Carboxypeptidase Digestion in the Presence of Detergents

Total Page:16

File Type:pdf, Size:1020Kb

Carboxypeptidase Digestion in the Presence of Detergents COMMUNICATION J. Biochein. 102, 243-246 (1987) Carboxypeptidase Digestion in the Presence of Detergents Masaharu KAMO and Akira TSUGITA Department of Chemistry, Faculty of Science , Science University of Tokyo, Noda, Chiba 278 Received for publication, April 21, 1987 The detergents, sodium dodecyl sulfate (SDS), lauryl glutamate (LG), and octyl- (polydisperse)oligooxyethylene (Octyl-POE), were tested as to their effects on the activities of carboxypeptidases A, B, and P. In general, Octyl-POE showed little inhibition and SDS showed the strongest inhibition. Carboxypeptidase B was only slightly inhibited by SDS. The inhibitory effect of SDS on these enzyme activities depended not on its concentration but on its absolute amount. For a constant amount of SDS, the activities of carboxypeptidases A and B remained almost constant with increasing reaction volume. Commercial carboxypeptidase B is usually contaminated by carboxypeptidase A. With the addition of SDS, almost only carboxypeptidase B activity was detected. Carboxy (C)-terminal sequence analysis is still one SDS is one of the most widely used deter of the most important tasks in sequencing studies gents. It has a strong anionic dodecyl group and on proteins. Besides C-terminal stepwise chem a marked solubilizing effect on proteins. LG ical degradation (1), classical carboxypeptidase (Ajinomoto Co., Japan) is a newly developed mild digestion has also been widely used. However, anionic detergent. Octyl-POE is a mild but non many proteins and peptides are known to be ionic detergent, and was donated by Y. Rosenbush, insoluble under the usual enzymic digestion condi Biozentrum, Switzerland. Figure 1 shows the car tions and consequently are indigestible. One ap boxypeptidase activities with various concentra proach to overcome this difficulty could be the tions of detergents with a constant volume (100 addition of detergents for the carboxypeptidase ƒÊ1), and with a constant enzyme concentration (5 digestion (2, 3). In the present study, sodium ƒÊ g). Activity is expressed as relative activity i.e., dodecyl sulfate (SDS), lauryl glutamate (LG), and as the percentage of that in the absence of a octyl-(polydisperse)oligooxyethylene (Octyl-POE) detergent. were tested as to their practical use for carboxypep Octyl-POE was generally observed to have a tidases digestion. Small synthetic substrates were very mild effect on all the peptidases tested, LG used in order to prevent structural changes due to was next with a slightly higher inhibitory effect the addition of detergents. and SDS showed the most extensive inhibition. LG cannot dissociate and is insoluble at pH 2.5, therefore, carboxypeptidase P activity was not Abbreviations: SDS, sodium dodecyl sulfate; Octyl- tested with LG. Carboxypeptidase P has an opti POE, octyl-(polydisperse)oligooxyethylene; LG, lauryl mal pH of 5.5, but it is often used at pH 2.5 glutamate. Vol. 102, No. 2, 1987 243 244 COMMUNICATION most inhibitory effect, a more detailed study was carried out on its effect on adequate concentrations of the individual enzymes, as shown in Fig. 1. Figure 2 summarizes the effects of SDS on the enzyme activities with various enzyme concen trations with a constant volume (100ƒÊl), and with a constant detergent concentration, which differed with the individual enzyme. Except for in the case of carboxypeptidase B, an increase in enzyme concentration resulted in an increase in enzyme activity. This observation sug gests that the SDS concentration is not a crucial factor for the inhibition but rather that the rela tive amount of each of these enzymes compared to that of SDS is a more important factor for the inhibitory effect. In Fig. 2b, both the SDS concentration and