Final Report (Posted 10/19)

Total Page:16

File Type:pdf, Size:1020Kb

Final Report (Posted 10/19) FINAL REPORT Remote Sensing Technology for Threatened and Endangered Plant Species Recovery ESTCP Project RC-201203 OCTOBER 2018 Erin Questad California State Polytechnic University, Pomona Susan Cordell USDA Forest Service Institute of Pacific Islands Forestry James Kellner Brown University Distribution Statement A This document has been cleared for public release Page Intentionally Left Blank This report was prepared under contract to the Department of Defense Environmental Security Technology Certification Program (ESTCP). The publication of this report does not indicate endorsement by the Department of Defense, nor should the contents be construed as reflecting the official policy or position of the Department of Defense. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the Department of Defense. Page Intentionally Left Blank REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To) 31-10-2018 ESTCP Final Report Sept. 2012 – July 2017 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER W912HQ-12-C-0069 Remote Sensing Technology for Threatened and Endangered Plant Species Recovery 5b. GRANT NUMBER RC-201203 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER RRC-201203 Questad, Erin J; Cordell, S.; Kellner, J.; Uowolo, A.; Paolini, J. 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION California State Polytechnic University, Pomona REPORT 3801 West Temple Ave.; Pomona, CA 91768 USDA Forest Service, Inst. of Pacific Islands Forestry 60 Nowelo St.; Hilo, HI 96720 Brown University Providence, RI 02912 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) EESTCP Environmental Security Technology Certification Program 4800 Mark Center Drive, Suite 16F16 11. SPONSOR/MONITOR’S REPORT Alexandria, VA 22350-360505 NUMBER(S) RRC-201203 12. DISTRIBUTION / AVAILABILITY STATEMENT Distribution A: Approved for public release; distribution is unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT For the more than 100,000 plant species worldwide thought to be at risk of extinction, a lack of suitable habitat is the major barrier to their recovery (Pitman and Jorgensen 2002, Godefroid et al. 2011, Maschinski and Haskins 2012). The two primary conservation actions for threatened, endangered, and at-risk plant species (TER-S) are to restore suitable habitat areas so that extant populations can expand and to reintroduce individuals to restored or protected areas. Reintroduction is an expensive, slow effort but is often essential when population sizes are very low or there are other barriers to dispersal among suitable habitats (Maschinski and Haskins 2012). The success rates of reintroduction projects are variable, and low success is often due to a lack of suitable habitat, the very cause of decline (Godefroid et al. 2011, Drayton and Primack 2012, IUCN 2013). This demonstration addresses a major challenge to reintroduction success - finding suitable habitats in fragmented and degraded landscapes. r the more 15.thanhus, SUBJECT a major TERMS challenge to reintroduction success is finding suitable habitats in fragmented and degraded landscapes. Remote Sensing Technology, Threatened and Endangered Plant, Species Recovery 16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER 19a. NAME of RESPONSIBLE OF ABSTRACT OF PAGES PERSON ErinErin Questad Questad a. REPORT b. ABSTRACT c. THIS PAGE 152 19b. TELEPHONE NUMBER UNCLASS UNCLASS UNCLASS UNCLASSUNCLASS (include area code) 9909-869-4206 Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18 Page Intentionally Left Blank FINAL REPORT Project: RC-201203 TABLE OF CONTENTS Page EXECUTIVE SUMMARY ............................................................................................................ 1 1.0 INTRODUCTION ................................................................................................................. 1 1.1 BACKGROUND .......................................................................................................... 1 1.1.1 Study Site Overview ...................................................................................................... 3 1.2 OBJECTIVE OF THE DEMONSTRATION ............................................................... 4 1.3 REGULATORY DRIVERS ......................................................................................... 4 2.0 TECHNOLOGY/METHODOLOGY DESCRIPTION ......................................................... 5 2.1 TECHNOLOGY/METHODOLOGY OVERVIEW ..................................................... 5 2.1.1 Initial Study area ............................................................................................................ 5 2.1.2 High resolution surface cover mapping ......................................................................... 7 2.1.3 Topographic suitability modeling .................................................................................. 7 2.1.4 Image segmentation ....................................................................................................... 9 2.1.5 Stereographic digital elevation models .......................................................................... 9 2.1.6 Expected applications of the technology ..................................................................... 11 2.2 TECHNOLOGY/METHODOLOGY DEVELOPMENT .......................................... 11 2.3 ADVANTAGES AND LIMITATIONS OF THE TECHNOLOGY/ METHODOLOGY ..................................................................................................... 15 3.0 PERFORMANCE OBJECTIVES ....................................................................................... 17 3.1 DESCRIPTION OF PERFORMANCE OBJECTIVES ............................................. 19 4.0 SITE DESCRIPTIONS ........................................................................................................ 25 4.1 SITE LOCATION AND HISTORY ........................................................................... 