA sequences of 32 species of avian haemosporidian parasites are reported and compared to those of simian and rodent Plasmodium species. Methods: Almost the entire 18S rDNAs of avian haemosporidians belonging to the genera Plasmodium (7), Haemo- proteus (9), and Leucocytozoon (16) were obtained by PCR, molecular cloning, and sequencing ten clones each. Phy- logenetic trees were calculated and sequence patterns were analysed and compared to those of simian and rodent malaria species. A section of the mitochondrial CytB was also sequenced. Results: Sequence patterns in most avian Plasmodium species were similar to those in the mammalian parasites with most species featuring two distinct 18S rDNA sequence clusters. Distinct 18S variants were also found in Haemopro- teus tartakovskyi and the three Leucocytozoon species, whereas the other species featured sets of similar haplotypes. The 18S rDNA GC-contents of the Leucocytozoon toddi complex and the subgenus Parahaemoproteus were extremely high with 49.3% and 44.9%, respectively. -
C-Type Lectins and Human Epithelial Membrane Protein1: Are They New Proteins in Keratin Disorders?
Open Journal of Genetics, 2013, 3, 262-269 OJGen http://dx.doi.org/10.4236/ojgen.2013.34029 Published Online December 2013 (http://www.scirp.org/journal/ojgen/) C-type lectins and human epithelial membrane protein1: Are they new proteins in keratin disorders? Nilüfer Karadeniz1*, Thomas Liehr2, Kristin Mrasek2, Ibrahim Aşık3, Zuleyha Aşık4, Nadezda Kosyakova2, Hasmik Mkrtchyan2 1Medical Genetics of Zubeyde Hanım Maternity Hospital, Ankara, Turkey 2Jena University Hospital, Institute of Human Genetics, Kollegiengasse, Jena, Germany 3Department of Anaesthesiology and Intensive Care, Faculty of Medicine, University of Ankara, Ankara, Turkey 4Dermatology of Dr Sami Ulus Children’s Hospital, Ankara, Turkey Email: *[email protected] Received 16 August 2013; revised 26 September 2013; accepted 25 October 2013 Copyright © 2013 Nilüfer Karadeniz et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT Congenita Tarda (PCT). Although PC is well docu- mented both clinically and genetically, there are only few Here we report a family with a clinical spectrum of reports for PCT, and its genetic basis is still obscure Pachyonychia Congenita Tarda (PCT) encompassing [1,2]. two generations via a balanced chromosomal trans- Pachyonychia Congenita Tarda (PCT) is characterized location between 4q26 and 12p12.3. We discuss the by nail changes appearing during the second or third effects of chromosomal translocations on gene ex- decades of life. More than 10 cases of PCT, both familial pression through involved breakpoints and structural and sporadic, have been reported in the literature since it gene abnormalities detected by array CGH. -
Systematic Index
Systematic Index The systematic index contains the scientific names of all taxa mentioned in the book e.g., Anisonema sp., Anopheles and the vernacular names of protists, for example, tintinnids. The index is two-sided, that is, species ap - pear both with the genus-group name first e.g., Acineria incurvata and with the species-group name first ( incurvata , Acineria ). Species and genera, valid and invalid, are in italics print. The scientific name of a subgenus, when used with a binomen or trinomen, must be interpolated in parentheses between the genus-group name and the species- group name according to the International Code of Zoological Nomenclature. In the following index, these paren - theses are omitted to simplify electronic sorting. Thus, the name Apocolpodidium (Apocolpodidium) etoschense is list - ed as Apocolpodidium Apocolpodidium etoschense . Note that this name is also listed under “ Apocolpodidium etoschense , Apocolpodidium ” and “ etoschense , Apocolpodidium Apocolpodidium ”. Suprageneric taxa, communities, and vernacular names are represented in normal type. A boldface page number indicates the beginning of a detailed description, review, or discussion of a taxon. f or ff means include the following one or two page(s), respectively. A Actinobolina vorax 84 Aegyriana paroliva 191 abberans , Euplotes 193 Actinobolina wenrichii 84 aerophila , Centropyxis 87, 191 abberans , Frontonia 193 Actinobolonidae 216 f aerophila sphagnicola , Centropyxis 87 abbrevescens , Deviata 140, 200, 212 Actinophrys sol 84 aerophila sylvatica -
Таксономический Ранг И Место В Системе Протистов Colpodellida1