Fig. 1. Inhibition of carboxypeptidase activities by the amount of enzyme were maintained at con three detergents. (a) Carboxypeptidase A (Sigma Bio stant levels but the volume was varied; i.e., the chem., U.S.A.) digestion: Leu-Trp-Met (3nmol; Serva amount of SDS increased with increasing reaction Fein Chem., B.R.D.) was dissolved in 100ƒÊl of 0.1M volume, and the relative SDS: enzyme ratio in pyridine-acetate-collidine buffer, pH8.2, containing creased with increasing volume. The data clearly various amounts of the detergents. Solid circles denote showed that as the relative ratio of SDS increased activities in the presence of SDS; open circles, those in the enzyme activity became more inhibited, con the presence of lauryl glutamate; and triangles, those firming the idea based on the data shown in Fig. in the presence of Octyl-POE. The reaction was ini tiated by the addition of 5ƒÊg/5ƒÊl of carboxypeptidase 2a. A, followed by incubation for 3 h at 37°C. To stop When the relative SDS: enzyme ratio was kept the enzymatic reaction, a drop of formic acid was added constant, the enzyme activity remained constant to the reaction mixture. The mixture was dried up regardless of variation in the reaction volume; and the residue dissolved in 0.01M HCl, and then the when the volume was increased, the SDS concen amino acids liberated from the C-terminus were directly tration decreased because a constant amount of analyzed with an amino acid analyzer (Irika A5500). SDS was present in the reaction mixture. Except (b) Carboxypeptidase B (Sigma Biochem.) digestion: for carboxypeptidase P at pH 2.5, the above pre Leu-Trp-Met-Arg (Serva) was used as the substrate in diction was experimentally proved, as shown in 0.1M pyridine-acetate-collidine buffer, pH8.2, and the Fig. 2c. It is known that carboxypeptidase P is liberated Arg was determined with the amino acid inactive at pHs lower than 2.0. Carboxypeptidase analyzer. (c) and (d) Carboxypeptidase P (Takara, P activity at pH2.5 was peculiarly observed to Japan) digestion: Leu-Trp-Met was used as the sub strate in both 0.1M pyridine-acetate buffer, pH5.5 increase with decreasing SDS concentration. This (c), and 0.1M pyridine-formate buffer, pH2.5 (d), may be due to the enzyme being unstable at lower respectively. pHs. A typically insoluble protein, cucumber green mottle mosaic virus coat protein, was subjected to because peptide bonds containing acidic amino carboxypeptidase digestion. Its C-terminal se acids are only digestible at this lower pH. Also, quence is Ser-Lys-Ala (4). One microgram of the carboxypeptidase P is free from endoprotease ac protein was digested with 5ƒÊg carboxypeptidase tivity occasionally found at pH 5.5-6.5. It is A in 100ƒÊl of 0.1M pyridine-acetate-collidine noticeable that even in the presence of SDS, car buffer, pH8.2, for 3 h at 37°C, with and without boxypeptidase B is almost fully active. 0.2% SDS. Without SDS, the liberation of Ala Since SDS is one of the most useful deter- amounted to 18% but with SDS, 82% Ala was gents known, but at the same time exhibits the liberated. J. Biochem. CARBOXYPEPTIDASE DIGESTION IN DETERGENTS 245 Fig. 2. Effects of SDS on carboxypeptidase activities. The experimental conditions were the same as given in Fig. 1 except for the following: (a) The enzyme concentration was changed from 0 to 25ƒÊg/100ƒÊl; (1) carboxypep tidase A, (2) carboxypeptidase B, (3) carboxypeptidase P (pH 5.5), and (4) carboxypeptidase P (pH 2.5). The concentration of SDS was kept constant for each of the enzymes throughout each set of experiments; 1% for car boxypeptidases A and B, 0.1% for carboxypeptidase P (pH5.5) and 0.005% for carboxypeptidase P (pH2.5). The final volume of the reaction mixture was 100ƒÊl. (b) The volume of the reaction mixture was changed from 25 to 500ƒÊl. The concentration of SDS was kept constant for each set of experiments: 1% for