Biology of Seed Development and Germination Physiology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
BIL 161: Environment and Development: the Effects of Environmental Variables on Seed Germination
BIL 161: Environment and Development: The Effects of Environmental Variables on Seed Germination The seed is more than just a plant waiting to happen. It is a complex marvel of evolution, a miniature life-support system that responds to environmental cues in order to give the embryo nestled within the best chance of survival. I. Characteristics and Classification of Plants Plants share synapomorphies that set them apart from other organisms. 1. true tissues (of types unique to plants) 2. waxy cuticle (to prevent desiccation) 3. stomates (microscopic gas exchange pores on the leaves) 4. apical meristems (permanent embryonic tissue for constant growth) 5. multicellular sex organs (male antheridia and female archegonia) 6. walled spores produced in structures called sporangia 7. embryo development inside the female parent 8. secondary metabolites (alkaloids, tannins, flavonoids, etc.) 9. heteromorphic alternation of generations The most primitive plants do not produce seeds at all, but rather release spores into the environment where they grow into a second life cycle stage, called the gametophyte. In seed plants, the life cycle is highly derived. Seed plants still make spores, but each spore grows into a gametophyte that is little more than a bit of tissue that gives rise to gametes. In the male parts of the plant, each spore develops into a sperm-producing male gametophyte known as pollen. In the female parts of the plant, meiosis occurs inside a structure known as the ovule, which will eventually give rise to the seed. Plants can broadly be classified as follows. A. Bryophytes – non-vascular plants (mosses, liverworts and hornworts) B. -
Plant Physiology
PLANT PHYSIOLOGY Vince Ördög Created by XMLmind XSL-FO Converter. PLANT PHYSIOLOGY Vince Ördög Publication date 2011 Created by XMLmind XSL-FO Converter. Table of Contents Cover .................................................................................................................................................. v 1. Preface ............................................................................................................................................ 1 2. Water and nutrients in plant ............................................................................................................ 2 1. Water balance of plant .......................................................................................................... 2 1.1. Water potential ......................................................................................................... 3 1.2. Absorption by roots .................................................................................................. 6 1.3. Transport through the xylem .................................................................................... 8 1.4. Transpiration ............................................................................................................. 9 1.5. Plant water status .................................................................................................... 11 1.6. Influence of extreme water supply .......................................................................... 12 2. Nutrient supply of plant ..................................................................................................... -
Pollination of Cultivated Plants in the Tropics 111 Rrun.-Co Lcfcnow!Cdgmencle
ISSN 1010-1365 0 AGRICULTURAL Pollination of SERVICES cultivated plants BUL IN in the tropics 118 Food and Agriculture Organization of the United Nations FAO 6-lina AGRICULTUTZ4U. ionof SERNES cultivated plans in tetropics Edited by David W. Roubik Smithsonian Tropical Research Institute Balboa, Panama Food and Agriculture Organization of the United Nations F'Ø Rome, 1995 The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. M-11 ISBN 92-5-103659-4 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the copyright owner. Applications for such permission, with a statement of the purpose and extent of the reproduction, should be addressed to the Director, Publications Division, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00100 Rome, Italy. FAO 1995 PlELi. uion are ted PlauAr David W. Roubilli (edita Footli-anal ISgt-iieulture Organization of the Untled Nations Contributors Marco Accorti Makhdzir Mardan Istituto Sperimentale per la Zoologia Agraria Universiti Pertanian Malaysia Cascine del Ricci° Malaysian Bee Research Development Team 50125 Firenze, Italy 43400 Serdang, Selangor, Malaysia Stephen L. Buchmann John K. S. Mbaya United States Department of Agriculture National Beekeeping Station Carl Hayden Bee Research Center P. -
Germination : Seeds Come Equipped with Everything Needed to Create A