25 4.2 SITE CHARACTERISTICS ....................................................................................... 28 5.0 TEST DESIGN .................................................................................................................... 31 5.1 CONCEPTUAL TEST DESIGN ................................................................................ 31 5.2 BASELINE CHARACTERIZATION AND PREPARATION.................................. 31 5.3 DESIGN AND LAYOUT OF TECHNOLOGY AND METHODOLOGY COMPONENTS ......................................................................................................... 31 5.3.1 Task 1 ........................................................................................................................... 32 5.3.2 Task 2 ........................................................................................................................... 34 5.3.3 Task 3 ........................................................................................................................... 35 5.4 FIELD TESTING........................................................................................................ 36 TABLE OF CONTENTS (Continued) Page 5.4.1 Task 1. Experimental Outplanting ............................................................................... 36 5.4.2 Task 2. Field verification of new HSMs ...................................................................... 39 5.4.3 Task 3. Technology transfer......................................................................................... 39 5.5 SAMPLING PROTOCOL .......................................................................................... 40 5.5.1 Task 1 ........................................................................................................................... 40 5.5.2 Task 2 ........................................................................................................................... 41 5.5.3 Calibration of Equipment ............................................................................................. 42 5.5.4 Quality Assurance Sampling ........................................................................................ 42 5.5.5 Sample Documentation ................................................................................................ 42 5.6 SAMPLING RESULTS .............................................................................................
Recommended publications
  • Pu'u Wa'awa'a Biological Assessment
    PU‘U WA‘AWA‘A BIOLOGICAL ASSESSMENT PU‘U WA‘AWA‘A, NORTH KONA, HAWAII Prepared by: Jon G. Giffin Forestry & Wildlife Manager August 2003 STATE OF HAWAII DEPARTMENT OF LAND AND NATURAL RESOURCES DIVISION OF FORESTRY AND WILDLIFE TABLE OF CONTENTS TITLE PAGE ................................................................................................................................. i TABLE OF CONTENTS ............................................................................................................. ii GENERAL SETTING...................................................................................................................1 Introduction..........................................................................................................................1 Land Use Practices...............................................................................................................1 Geology..................................................................................................................................3 Lava Flows............................................................................................................................5 Lava Tubes ...........................................................................................................................5 Cinder Cones ........................................................................................................................7 Soils .......................................................................................................................................9
    [Show full text]
  • Metrosideros Polymorpha Gaudich
    Metrosideros polymorpha Gaudich. JAMES A. ALLEN Paul Smiths College, Paul Smiths, NY MYRTACEAE (MYRTLE FAMILY) Metrosideros collina (J.R. and G. Forst.) A. Gray subsp. polymorpha (Gaud.) Rock. (Little and Skolmen 1989). See also the extensive list of synonyms in Wagner and others (1990) Lehua, ‘ohi’a Metrosideros is a genus of about 50 species. With the excep- hybridization and genetic polymorphism is unknown (Wagner tion of one species found in South Africa, all grow in the and others 1990). Pacific from the Philippines, through Papua New Guinea, to The heartwood is reddish brown, heavy (specific gravity New Zealand and on high volcanic islands (Wagner and oth- of about 0.70), of fine and even texture, very hard, and strong. ers 1990). Five species occur in the Hawaiian Islands (Wag- Native Hawaiians used the wood extensively for construction, ner and others 1990). Metrosideros polymorpha is native to household implements, and carvings. Principal modern uses Hawaii, where it grows on all the main islands except Niihau include flooring, marine construction, pallets, fenceposts, and and Kahoolawe. It is the most abundant and widespread fuelwood. The wood’s limitations include excessive shrinkage M native tree in Hawaii (Adee and Conrad 1990) and grows in in drying, density, and the difficulty and expense of harvesting association with numerous species in both wet and relatively in low-volume stands (Adee and Conrad 1990, Little and Skol- dry forests. men 1989). Today, M. polymorpha is perhaps most highly val- Metrosideros polymorpha is a slow-growing, evergreen ued in Hawaii for uses in watershed protection, aesthetics, and species capable of reaching 24 to 30 m in height and about 1 m habitat for native birds, including several endangered species.