carboxypep tidases A and B, 0.1° o for carboxypeptidase P (pH5.5) and 0.005% for carboxypeptidase P (pH2.5). The amount of enzyme was kept constant for each set of experiments; (1) 50ƒÊg carboxypeptidase A, (2) 5ƒÊg carboxypeptidase B, (3) 10ƒÊg carboxypeptidase P (pH5.5), and (4) 25ƒÊg carboxypeptidase P (pH2.5), respectively. (c) The volume of the reaction mixture was changed from 25 to 500ƒÊl. The amount of SDS was constant (but the concentration was varied) for each set of experiments; 1mg SDS for carboxypeptidases A and B, 0.1mg SDS for carboxypeptidase P (pH5.5), and 5ƒÊg SDS for carboxypeptidase P (pH2.5). The amount of enzyme was kept constant for each set of experiments; (1) 50ƒÊg carboxypeptidase A, (2) 5 pg carboxypeptidase B, (3) 10ƒÊg carboxypeptidase P (pH 5.5), and (4) 25ƒÊg carboxypeptidase P (pH2.5). As shown in Fig. 1, SDS inhibits carboxypep the liberation of Met dramatically decreased but tidase A but hardly affects carboxypeptidase B the liberation of Arg was maintained. Arg libera activity. In practice, commercial preparations of tion was not even inhibited with the addition of carboxypeptidase B are almost always contami up to 1% SDS. Thermolysin, which is known to nated by carboxypeptidase A. Thus it appeared have the sequence, Phe-Asp-Ala-Val-Gly-Val-Lys, we could use this SDS inhibition to obtain pure at its C-terminus (5), was digested with carboxypep carboxypeptidase B activity. As shown in Fig. tidase B. Denatured thermolysin was prepared 3, the substrate, Leu-Trp-Met-Arg, was used to by boiling at 100°C for 10min in the presence of test this proposition. In the absence of SDS, the 100mM EDTA, followed by dialysis. Digestion carboxypeptidase B preparation liberated not only with carboxypeptidase B (5ƒÊg, pH8.2, 100ƒÊl) the theoretical amount of Arg but also 75% of without SDS at 37°C for 8 h liberated many amino Met. When SDS (more than 0.1%) was added, acids including all those along the C-terminal se- Vol. 102, No. 2, 1987 246 COMMUNICATION t o be used.
Recommended publications
  • THESIS Entitled Studies on Fraction 1 Protein of Beta Vulgaris Submitted for the Degree of DOCTOR of PHILOSOPHY by Kenneth Edwar
    THESIS entitled Studies on Fraction 1 Protein of Beta vulgaris Submitted for the degree of DOCTOR OF PHILOSOPHY by Kenneth Edward Moon 1 970 TABLE OF CONTENTS Acknowledgements i Abbreviations i Summary ii Chapter 1 Introduction 1.1 Carbon Dioxide Fixation in the Calvin • 1 Cycle 1.2 Some Properties of RuDPcase and Similarity 2 to Fraction 1 Protein 1.3 Cellular Location of Fraction 1 Protein 3 1.4 The Mechanism of Action of RuDPcase 4 1.5 Structure of Fraction 1 Protein from 13 Higher Plants 1.6 Relationship of Structure to Enzymic 14 Activity and Role of Sulphydryl Groups 1.7 Studies on RuDPcase from Sources other 17 than the Higher Plants 1.8 Comparison of Some Kinetic and Physical 21 Constants of RuDPcase from Different Sources 1.9 Aim of This Research Project 23 Chapter 2 Methods and Materials 2.1 Plant Material 24 2.2 Preparation of Chloroplasts and Isolation 24 of Fraction 1 Protein 2.3 Concentrating Protein Solutions 26 2.4 Preparation of Reduced and Carboxy- 27 methylated Fraction 1 Protein 2.5 Preparation of Maleyl-carboxymethyl 28 Fraction 1 Protein 2.6 Removal of Maleyl Groups 29 2.7 Gel Electrophoresis 30 2.7 (i) Polyacrylamide Disk Electrophoresis 30 (ii) Polyacrylamide Electrophoresis in 31 the presence of SDS (iii) Slab Acrylamide Gel Electrophoresis 32 (iv) Isoelectric Focusing 33 2.8 Ribulose-1,5-diphosphate Carboxylase 3^ Assay 2.9 Preparation of the S-Sulphenylsulphanate 34 Derivative of Fraction 1 Protein 2.10 Edman Degradations 35 2.11 Hydrazinolysis 35 2.12 Isolation of Blocked N-Terminal Peptides 36 2.13 Tryptic
    [Show full text]
  • Serine Proteases with Altered Sensitivity to Activity-Modulating
    (19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants.