Germination : Seeds come equipped with everything needed to create a new plant. They’re simply waiting for optimal environmental conditions to be met, then the process of germination can begin. First, the seed absorbs water. The seed coat softens and enzymes within are dissolved. Warm temperatures activate the enzymes to begin working. Oxygen combines with the seed’s stored energy and new tissue is formed through cell elongation and cell division. This description of germination, though over- simplified, gives us a useful glimpse of plant life in its infant stage. · All seed germination involves water, temperature and oxygen. However, each plant species has unique requirements for these three conditions. Therefore, follow seed package instructions carefully. Days to germination and planting depth are important knowledge for successful gardening. · Seeds are often started indoors in order to extend the growing season in our Midwest location. Seed starting in early spring also gives the gardener an opportunity to optimize conditions for germination. Soil temperature can be controlled through the use of heating mats. Watering from the bottom at appropriate intervals keeps the soil moist, not water logged. · Moisture is a pre-requisite for successful germination. However, too much water will exclude oxygen from the seed. Note that seeds need oxygen during this stage of their development; the need for carbon dioxide increases later when leaves emerge and photosynthesis begins. · Each species has an optimal temperature and a range of temperatures for germination. ISU Publication PM 874 “Starting Garden Transplants at Home” includes a table of best soil temperature for germination of several flower and vegetable species. -
Germination, Survival, and Growth of Grass and Forb Seedlings: Effects of Soil Moisture Variability
Acta Oecologica 35 (2009) 679–684 Contents lists available at ScienceDirect Acta Oecologica journal homepage: www.elsevier.com/locate/actoec Original article Germination, survival, and growth of grass and forb seedlings: Effects of soil moisture variability Philip A. Fay a,*, Megan J. Schultz b,1 a USDA-ARS, Grassland Soil and Water Research Laboratory, 808 E. Blackland Road, Temple, TX 76502, USA b Natural Resources Research Institute, University of Minnesota Duluth, 5013 Miller Trunk Highway, Duluth, MN 55811, USA article info abstract Article history: Seed germination and seedling growth, survivorship, and final biomass and their responses to watering Received 31 January 2009 interval were studied in two grass and six forb species to assess germination and seedling growth Accepted 13 June 2009 responses to increased soil moisture variability as might occur with future increases in precipitation Published online 14 July 2009 variability. Seeds were planted in prairie soil and watered at 1, 2, 4, or 7 d intervals (I). Seed germination peaked at I ¼ 4 d whereas leaf growth in grasses and forbs, and final biomass in grasses peaked at I ¼ 7d, Keywords: suggesting that growth and biomass were favored at greater soil moisture variability than seed germi- Allocation nation. Biomass responses to I were stronger than the germination responses, suggesting that soil Biomass Climate change moisture variability more strongly influenced post germination growth. Individual species responses to I Community fell into three groups; those with responses to I for: (1) seed germination and seedling survival, (2) Establishment biomass, or (3) both germination and biomass production. These species groups may be more useful than Extreme events life form (i.e., grass/forb) for understanding seed germination and seedling dynamics in grasslands Functional group during periods of soil moisture variability. -
Development and Cell Cycle Activity of the Root Apical Meristem in the Fern Ceratopteris Richardii
G C A T T A C G G C A T genes Article Development and Cell Cycle Activity of the Root Apical Meristem in the Fern Ceratopteris richardii Alejandro Aragón-Raygoza 1,2 , Alejandra Vasco 3, Ikram Blilou 4, Luis Herrera-Estrella 2,5 and Alfredo Cruz-Ramírez 1,* 1 Molecular and Developmental Complexity Group at Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, Irapuato 36821, Guanajuato, Mexico; [email protected] 2 Metabolic Engineering Group, Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, Irapuato 36821, Guanajuato, Mexico; [email protected] 3 Botanical Research Institute of Texas (BRIT), Fort Worth, TX 76107-3400, USA; [email protected] 4 Laboratory of Plant Cell and Developmental Biology, Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; [email protected] 5 Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA * Correspondence: [email protected] Received: 27 October 2020; Accepted: 26 November 2020; Published: 4 December 2020 Abstract: Ferns are a representative clade in plant evolution although underestimated in the genomic era. Ceratopteris richardii is an emergent model for developmental processes in ferns, yet a complete scheme of the different growth stages is necessary. Here, we present a developmental analysis, at the tissue and cellular levels, of the first shoot-borne root of Ceratopteris. -
Seed Germination