    [Show full text]
  • Recovery Plan for Tyoj5llllt . I-Bland Plants
    Recovery Plan for tYOJ5llllt. i-bland Plants RECOVERY PLAN FOR MULTI-ISLAND PLANTS Published by U.S. Fish and Wildlife Service Portland, Oregon Approved: Date: / / As the Nation’s principal conservation agency, the Department of the Interior has responsibility for most ofour nationally owned public lands and natural resources. This includes fostering the wisest use ofour land and water resources, protecting our fish and wildlife, preserving the environmental and cultural values ofour national parks and historical places, and providing for the enjoyment of life through outdoor recreation. The Department assesses our energy and mineral resources and works to assure that their development is in the best interests ofall our people. The Department also has a major responsibility for American Indian reservation communities and for people who live in island Territories under U.S. administration. DISCLAIMER PAGE Recovery plans delineate reasonable actions that are believed to be required to recover and/or protect listed species. Plans are published by the U.S. Fish and Wildlife Service, sometimes prepared with the assistance ofrecovery teams, contractors, State agencies, and others. Objectives will be attained and any necessary funds made available subject to budgetary and other constraints affecting the parties involved, as well as the need to address other priorities. Costs indicated for task implementation and/or time for achievement ofrecovery are only estimates and are subject to change. Recovery plans do not necessarily represent the views nor the official positions or approval ofany individuals or agencies involved in the plan formulation, otherthan the U.S. Fish and Wildlife Service. They represent the official position ofthe U.S.
    [Show full text]
  • July I, 2007 Thru June 30, 2008
    December 5, 2008 Annual Report---- July I, 2007 thru June 30, 2008 Cultural Resources Management Projects Performed at the Pohakuloa Training Area, Island of Hawai'i, Hawai'i. Prepared by Julie M. E. Taomia, Ph.D. Senior Cultural I<.csources Specialist Pacific Cooperative Studies Unit, University of Hawaii With sign~ficant contributions by James A. Head, Kelly Leialoha Luscomb, J. Cary Stine Cultural Resources Specialists Pacific Cooperative Studies Unit, University of Hawaii Prepared,for U.S. Artny Garrison, Hawai'i Pacific Studies Research Unit, University of Hawai'i (_'ontacl b{fonnation: P6hakuloa 'fraining Area Environmental Office, Bldg. T-93 Cultural Resources Section PO Box 4607 Hilo, HI 96720-0607 (808) 969-3340 December 5, 2008 TABLE OF CONTENTS TABLE OF CONTENTS , ...................................................................................... 11 LIST OF FIGURES ............................................................................................. .111 LIST OF TABLES ................................................................................................ V LIST OF PLATES ................................................................................................ V EXECUTIVE SUMMARY ......................................................................................1 Environ1nental and 1-listorical background ................................................................................................ 1 Cultural Resources Progran1 .......................................................................................................................