    [Show full text]
  • Protein Digestibility of Cereal Products
    foods Communication Protein Digestibility of Cereal Products Iris Joye Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada; [email protected]; Tel.: +1-519-824-4120 (ext. 52470) Received: 5 May 2019; Accepted: 3 June 2019; Published: 8 June 2019 Abstract: Protein digestibility is currently a hot research topic and is of big interest to the food industry. Different scoring methods have been developed to describe protein quality. Cereal protein scores are typically low due to a suboptimal amino acid profile and low protein digestibility. Protein digestibility is a result of both external and internal factors. Examples of external factors are physical inaccessibility due to entrapment in e.g., intact cell structures and the presence of antinutritional factors. The main internal factors are the amino acid sequence of the proteins and protein folding and crosslinking. Processing of food is generally designed to increase the overall digestibility through affecting these external and internal factors. However, with proteins, processing may eventually also lead to a decrease in digestibility. In this review, protein digestion and digestibility are discussed with emphasis on the proteins of (pseudo)cereals. Keywords: protein digestibility; cereals; pseudocereals; processing; antinutritional factors 1. Introduction Proteins are abundantly present in all living cells, and as such are a vital part of our diet. In order to be usable to the human body after ingestion, dietary proteins have to be hydrolysed into their basic building blocks, i.e., amino acids or small peptides. Hereto, the human gastrointestinal tract possesses an assortment of protein hydrolysing enzymes or peptidases. The physiological roles of proteins are very diverse and range from functioning as pure nitrogen storage molecules over delivering structure building capacity to catalysing a myriad of reactions as metabolically active enzymes or serving as transporter vehicles for poorly soluble or physiologically unstable components [1].
    [Show full text]
  • Partial Characterisation of Dipeptidyl Peptidase 4 (DP 4
    Partial Characterisation of Dipeptidyl Peptidase 4 (DP 4) for the Treatment of Type 2 Diabetes and its Identification as a novel Pharmaceutical Target for Stress-related Indications Beiträge zur Charakterisierung der Dipeptidylpeptidase 4 (DP 4) für die Behandlung von Typ-2-Diabetes und deren Identifizierung als ein neuartiges pharmazeutisches Ziel für stressvermittelte Indikationen Der Naturwissenschaftlichen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg zur Erlangung des Doktorgrades Dr. rer. nat. vorgelegt von M. Sc. (Biochemie) Leona Wagner aus Rheinfelden (Baden) Als Dissertation genehmigt von der Naturwissenschaftlichen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg Tag der mündlichen Prüfung: 23.10.2012 Vorsitzender der Promotionskommission: Prof. Dr. Rainer Fink Erstberichterstatter: Prof. Dr. med. Stephan von Hörsten Zweitberichterstatter: Prof. Dr. Johann Helmut Brandstätter Publications, Presentations and Posters Part of the present study have been published or submitted in the following journals or presented on the following conferences: Publications: 1. Hinke, S.A., McIntosh, C.H., Hoffmann, T., Kuhn-Wache, K., Wagner, L., Bar, J., Manhart, S., Wermann, M., Pederson, R.A., and Demuth, H.U. (2002) On combination therapy of diabetes with metformin and dipeptidyl peptidase IV inhibitors. Diabetes Care 25, 1490- 1491. 2. Bär, J., Weber, A., Hoffmann, T., Stork, J., Wermann, M., Wagner, L., Aust, S., Gerhartz, B., and Demuth, H.U. (2003) Characterisation of human dipeptidyl peptidase IV expressed in Pichia pastoris. A structural and mechanistic comparison between the recombinant human and the purified porcine enzyme. Biol. Chem. 384, 1553-1563. 3. Engel, M., Hoffmann, T., Wagner, L., Wermann, M., Heiser, U., Kiefersauer, R., Huber, R., Bode, W., Demuth, H.U., and Brandstetter, H.