Aquaponics Seed Germination Adapted from: This is an original activity from Environmental Science 250: Environmental Education. Grade Level: Intermediate ACADEMIC STANDARDS Duration: Various class English Language Arts Pre K – 5 periods . 1.2 Reading Informational Text o Key Ideas and Details Setting: Classroom o Craft and Structure o Integration of Knowledge and Ideas Summary: Students will be able o Vocabulary Acquisition and Use to germinate and track the o Range of Reading . 1.5 Speaking and Listening growth of their seeds. o Comprehension and Collaboration o Presentation of Knowledge and Ideas Objectives: Students will be o Integration of Knowledge and Ideas able to germinate and track the o Conventions of Standard English growth of their seeds. In order to English Language Arts 6 – 12 do this they will understand the . 1.2 Reading Informational Text process by which a seed o Key Ideas and Details germinates and the conditions o Craft and Structure o Integration of Knowledge and Ideas necessary for growth. o Vocabulary Acquisition and Use o Range of Reading Vocabulary: Germination . 1.5 Speaking and Listening o Comprehension and Collaboration Additional Materials (Included o Presentation of Knowledge and Ideas in Module): o Integration of Knowledge and Ideas o Conventions of Standard English . Seed Diagram . Germination Process Writing in Science and Technical Subjects 6 – 12 Handout . 3.6 Writing . Seeds o Text Types and Purposes o Production and Distribution of Writing . Paper towels o Research to Build and Present Knowledge . Plastic bags o Range of Writing . Notecards Reading in Science and Technical Subjects 6 – 12 . Tweezers . 3.5 Reading . -
Morphological Description of Plants: New Perspectives in Development and Evolution
® International Journal of Plant Developmental Biology ©2010 Global Science Books Morphological Description of Plants: New Perspectives in Development and Evolution 1* 2 Emilio Cervantes • Juana G . de Diego 1 IRNASA-CSIC. Apartado 257. 37080. Salamanca. Spain 2 Dept Bioquímica y Biología Molecular. Campus Miguel de Unamuno. Universidad de Salamanca. Spain Corresponding author : * [email protected] ABSTRACT The morphological description of plants has been fundamental in the history of botany and provided the keys for taxonomy. Nevertheless, in biology, a discipline governed by the interest in function and based on reductionist approaches, the analysis of forms has been relegated to second place. Plants contain organs and structures that resemble geometrical forms. Plant ontogeny may be seen as a sequence of growth processes including periods of continuous growth with modification that stop at crucial points often represented by structures of remarkable similarity to geometrical figures. Instead of the tradition in developmental studies giving more importance to animal models, we propose that the modular type of plant development may serve to remark conceptual aspects in that may be useful in studies with animals and contribute to original views of evolution. _____________________________________________________________________________________________________________ Keywords: concepts, description, geometry, structure INTRODUCTION: PLANTS OFFER NEW reflects a more general situation in Biology, a discipline APPROACHES TO DEVELOPMENT that has matured from the experimental protocols and views of biochemistry, where the predominant role of experimen- The study of development is today a major biological disci- tation has contributed to a decline in basic aspects that need pline. Although it was traditionally more focused in animal to be more descriptive, such as those related with mor- systems, increased emphasis in plant development may phology. -
The Origin of Alternation of Generations in Land Plants
Theoriginof alternation of generations inlandplants: afocuson matrotrophy andhexose transport Linda K.E.Graham and LeeW .Wilcox Department of Botany,University of Wisconsin, 430Lincoln Drive, Madison,WI 53706, USA (lkgraham@facsta¡.wisc .edu ) Alifehistory involving alternation of two developmentally associated, multicellular generations (sporophyteand gametophyte) is anautapomorphy of embryophytes (bryophytes + vascularplants) . Microfossil dataindicate that Mid ^Late Ordovicianland plants possessed such alifecycle, and that the originof alternationof generationspreceded this date.Molecular phylogenetic data unambiguously relate charophyceangreen algae to the ancestryof monophyletic embryophytes, and identify bryophytes as early-divergentland plants. Comparison of reproduction in charophyceans and bryophytes suggests that the followingstages occurredduring evolutionary origin of embryophytic alternation of generations: (i) originof oogamy;(ii) retention ofeggsand zygotes on the parentalthallus; (iii) originof matrotrophy (regulatedtransfer ofnutritional and morphogenetic solutes fromparental cells tothe nextgeneration); (iv)origin of a multicellularsporophyte generation ;and(v) origin of non-£ agellate, walled spores. Oogamy,egg/zygoteretention andmatrotrophy characterize at least some moderncharophyceans, and arepostulated to represent pre-adaptativefeatures inherited byembryophytes from ancestral charophyceans.Matrotrophy is hypothesizedto have preceded originof the multicellularsporophytes of plants,and to represent acritical innovation.Molecular -