    [Show full text]
  • A Landscape-Based Assessment of Climate Change Vulnerability for All Native Hawaiian Plants
    Technical Report HCSU-044 A LANDscape-bASED ASSESSMENT OF CLIMatE CHANGE VULNEraBILITY FOR ALL NatIVE HAWAIIAN PLANts Lucas Fortini1,2, Jonathan Price3, James Jacobi2, Adam Vorsino4, Jeff Burgett1,4, Kevin Brinck5, Fred Amidon4, Steve Miller4, Sam `Ohukani`ohi`a Gon III6, Gregory Koob7, and Eben Paxton2 1 Pacific Islands Climate Change Cooperative, Honolulu, HI 96813 2 U.S. Geological Survey, Pacific Island Ecosystems Research Center, Hawaii National Park, HI 96718 3 Department of Geography & Environmental Studies, University of Hawai‘i at Hilo, Hilo, HI 96720 4 U.S. Fish & Wildlife Service —Ecological Services, Division of Climate Change and Strategic Habitat Management, Honolulu, HI 96850 5 Hawai‘i Cooperative Studies Unit, Pacific Island Ecosystems Research Center, Hawai‘i National Park, HI 96718 6 The Nature Conservancy, Hawai‘i Chapter, Honolulu, HI 96817 7 USDA Natural Resources Conservation Service, Hawaii/Pacific Islands Area State Office, Honolulu, HI 96850 Hawai‘i Cooperative Studies Unit University of Hawai‘i at Hilo 200 W. Kawili St. Hilo, HI 96720 (808) 933-0706 November 2013 This product was prepared under Cooperative Agreement CAG09AC00070 for the Pacific Island Ecosystems Research Center of the U.S. Geological Survey. Technical Report HCSU-044 A LANDSCAPE-BASED ASSESSMENT OF CLIMATE CHANGE VULNERABILITY FOR ALL NATIVE HAWAIIAN PLANTS LUCAS FORTINI1,2, JONATHAN PRICE3, JAMES JACOBI2, ADAM VORSINO4, JEFF BURGETT1,4, KEVIN BRINCK5, FRED AMIDON4, STEVE MILLER4, SAM ʽOHUKANIʽOHIʽA GON III 6, GREGORY KOOB7, AND EBEN PAXTON2 1 Pacific Islands Climate Change Cooperative, Honolulu, HI 96813 2 U.S. Geological Survey, Pacific Island Ecosystems Research Center, Hawaiʽi National Park, HI 96718 3 Department of Geography & Environmental Studies, University of Hawaiʽi at Hilo, Hilo, HI 96720 4 U.
    [Show full text]
  • List 01 Hawaiian Names 01 Plants
    V\.{). 3 v BOTANICAL BULLETIN NO.2 JUNE. 1913 TERRITORY OF HAWAII BOARD OF AGRICULTURE AND FORESTRY List 01 Hawaiian Names 01 Plants BY JOSEPH F. ROCK Consulting Botanist, Board of Agriculture and Forestry HONOLULU: HAWAIIAN GAZETTE CO., LTD. 1913 ALPHABETICAL LIST OF HAWAIIAN NAMES OF PLANTS. The following list of Hawaiian plant-names has been compiled from various sources. Hillebrand in his valuable Flora of the Hawaiian Islands has given many Hawaiian names, especially of the more common species; these are incorporated in this list with a few corrections. Nearly all Hawaiian plant-names found in this list and not in Hillebrand's Flora were secured from Mr. Francis Gay of the Island of Kauai, an old resident in this Terri­ tory and well acquainted with its plants from a layman's stand­ point. It was the writer's privilege to camp with Mr. Gay in the mountains of Kauai collecting botanical material; for almost every species he could give the native name, which he had se­ cured in the early days from old and reliable natives. Mr. Gay had made spatter prints of many of the native plants in a large record book with their names and uses, as well as their symbolic meaning when occurring in mele (songs) or olioli (chants), at­ tached to them. For all this information the writer is indebted mainly to Mr. Francis Gay and also to Mr. Augustus F. Knudsen of the same Island. The writer also secured Hawaiian names from old na­ tives and Kahunas (priests) in the various islands of the group.