ПАРАЗИТОЛОГИЯ, 34, 7, 2000 УДК 576.893.19+ 593.19 ТАКСОНОМИЧЕСКИЙ РАНГ И МЕСТО В СИСТЕМЕ ПРОТИСТОВ COLPODELLIDA1 © А. П. Мыльников, М. В. Крылов, А. О. Фролов Анализ морфофункциональной организации и дивергентных процессов у Colpodellida, Perkinsida, Gregrinea, Coccidea подтвердил наличие у них уникального общего плана строения и необходимость объединения в один тип Sporozoa. Таксономический ранг и место в системе Colpodellida представляется следующим образом: тип Sporozoa Leuckart 1879; em. Krylov, Mylnikov, 1986 (Syn.: Apicomplexa Levine, 1970). Хищники либо паразиты. Имеют общий план строения: пелликулу, состоящую у расселительных стадий из плазматической мембраны и внутреннего мембранного комплекса, микропору(ы), субпелликулярные микротрубочки, коноид (у части редуцирован), роптрии и микронемы (у части редуцированы), трубчатые кристы в митохондриях. Класс Perkinsea Levine, 1978. Хищники или паразиты, имеющие в жизненном цикле вегетативные двужгутиковые стадии развития. Подкласс 1. Colpodellia nom. nov. (Syn.: Spiromonadia Krylov, Mylnikov, 1986). Хищники; имеют два гетеродинамных жгутика; масти- геномы нитевидные (если имеются); цисты 2—4-ядерные; стрекательные органеллы — трихо- цисты. Подкласс 2. Perkinsia Levine, 1978. Все виды — паразиты; зооспоры имеют два гетеродинамных жгутика; мастигонемы (если имеются) нитевидные и в виде щетинок. Главная цель систематиков — построение естественной системы. Естественная система прежде всего должна обладать максимальными прогностическими свойствами (Старобогатов, 1989). Иными словами, знания -
New Insights Into Clonality and Panmixia in Plasmodium and Toxoplasma
UC Irvine UC Irvine Previously Published Works Title New insights into clonality and panmixia in Plasmodium and toxoplasma. Permalink https://escholarship.org/uc/item/5vs7c363 Journal Advances in parasitology, 84 ISSN 0065-308X Authors Tibayrenc, Michel Ayala, Francisco J Publication Date 2014 DOI 10.1016/b978-0-12-800099-1.00005-3 Peer reviewed eScholarship.org Powered by the California Digital Library University of California CHAPTER FIVE New Insights into Clonality and Panmixia in Plasmodium and Toxoplasma Michel Tibayrenc*,1, Francisco J. Ayala† *Maladies Infectieuses et Vecteurs Ecologie, Ge´ne´tique, Evolution et Controˆle, MIVEGEC (IRD 224-CNRS 5290-UM1-UM2), IRD Center, Montpellier, France †Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA 1Correponding author: e-mail address: [email protected] Contents 1. Introduction 254 2. Initial Proposals 255 3. Indispensable Recalls 255 4. Recent Developments 256 5. Population Structure of Plasmodium and Toxoplasma in the Light of the PCE Model 258 5.1 Plasmodium 258 5.2 Toxoplasma 259 6. Passive Clonality (Starving Sex) Versus In-Built Clonality in Plasmodium 260 7. Are Clonality and Near-Clading in Plasmodium and Toxoplasma Mainly Due to Natural Selection? 262 8. Are the New Plasmodium “Species” Not Mere Near-Clades? 262 9. Concluding Remarks 263 Acknowledgement 264 References 264 Abstract Until the 1990s, Plasmodium and Toxoplasma were widely considered to be potentially panmictic species, because they both undergo a meiotic sexual cycle in their definitive hosts. We have proposed that both parasites are able of clonal (nonrecombining) prop- agation, at least in some cycles. Toxoplasma was soon shown to be a paradigmatic case of clonal population structure in North American and in European cycles. -
Downloaded from Pfam ( [66] and Searched Against a Range of Apicom- Plexan Genome-Encoded Protein Data Sets (S1A Table)
UC Riverside UC Riverside Previously Published Works Title Plasmodium kinesin-8X associates with mitotic spindles and is essential for oocyst development during parasite proliferation and transmission. Permalink https://escholarship.org/uc/item/6zv698vv Journal PLoS pathogens, 15(10) ISSN 1553-7366 Authors Zeeshan, Mohammad Shilliday, Fiona Liu, Tianyang et al. Publication Date 2019-10-10 DOI 10.1371/journal.ppat.1008048 Peer reviewed eScholarship.org Powered by the California Digital Library University of California RESEARCH ARTICLE Plasmodium kinesin-8X associates with mitotic spindles and is essential for oocyst development during parasite proliferation and transmission 1 2☯ 2☯ 3☯ Mohammad ZeeshanID , Fiona ShillidayID , Tianyang LiuID , Steven AbelID , 4☯ 5,6☯ 1 7 Tobias MourierID , David J. P. FergusonID , Edward ReaID , Rebecca R. Stanway , 7 3 1 1 Magali Roques , Desiree WilliamsID , Emilie DanielID , Declan BradyID , Anthony 2 8 4,9 3 a1111111111 J. RobertsID , Anthony A. HolderID , Arnab Pain , Karine G. Le RochID , Carolyn 2 1 a1111111111 A. MooresID , Rita TewariID * a1111111111 1 School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom, a1111111111 2 Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, London, a1111111111 United Kingdom, 3 Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, California, United States of America, 4 Biological Environmental Sciences and Engineering Division, -
Diversity of Malaria Parasites in Great Apes in Gabon