    [Show full text]
  • Handbook of Proteolytic Enzymes Second Edition Volume 1 Aspartic and Metallo Peptidases
    Handbook of Proteolytic Enzymes Second Edition Volume 1 Aspartic and Metallo Peptidases Alan J. Barrett Neil D. Rawlings J. Fred Woessner Editor biographies xxi Contributors xxiii Preface xxxi Introduction ' Abbreviations xxxvii ASPARTIC PEPTIDASES Introduction 1 Aspartic peptidases and their clans 3 2 Catalytic pathway of aspartic peptidases 12 Clan AA Family Al 3 Pepsin A 19 4 Pepsin B 28 5 Chymosin 29 6 Cathepsin E 33 7 Gastricsin 38 8 Cathepsin D 43 9 Napsin A 52 10 Renin 54 11 Mouse submandibular renin 62 12 Memapsin 1 64 13 Memapsin 2 66 14 Plasmepsins 70 15 Plasmepsin II 73 16 Tick heme-binding aspartic proteinase 76 17 Phytepsin 77 18 Nepenthesin 85 19 Saccharopepsin 87 20 Neurosporapepsin 90 21 Acrocylindropepsin 9 1 22 Aspergillopepsin I 92 23 Penicillopepsin 99 24 Endothiapepsin 104 25 Rhizopuspepsin 108 26 Mucorpepsin 11 1 27 Polyporopepsin 113 28 Candidapepsin 115 29 Candiparapsin 120 30 Canditropsin 123 31 Syncephapepsin 125 32 Barrierpepsin 126 33 Yapsin 1 128 34 Yapsin 2 132 35 Yapsin A 133 36 Pregnancy-associated glycoproteins 135 37 Pepsin F 137 38 Rhodotorulapepsin 139 39 Cladosporopepsin 140 40 Pycnoporopepsin 141 Family A2 and others 41 Human immunodeficiency virus 1 retropepsin 144 42 Human immunodeficiency virus 2 retropepsin 154 43 Simian immunodeficiency virus retropepsin 158 44 Equine infectious anemia virus retropepsin 160 45 Rous sarcoma virus retropepsin and avian myeloblastosis virus retropepsin 163 46 Human T-cell leukemia virus type I (HTLV-I) retropepsin 166 47 Bovine leukemia virus retropepsin 169 48
    [Show full text]
  • Proteolytic Cleavage—Mechanisms, Function
    Review Cite This: Chem. Rev. 2018, 118, 1137−1168 pubs.acs.org/CR Proteolytic CleavageMechanisms, Function, and “Omic” Approaches for a Near-Ubiquitous Posttranslational Modification Theo Klein,†,⊥ Ulrich Eckhard,†,§ Antoine Dufour,†,¶ Nestor Solis,† and Christopher M. Overall*,†,‡ † ‡ Life Sciences Institute, Department of Oral Biological and Medical Sciences, and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada ABSTRACT: Proteases enzymatically hydrolyze peptide bonds in substrate proteins, resulting in a widespread, irreversible posttranslational modification of the protein’s structure and biological function. Often regarded as a mere degradative mechanism in destruction of proteins or turnover in maintaining physiological homeostasis, recent research in the field of degradomics has led to the recognition of two main yet unexpected concepts. First, that targeted, limited proteolytic cleavage events by a wide repertoire of proteases are pivotal regulators of most, if not all, physiological and pathological processes. Second, an unexpected in vivo abundance of stable cleaved proteins revealed pervasive, functionally relevant protein processing in normal and diseased tissuefrom 40 to 70% of proteins also occur in vivo as distinct stable proteoforms with undocumented N- or C- termini, meaning these proteoforms are stable functional cleavage products, most with unknown functional implications. In this Review, we discuss the structural biology aspects and mechanisms
    [Show full text]
  • Substrate Specificity and Structural Modeling of Human