    [Show full text]
  • Guidance Document Pohakuloa Training Area Plant Guide
    GUIDANCE DOCUMENT Recovery of Native Plant Communities and Ecological Processes Following Removal of Non-native, Invasive Ungulates from Pacific Island Forests Pohakuloa Training Area Plant Guide SERDP Project RC-2433 JULY 2018 Creighton Litton Rebecca Cole University of Hawaii at Manoa Distribution Statement A Page Intentionally Left Blank This report was prepared under contract to the Department of Defense Strategic Environmental Research and Development Program (SERDP). The publication of this report does not indicate endorsement by the Department of Defense, nor should the contents be construed as reflecting the official policy or position of the Department of Defense. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the Department of Defense. Page Intentionally Left Blank 47 Page Intentionally Left Blank 1. Ferns & Fern Allies Order: Polypodiales Family: Aspleniaceae (Spleenworts) Asplenium peruvianum var. insulare – fragile fern (Endangered) Delicate ENDEMIC plants usually growing in cracks or caves; largest pinnae usually <6mm long, tips blunt, uniform in shape, shallowly lobed, 2-5 lobes on acroscopic side. Fewer than 5 sori per pinna. Fronds with distal stipes, proximal rachises ocassionally proliferous . d b a Asplenium trichomanes subsp. densum – ‘oāli’i; maidenhair spleenwort Plants small, commonly growing in full sunlight. Rhizomes short, erect, retaining many dark brown, shiny old stipe bases.. Stipes wiry, dark brown – black, up to 10cm, shiny, glabrous, adaxial surface flat, with 2 greenish ridges on either side. Pinnae 15-45 pairs, almost sessile, alternate, ovate to round, basal pinnae smaller and more widely spaced.
    [Show full text]
  • United States of America
    anran Forestry Department Food and Agriculture Organization of the United Nations GLOBAL FOREST RESOURCES ASSESSMENT COUNTRY REPORTS NITED TATES OF MERICA U S A FRA2005/040 Rome, 2005 FRA 2005 – Country Report 040 UNITED STATES OF AMERICA The Forest Resources Assessment Programme Sustainably managed forests have multiple environmental and socio-economic functions important at the global, national and local scales, and play a vital part in sustainable development. Reliable and up- to-date information on the state of forest resources - not only on area and area change, but also on such variables as growing stock, wood and non-wood products, carbon, protected areas, use of forests for recreation and other services, biological diversity and forests’ contribution to national economies - is crucial to support decision-making for policies and programmes in forestry and sustainable development at all levels. FAO, at the request of its member countries, regularly monitors the world’s forests and their management and uses through the Forest Resources Assessment Programme. This country report forms part of the Global Forest Resources Assessment 2005 (FRA 2005), which is the most comprehensive assessment to date. More than 800 people have been involved, including 172 national correspondents and their colleagues, an Advisory Group, international experts, FAO staff, consultants and volunteers. Information has been collated from 229 countries and territories for three points in time: 1990, 2000 and 2005. The reporting framework for FRA 2005 is based on the thematic elements of sustainable forest management acknowledged in intergovernmental forest-related fora and includes more than 40 variables related to the extent, condition, uses and values of forest resources.