Boundenga et al. Malaria Journal (2015) 14:111 DOI 10.1186/s12936-015-0622-6 RESEARCH Open Access Diversity of malaria parasites in great apes in Gabon Larson Boundenga1,3*, Benjamin Ollomo1†, Virginie Rougeron1,2, Lauriane Yacka Mouele1, Bertrand Mve-Ondo1, Lucrèce M Delicat-Loembet1, Nancy Diamella Moukodoum1, Alain Prince Okouga1, Céline Arnathau2, Eric Elguero2, Patrick Durand2, Florian Liégeois1,4, Vanina Boué1, Peggy Motsch1, Guillaume Le Flohic1, Alphonse Ndoungouet1, Christophe Paupy1,2, Cheikh Tidiane Ba3, Francois Renaud2 and Franck Prugnolle1,2† Abstract Background: Until 2009, the Laverania subgenus counted only two representatives: Plasmodium falciparum and Plasmodium reichenowi. The recent development of non-invasive methods allowed re-exploration of plasmodial diversity in African apes. Although a large number of great ape populations have now been studied regarding Plasmodium infections in Africa, there are still vast areas of their distribution that remained unexplored. Gabon constitutes an important part of the range of western central African great ape subspecies (Pan troglodytes troglodytes and Gorilla gorilla gorilla), but has not been studied so far. In the present study, the diversity of Plasmodium species circulating in great apes in Gabon was analysed. Methods: The analysis of 1,261 faecal samples from 791 chimpanzees and 470 gorillas collected from 24 sites all over Gabon was performed. Plasmodium infections were characterized by amplification and sequencing of a portion of the Plasmodium cytochrome b gene. Results: The analysis of the 1,261 samples revealed that at least six Plasmodium species circulate in great apes in Gabon (Plasmodium praefalciparum, Plasmodium gorA (syn Plasmodium adleri), Plasmodium gorB (syn Plasmodium blacklocki) in gorillas and Plasmodium gaboni, P. -
Capture-Based Enrichment of Theileria Parva DNA
bioRxiv preprint doi: https://doi.org/10.1101/2020.04.11.037309; this version posted April 13, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Capture-based enrichment of Theileria parva DNA enables full genome assembly of first buffalo- derived strain and reveals exceptional intra-specific genetic diversity Nicholas C Palmateer1, Kyle Tretina1, Joshua Orvis1, Olukemi O Ifeonu1, Jonathan Crabtree1, Elliott Drabék1, Roger Pelle2, Elias Awino3, Hanzel T Gotia1, James B Munro1, Luke Tallon1, W Ivan Morrison4, Claudia A Daubenberger5,6, Vish Nene3, Donald P Knowles7, Richard P Bishop7, Joana C Silva1,8§ 1Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA 2Biosciences eastern and central Africa-International Livestock Research Institute, Nairobi, Kenya 3International Livestock Research Institute, Nairobi, Kenya 4The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK 5Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland 6University of Basel, Basel, Switzerland 7Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99163, USA 8Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA §Corresponding author: [email protected] Running title: “Apicomplexan Theileria parva is exceptionally polymorphic” Keywords: Theileria parva, lawrencei, DNA enrichment, genome assembly, polymorphism 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.11.037309; this version posted April 13, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. -
Prediction of Human Disease Genes by Human-Mouse Conserved Coexpression Analysis
Prediction of Human Disease Genes by Human-Mouse Conserved Coexpression Analysis Ugo Ala1., Rosario Michael Piro1., Elena Grassi1, Christian Damasco1, Lorenzo Silengo1, Martin Oti2, Paolo Provero1*, Ferdinando Di Cunto1* 1 Molecular Biotechnology Center, Department of Genetics, Biology and Biochemistry, University of Turin, Turin, Italy, 2 Department of Human Genetics and Centre for Molecular and Biomolecular Informatics, University Medical Centre Nijmegen, Nijmegen, The Netherlands Abstract Background: Even in the post-genomic era, the identification of candidate genes within loci associated with human genetic diseases is a very demanding task, because the critical region may typically contain hundreds of positional candidates. Since genes implicated in similar phenotypes tend to share very similar expression profiles, high throughput gene expression data may represent a very important resource to identify the best candidates for sequencing. However, so far, gene coexpression has not been used very successfully to prioritize positional candidates. Methodology/Principal Findings: We show that it is possible to reliably identify disease-relevant relationships among genes from massive microarray datasets by concentrating only on genes sharing similar expression profiles in both human and mouse. Moreover, we show systematically that the integration of human-mouse conserved coexpression with a phenotype similarity map allows the efficient identification of disease genes in large genomic regions. Finally, using this approach on 850 OMIM loci characterized by an unknown molecular basis, we propose high-probability candidates for 81 genetic diseases. Conclusion: Our results demonstrate that conserved coexpression, even at the human-mouse phylogenetic distance, represents a very strong criterion to predict disease-relevant relationships among human genes. Citation: Ala U, Piro RM, Grassi E, Damasco C, Silengo L, et al.