    International Journal of Molecular Sciences Article Substrate Specificity and Structural Modeling of Human Carboxypeptidase Z: A Unique Protease with a Frizzled-Like Domain Javier Garcia-Pardo 1 , Sebastian Tanco 1,2 , Maria C. Garcia-Guerrero 1, Sayani Dasgupta 3, Francesc Xavier Avilés 1 , Julia Lorenzo 1,* and Lloyd D. Fricker 3,* 1 Institut de Biotecnologia i Biomedicina and Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain; [email protected] (J.G.-P.); [email protected] (S.T.); [email protected] (M.C.G.-G.); [email protected] (F.X.A.) 2 BiosenSource BV, B-1800 Vilvoorde, Belgium 3 Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; [email protected] * Correspondence: [email protected] (J.L.); [email protected] (L.D.F.); Tel.: +34-93-5868936 (J.L.); +1-718-430-4225 (L.D.F.) Received: 24 October 2020; Accepted: 14 November 2020; Published: 18 November 2020 Abstract: Metallocarboxypeptidase Z (CPZ) is a secreted enzyme that is distinguished from all other members of the M14 metallocarboxypeptidase family by the presence of an N-terminal cysteine-rich Frizzled-like (Fz) domain that binds Wnt proteins. Here, we present a comprehensive analysis of the enzymatic properties and substrate specificity of human CPZ. To investigate the enzymatic properties, we employed dansylated peptide substrates. For substrate specificity profiling, we generated two different large peptide libraries and employed isotopic labeling and quantitative mass spectrometry to study the substrate preference of this enzyme. Our findings revealed that CPZ has a strict requirement for substrates with C-terminal Arg or Lys at the P10 position.
    [Show full text]
  • A Genomic Analysis of Rat Proteases and Protease Inhibitors
    A genomic analysis of rat proteases and protease inhibitors Xose S. Puente and Carlos López-Otín Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, 33006-Oviedo, Spain Send correspondence to: Carlos López-Otín Departamento de Bioquímica y Biología Molecular Facultad de Medicina, Universidad de Oviedo 33006 Oviedo-SPAIN Tel. 34-985-104201; Fax: 34-985-103564 E-mail: [email protected] Proteases perform fundamental roles in multiple biological processes and are associated with a growing number of pathological conditions that involve abnormal or deficient functions of these enzymes. The availability of the rat genome sequence has opened the possibility to perform a global analysis of the complete protease repertoire or degradome of this model organism. The rat degradome consists of at least 626 proteases and homologs, which are distributed into five catalytic classes: 24 aspartic, 160 cysteine, 192 metallo, 221 serine, and 29 threonine proteases. Overall, this distribution is similar to that of the mouse degradome, but significatively more complex than that corresponding to the human degradome composed of 561 proteases and homologs. This increased complexity of the rat protease complement mainly derives from the expansion of several gene families including placental cathepsins, testases, kallikreins and hematopoietic serine proteases, involved in reproductive or immunological functions. These protease families have also evolved differently in the rat and mouse genomes and may contribute to explain some functional differences between these two closely related species. Likewise, genomic analysis of rat protease inhibitors has shown some differences with the mouse protease inhibitor complement and the marked expansion of families of cysteine and serine protease inhibitors in rat and mouse with respect to human.