    [Show full text]
  • Sato Hawii 0085O 10652.Pdf
    RESTORATION OF HAWAIIAN TROPICAL DRY FORESTS: A BIOCULTURAL APPROACH A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI‘I AT MĀNOA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN BOTANY (CONSERVATION BIOLOGY) MAY 2020 By Aimee Y. Sato Thesis Committee: Tamara Ticktin, Chairperson Christian P. Giardina Rakan A. Zahawi Kewords: Tropical Dry Forest, Biocultural, Conservation, Restoration, Natural Regeneration, Social-Ecological 1 ACKNOWLEDGEMENTS I thank my graduate committee for steering and guiding me through my thesis work. Dr. Tamara Ticktin, my thesis advisor who has been the greatest kumu (teacher) that I could have asked for in my research. I also thank my two committee members, Dr. Rakan A. Zahawi and Dr. Christian P. Giardina, who both brought their expansive levels of expertise to help develop this thesis. Thank you so much to the hoaʻāina (caretakers/restoration managers) of my two project sites. I thank the hoaʻāina of Kaʻūpūlehu, ‘Aunty’ Yvonne Carter, ‘Uncle’ Keoki Carter, Wilds Brawner, Kekaulike Tomich, Lehua Alapai, Kuʻulei Keakealani, and ‘Aunty’ Hannah Kihalani Springer. Thank you to the hoaʻāina of Auwahi, Art Medeiros, Erica von-Allmen, Ainoa and Kalaʻau Kaiaokamalie, Amy Campbell, Andy Bieber, Robert Pitts, and Kailie Aina. I would also like to acknowledge Kamehameha Schools and the Ulupalakua Ranch for allowing me to conduct this research on their lands. Thank you to the dry forest restoration managers and researchers that participated in the overview survey of Hawaiian dry forests. On Oʻahu Island: Lorena ‘Tap’ Wada, James Harmon and Kapua Kawelo. On Hawaiʻi Island: Elliott Parsons, Rebecca Most, Lena Schnell, Kalā Asing, Jen Lawson, and Susan Cordell.
    [Show full text]
  • Genera in Myrtaceae Family
    Genera in Myrtaceae Family Genera in Myrtaceae Ref: http://data.kew.org/vpfg1992/vascplnt.html R. K. Brummitt 1992. Vascular Plant Families and Genera, Royal Botanic Gardens, Kew REF: Australian – APC http://www.anbg.gov.au/chah/apc/index.html & APNI http://www.anbg.gov.au/cgi-bin/apni Some of these genera are not native but naturalised Tasmanian taxa can be found at the Census: http://tmag.tas.gov.au/index.aspx?base=1273 Future reference: http://tmag.tas.gov.au/floratasmania [Myrtaceae is being edited at mo] Acca O.Berg Euryomyrtus Schaur Osbornia F.Muell. Accara Landrum Feijoa O.Berg Paragonis J.R.Wheeler & N.G.Marchant Acmena DC. [= Syzigium] Gomidesia O.Berg Paramyrciaria Kausel Acmenosperma Kausel [= Syzigium] Gossia N.Snow & Guymer Pericalymma (Endl.) Endl. Actinodium Schauer Heteropyxis Harv. Petraeomyrtus Craven Agonis (DC.) Sweet Hexachlamys O.Berg Phymatocarpus F.Muell. Allosyncarpia S.T.Blake Homalocalyx F.Muell. Pileanthus Labill. Amomyrtella Kausel Homalospermum Schauer Pilidiostigma Burret Amomyrtus (Burret) D.Legrand & Kausel [=Leptospermum] Piliocalyx Brongn. & Gris Angasomyrtus Trudgen & Keighery Homoranthus A.Cunn. ex Schauer Pimenta Lindl. Angophora Cav. Hottea Urb. Pleurocalyptus Brongn. & Gris Archirhodomyrtus (Nied.) Burret Hypocalymma (Endl.) Endl. Plinia L. Arillastrum Pancher ex Baill. Kania Schltr. Pseudanamomis Kausel Astartea DC. Kardomia Peter G. Wilson Psidium L. [naturalised] Asteromyrtus Schauer Kjellbergiodendron Burret Psiloxylon Thouars ex Tul. Austromyrtus (Nied.) Burret Kunzea Rchb. Purpureostemon Gugerli Babingtonia Lindl. Lamarchea Gaudich. Regelia Schauer Backhousia Hook. & Harv. Legrandia Kausel Rhodamnia Jack Baeckea L. Lenwebia N.Snow & ZGuymer Rhodomyrtus (DC.) Rchb. Balaustion Hook. Leptospermum J.R.Forst. & G.Forst. Rinzia Schauer Barongia Peter G.Wilson & B.Hyland Lindsayomyrtus B.Hyland & Steenis Ristantia Peter G.Wilson & J.T.Waterh.