Phyllotaxis: a Remarkable Example of Developmental Canalization in Plants Christophe Godin, Christophe Golé, Stéphane Douady
Phyllotaxis: a remarkable example of developmental canalization in plants Christophe Godin, Christophe Golé, Stéphane Douady To cite this version: Christophe Godin, Christophe Golé, Stéphane Douady. Phyllotaxis: a remarkable example of devel- opmental canalization in plants. 2019. hal-02370969 HAL Id: hal-02370969 https://hal.archives-ouvertes.fr/hal-02370969 Preprint submitted on 19 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Phyllotaxis: a remarkable example of developmental canalization in plants Christophe Godin, Christophe Gol´e,St´ephaneDouady September 2019 Abstract Why living forms develop in a relatively robust manner, despite various sources of internal or external variability, is a fundamental question in developmental biology. Part of the answer relies on the notion of developmental constraints: at any stage of ontogenenesis, morphogenetic processes are constrained to operate within the context of the current organism being built, which is thought to bias or to limit phenotype variability. One universal aspect of this context is the shape of the organism itself that progressively channels the development of the organism toward its final shape. Here, we illustrate this notion with plants, where conspicuous patterns are formed by the lateral organs produced by apical meristems. -
Plant Development Series Editor Paul M
VOLUME NINETY ONE CURRENT TOPICS IN DEVELOPMENTAL BIOLOGY Plant Development Series Editor Paul M. Wassarman Department of Developmental and Regenerative Biology Mount Sinai School of Medicine New York, NY 10029-6574 USA Olivier Pourquié Institut de Génétique et de Biologie Cellulaire et Moléculaire (IGBMC) Inserm U964, CNRS (UMR 7104) Université de Strasbourg Illkirch France Editorial Board Blanche Capel Duke University Medical Center Durham, NC, USA B. Denis Duboule Department of Zoology and Animal Biology NCCR ‘Frontiers in Genetics’ Geneva, Switzerland Anne Ephrussi European Molecular Biology Laboratory Heidelberg, Germany Janet Heasman Cincinnati Children’s Hospital Medical Center Department of Pediatrics Cincinnati, OH, USA Julian Lewis Vertebrate Development Laboratory Cancer Research UK London Research Institute London WC2A 3PX, UK Yoshiki Sasai Director of the Neurogenesis and Organogenesis Group RIKEN Center for Developmental Biology Chuo, Japan Philippe Soriano Department of Developmental and Regenerative Biology Mount Sinai Medical School New York, USA Cliff Tabin Harvard Medical School Department of Genetics Boston, MA, USA Founding Editors A. A. Moscona Alberto Monroy VOLUME NINETY ONE CURRENT TOPICS IN DEVELOPMENTAL BIOLOGY Plant Development Edited by MARJA C. P. TIMMERMANS Cold Spring Harbor Laboratory Cold Spring Harbor New York, USA AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Academic Press is an imprint of Elsevier Academic Press is an imprint of Elsevier 525 B Street, Suite 1900, San Diego, CA 92101-4495, USA 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA 32, Jamestown Road, London NW1 7BY, UK Linacre House, Jordan Hill, Oxford OX2 8DP, UK First edition 2010 Copyright Ó 2010 Elsevier Inc. -
Re-Issue 2018
SEED LEAFLETS Re-issue 2018 Environment , Forest and Climate Change Commission Õ¢^]ŃΎÜΎÕ0Ύ`+pΎ ¼ČΎ¥@ SEED LEAFLET No. 2 March 2000 Re-issue 2018 Acacia auriculiformis Cunn. ex Benth. Taxonomy and nomenclature Botanical description Family: Fabaceae (Mimosoideae) A large shrub or medium-sized, evergreen tree, usu- Synonyms: Acacia auriculaeformis A. Cunn. ex Benth., ally 8-20 m tall, on good sites up to 35 m. Bark grey Racosperma auriculiforme (A. Cunn. ex Benth.) Pedley. or brown, longitudinally fissured. Leaves (phyllodes) Vernacular/common names: Northern black wattle 8-20 cm long, glabrous and curved, with 3 prominent (Australian trade name); coast wattle, ear pod wattle. nerves (four in A. mangium). Flowers bisexual, creamy yellow, scented, in up to 8.5 cm long spikes. Distribution and habitat Native to Australia, Papua New Guinea and Indo- nesia in hot humid and sub-humid lowlands with mean annual rainfall of 800-2500 mm and mean an- nual temperature of 20-30°C. Often found on river banks and in coastal areas. It is cultivated widely in the tropics within an altitude range of 0-500 (-1000) masl, and even though frost does not occur in its natural range, it tolerates light frost. It is exceptionally tolerant to soil type in regard to fertility, salinity and pH. It can grow on acid mine spoils with pH 3 and on alkaline beach sands with pH 8-9. It does not tolerate shade or strong winds. Isoenzyme analysis has revealed a marked genetic variation with 3 distinct groups corresponding to the geographic distribution in Papua New Guinea, Queensland and Northern Territory.