    [Show full text]
  • Repetitive Sequences in the Murein-Lipoprotein of the Cell Wall of Escherichia Coli (Covalent Lipid/Peptidoglyean/Mucopeptide) V
    2354 Corrections: Proc. Nat. Acad. Sci. USA 69 (1972) Correction. In the article "A Structure of Pyridine Correction. In the article "Insulin Receptors in Human Nucleotides in Solution," by Oppenheimer, N. J., Arnold, Circulating Cells and Fibroblasts," by Gavin, J. R., III, L. J. & Kaplan, N. O., which appeared in the December Roth, J., Jen, P. & Freychet, P., which appeared in the 1971 issue of Proc. Nat. Acad. Sci. USA 68, 3200-3205, March 1972 issue of Proc. Nat. Acad. Sci. USA 69, 747- the column heads for Table 1, p. 3202, should read: 751, the fifth line from the bottom of the right-hand column on p. 747 should read "Tris buffer [25 mM Tris- PC4HA PC4HB J5-4A J5-4B 10 mM dextrose-1 mM EDTA-1.4 mM sodium acetate- 5.0 mM KCI-120 mM NaCl-2.4 mM MgSO4-1% bovine serum albumin (pH 7.4)]." Correction. In the article "Effect of Dibutyryladenosine 3': 5'-Cyclic Monophosphate on Growth and Differen- Correction. In the article "Repetitive Sequences in the tiation in Caulobacter crescentus," by Shapiro, L., Agabian- Murein-Lipoprotein of the Cell Wall of Escherichia coli," Keshishian, N., Hirsch, A. & Rosen, 0. M., which ap- by Braun, V. & Bosch, V., which appeared in the April peared in the May 1972 issue of Proc. Nat. Acad. Sci. 1972 issue of Proc. Nat. Acad. Sci. USA 69, 970-974, USA 69, 1225-1229, the bacteria-Escherichia coli B- lines 48/49, page 972, should read: ...treated with di- shown in Table 3, p. 1228, should read: Escherichia coli isopropylfluorophosphate, and not (..
    [Show full text]
  • Protein T1 C1 Accession No. Description
    Protein T1 C1 Accession No. Description SW:143B_HUMAN + + P31946 14-3-3 protein beta/alpha (protein kinase c inhibitor protein-1) (kcip-1) (protein 1054). 14-3-3 protein epsilon (mitochondrial import stimulation factor l subunit) (protein SW:143E_HUMAN + + P42655 P29360 Q63631 kinase c inhibitor protein-1) (kcip-1) (14-3-3e). SW:143S_HUMAN + - P31947 14-3-3 protein sigma (stratifin) (epithelial cell marker protein 1). SW:143T_HUMAN + - P27348 14-3-3 protein tau (14-3-3 protein theta) (14-3-3 protein t-cell) (hs1 protein). 14-3-3 protein zeta/delta (protein kinase c inhibitor protein-1) (kcip-1) (factor SW:143Z_HUMAN + + P29312 P29213 activating exoenzyme s) (fas). P01889 Q29638 Q29681 Q29854 Q29861 Q31613 hla class i histocompatibility antigen, b-7 alpha chain precursor (mhc class i antigen SW:1B07_HUMAN + - Q9GIX1 Q9TP95 b*7). hla class i histocompatibility antigen, b-14 alpha chain precursor (mhc class i antigen SW:1B14_HUMAN + - P30462 O02862 P30463 b*14). P30479 O19595 Q29848 hla class i histocompatibility antigen, b-41 alpha chain precursor (mhc class i antigen SW:1B41_HUMAN + - Q9MY79 Q9MY94 b*41) (bw-41). hla class i histocompatibility antigen, b-42 alpha chain precursor (mhc class i antigen SW:1B42_HUMAN + - P30480 P79555 b*42). P30488 O19615 O19624 O19641 O19783 O46702 hla class i histocompatibility antigen, b-50 alpha chain precursor (mhc class i antigen SW:1B50_HUMAN + - O78172 Q9TQG1 b*50) (bw-50) (b-21). hla class i histocompatibility antigen, b-54 alpha chain precursor (mhc class i antigen SW:1B54_HUMAN + - P30492 Q9TPQ9 b*54) (bw-54) (bw-22). P30495 O19758 P30496 hla class i histocompatibility antigen, b-56 alpha chain precursor (mhc class i antigen SW:1B56_HUMAN - + P79490 Q9GIM3 Q9GJ17 b*56) (bw-56) (bw-22).