    [Show full text]
  • Re-Establishing North Island Kākā (Nestor Meridionalis Septentrionalis
    Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. Re-establishing North Island kākā (Nestor meridionalis septentrionalis) in New Zealand A thesis presented in fulfilment of the requirements for the degree of Master of Science In Conservation Biology Massey University Auckland, New Zealand Tineke Joustra 2018 ii For Orlando, Aurora and Nayeli “I don’t want my children to follow in my footsteps, I want them to take the path next to me and go further than I could have ever dreamt possible” Anonymous iii iv Abstract Recently there has been a global increase in concern over the unprecedented loss of biodiversity and how the sixth mass extinction event is mainly due to human activities. Countries such as New Zealand have unique ecosystems which led to the evolution of many endemic species. One such New Zealand species is the kākā (Nestor meridionalis). Historically, kākā abundance has been affected by human activities (kākā were an important food source for Māori and Europeans). Today, introduced mammalian predators are one of the main threats to wild kākā populations. Although widespread and common throughout New Zealand until the 1800’s, kākā populations on the mainland now heavily rely on active conservation management. The main methods of kākā management include pest control and re-establishments. This thesis evaluated current and past commitments to New Zealand species restoration, as well as an analysis of global Psittacine re-establishment efforts.
    [Show full text]
  • A Molecular Phylogeny of the Solanaceae
    TAXON 57 (4) • November 2008: 1159–1181 Olmstead & al. • Molecular phylogeny of Solanaceae MOLECULAR PHYLOGENETICS A molecular phylogeny of the Solanaceae Richard G. Olmstead1*, Lynn Bohs2, Hala Abdel Migid1,3, Eugenio Santiago-Valentin1,4, Vicente F. Garcia1,5 & Sarah M. Collier1,6 1 Department of Biology, University of Washington, Seattle, Washington 98195, U.S.A. *olmstead@ u.washington.edu (author for correspondence) 2 Department of Biology, University of Utah, Salt Lake City, Utah 84112, U.S.A. 3 Present address: Botany Department, Faculty of Science, Mansoura University, Mansoura, Egypt 4 Present address: Jardin Botanico de Puerto Rico, Universidad de Puerto Rico, Apartado Postal 364984, San Juan 00936, Puerto Rico 5 Present address: Department of Integrative Biology, 3060 Valley Life Sciences Building, University of California, Berkeley, California 94720, U.S.A. 6 Present address: Department of Plant Breeding and Genetics, Cornell University, Ithaca, New York 14853, U.S.A. A phylogeny of Solanaceae is presented based on the chloroplast DNA regions ndhF and trnLF. With 89 genera and 190 species included, this represents a nearly comprehensive genus-level sampling and provides a framework phylogeny for the entire family that helps integrate many previously-published phylogenetic studies within So- lanaceae. The four genera comprising the family Goetzeaceae and the monotypic families Duckeodendraceae, Nolanaceae, and Sclerophylaceae, often recognized in traditional classifications, are shown to be included in Solanaceae. The current results corroborate previous studies that identify a monophyletic subfamily Solanoideae and the more inclusive “x = 12” clade, which includes Nicotiana and the Australian tribe Anthocercideae. These results also provide greater resolution among lineages within Solanoideae, confirming Jaltomata as sister to Solanum and identifying a clade comprised primarily of tribes Capsiceae (Capsicum and Lycianthes) and Physaleae.
    [Show full text]