    [Show full text]
  • Proline Residues in the Maturation and Degradation of Peptide Hormones and Neuropeptides
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Volume 234, number 2, 251-256 FEB 06071 July 1988 Review Letter Proline residues in the maturation and degradation of peptide hormones and neuropeptides Rolf Mentlein Anatomisches Institut der Christian-Albrechts Universitiit zu Kiel, OlshausenstraJe 40.2300 Kiel I, FRG Received 4 May 1988; revised version received 23 May 1988 The proteases involved in the maturation of regulatory peptides like those of broader specificity normally fail to cleave peptide bonds linked to the cyclic amino acid proline. This generates several mature peptides with N-terminal X-Pro- sequences. However, in certain non-mammalian tissues repetitive pre-sequences of this type are removed by specialized dipeptidyl (amino)peptidases during maturation. In mammals, proline-specific proteases are not involved in the biosyn- thesis of regulatory peptides, but due to their unique specificity they could play an important role in the degradation of them. Evidence exists that dipeptidyl (amino)peptidase IV at the cell surface of endothelial cells sequesters circulating peptide hormones which arc then susceptible to broader aminopeptidase attack. The cleavage of several neuropeptides by prolyl endopeptidase has been demonstrated in vitro, but its role in the brain is questionable since the precise localiza- tion of the protease is not clarified. Neuropeptide; Peptide hormone; Proteolytic processing; Degradation; Dipeptidyl (amino)peptidase; Prolyl endopeptidase 1. INTRODUCTION 2. DIRECTION OF THE PROTEOLYTIC MATURATION OF REGULATORY The unique cyclic and imino structure of the PEPTIDES BY PROLINE RESIDUES amino acid proline influences not only the confor- mation of peptide chains, but also restricts the at- Regulatory peptides are synthesized as part of tack of proteases.
    [Show full text]
  • SG-Carboxypeptidase B
    G-Biosciences ♦ 1-800-628-7730 ♦ 1-314-991-6034 ♦ [email protected] A Geno Technology, Inc. (USA) brand name SG‐Carboxypeptidase B (Recombinant)™ (Cat. #786‐1249, 786‐1250) think proteins! think G-Biosciences www.GBiosciences.com INTRODUCTION SG‐Carboxypeptidase B (Recombinant)™is the rat carboxypeptidase B expressed in E. coli. It specifically hydrolyses basic amino acids including lysine, arginine and histidine from the C‐terminal end of polypeptides. It is 34.5 kD protein with the pH optimum of 8.0 and pI is 6.0. Carboxypeptidase B is competitively inhibited by arginine and lysine and metal chelating agents such as EDTA. It is used in sequencing protein and peptides. Other applications are related to its origin and function such as use in studies involving new potential biomarkers for acute pancreatitis. ITEM(S) SUPPLIED Cat. # SG‐Carboxypeptidase B (Recombinant)™ CPB Digestion Buffer [10X] 786‐1249 0.1 mg 1 ml 786‐1250 1 mg 10 ml STORAGE CONDITIONS SG‐Carboxypeptidase B (Recombinant)™is shipped as lyophilized powder along with CPB digestion buffer [10X] on blue ice. Upon arrival, reconstitute to with sterile deionized water or 1 X CPB Digestion Buffer and store at ‐20°C. Store the CPB digestion buffer [10X] at 4°C. When stored properly, its stable for 1 year. FEATURES • Animal free source of origin, therefore no any other contaminating proteases. • No protease inhibitors are present during preparation of SG‐Recombinant Carboxypeptidase B™ • High Purity: HPLC grade; single band on SDS‐PAGE; no other contaminating proteases such as chymotrypsin and carboxypeptidase A. Less than 10ppm of recombinant trypsin.
    [Show full text]