<<

Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 370

Phylogeny and of and allied taxa ()

´ SANJA SAVIC

ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 UPPSALA ISBN 978-91-554-7035-7 2007 urn:nbn:se:uu:diva-8326                   !  "   # $%%&  %'%% (    (    ( )  * +   ,      *

 -. -* $%%&* )    +  (      /01* !   *                     2&%* 22 * * 3- 4& 54 566#5&%265&*

  !* 7*     (  8 (      0 /!  1* +   (    (,                    (   ,  *   ! 9  (  -      (  :    ;         , 0 ,  ( * !  <    /    3+-1   ,             ,  :    ;* +     *    8 * +    (                  * 3  ((            (        !  =!   *     "      (     (         ,     * +                 * -                   ,  ,           ((             * !    (              >  !       , ,     * !           <         * !    (  ( 0                      (( * + ,   /!        # 1    * -          ( (  ,        ((  (        * +   (      (           (        (    * + ,   $  /01      ,      $   $    $        * !   ( <        (       *

%&' )  0 -    ! +  0 -  +  )   +  3+- -  ?)    

(  )*    + * ,     *     * - ./ *    * +012345 * &

@ - > -. $%%&

3-- A6 5A$ # 3- 4& 54 566#5&%265&  '  ''' 5 2$A / '== *<*= B C '  ''' 5 2$A1 List of papers

This thesis is based on the following papers, which are referred to in the text by their Roman numerals: I Savi Sanja, Tibell Leif, Gueidan Cécile & Lutzoni François. Molecular Phylogeny and Systematics of Polyblastia (Verrucari- aceae, ) and allied genera. Submitted to Myco- logical Research. II Savi Sanja & Tibell Leif. Taxonomy and species delimitation in Sporodictyon (Verrucariaceae) in Northern Europe and the ad- jacent Arctic – reconciling molecular and morphological data. Submitted to Taxon. III Gueidan Cécile, Savi Sanja, Thüs Holger, Roux Claude, Keller Christine, Tibell Leif, Prieto Maria, Heiðmarsson Starri, Breuss Othmar, Orange Alan, Fröberg Lars, Amtoft Wynns Anja, Navarro-Rosinés Pere, Krzewicka Beata, Pykälä Juha, Lutzoni François. The main genera of Verrucariaceae () as supported by recent morphological and molecular studies. Sub- mitted to Taxon. IV Savi Sanja & Tibell Leif. Atla – a new in - ceae. Submitted to The Lichenologist.

In Paper I, II and IV SS had the major responsibility for writing the text, with comments and suggestions given by the co-authors. SS was also re- sponsible for most of the lab work, and for the phylogenetic analyses in Pa- per II and IV. The studies (I, II, IV) were planned and conducted in coopera- tion between SS and LT. In Paper III SS was responsible for writing the text of sections: ‘3. Clade E’ (excluding ‘3c’), ‘12. Polyblastia’, ’14. group’, the nomenclatural note in section ‘13a. ’, and took part in writing the discussion.

Important note. In all papers new nomenclatural combinations are sug- gested, and in paper II, III and IV new taxa are described. All papers have been submitted for publication elsewhere. Thus in order to make certain that the new names are not validly published in this thesis, references to the basionyms and Latin diagnoses, necessary according to the International Code of Botanical Nomenclature, are omitted. The statement ‘here desig- nated’, needed for lectotypification to be valid, is also omitted.

Contents

Introduction...... 7 Verrucariaceae...... 8 Polyblastia and allied taxa ...... 9 Aims...... 11 Materials and Methods...... 12 Results and discussion ...... 13 Paper I ...... 13 Paper II ...... 15 Paper III...... 17 Paper IV ...... 19 Concluding remarks ...... 20 Sammanfattning (Swedish summary) ...... 22 Att förstå lavar ...... 22 Att namnge lavar...... 23 Vi vet faktiskt inte så mycket… ...... 24 Släktskapsförhållanden inom familjen Verrucariaceae ...... 25 Revision av Sporodictyon...... 26 Ett nytt släkte, Atla ...... 27 Om ett och annat - annat…...... 28 Acknowledgements – Tack –Zahvala – Hvala ...... 29 References...... 31

Abbreviations

ITS Internal Transcribed Spacer region

LSU Large SubUnit

RPB1 largest subunit of the RNA Polymerase II s.lat. sensu lato (in a broad sense) s.str. sensu strict (in a narrow sense)

MP Maximum Parsimony

Introduction

Lichens are symbiotic associations between fungi (the mycobionts) and a photosynthetic algal/cyanobacterial partner (the photobionts). In general, the symbiosis is considered obligatory for successful growth and reproduction of the heterotrophic fungal partner. However, also the autotrophic photobiont obviously benefits from the relationship. Thus the is typically a highly stable association which extends the ecological range of both partners. The body (thallus) of most is quite different from that of either the or alga growing separately, and may to some extent resemble simple plants in form and growth (Sanders 2001).

The 83rd plate from Ernst Haeckel's Kunstformen der Natur (1904), depicting or- ganisms classified as ‘Lichenes’ (inverted colour).

Approximately one-fifth of all known fungal species form obligate sym- biotic associations with a green alga, a cyanobacterium or simultaneously

7 with both types of photobionts. Many of the ascomycetes (ca 42%) and a few basidiomycetes participate in lichen symbioses. Ascomycota is a phy- lum that includes more than 98% of the known lichenized fungal species. According to Lutzoni & al. (2001) the lichens in this phylum evolved earlier than previously believed, and gains of lichenization have been infrequent during the evolution of Ascomycota. In contrast multiple independent losses of lichenization have occurred. As a consequence, major Ascomycota line- ages of exclusively non-lichen-forming species are derived from lichen- forming ancestors (including well-known fungi such as Penicillium and As- pergillus). The lichen association is thus believed to be a symbiosis with a long evo- lutionary history. However, the past has left behind clues to what once hap- pened. Systematists use these clues and try to reconstruct evolutionary rela- tionships between organisms. The study of evolutionary relationships among organisms based on molecular, mostly DNA sequence data, have provided new insights about the relationships that often contradict the traditional, pri- marily morphology-based hypotheses. During the past two decades, contributions to fungal classification based on molecular data have led to major changes in our understanding of the evolution of fungi and of their phylogenetic affinities (see Hibbett & al. 2007 for a review).

Verrucariaceae The family Verrucariaceae (, , Eurotio- mycetes, Ascomycota) is a large family of mostly lichenized species includ- ing 45 genera and about 750 species (Hawksworth & al. 1995; Eriksson 2006). The family includes lichens producing perithecia as fruiting bodies, and are often referred to as ‘pyrenocarpous lichens’, along with some other orders. The first studies to include molecular data on the family Verrucariaceae aimed at finding the phylogenetic relationships between high-rank taxa within the ascomycetes (Lutzoni & al. 2001, 2004; Liu & Hall 2004; Lumbsch & al. 2002, 2004, 2005; Geiser & al. 2006; Spatafora & al. 2006). They showed that Verrucariales is sister to an order of non-lichenized fungi, the . A few molecular studies have focused on the Verrucari- aceae at the infrageneric level (Amtoft 2006; Amtoft & al. 2008; Heiðmars- son 2003, on ). Most of the genera in Verrucariaceae are crustose; these include, e.g. Polyblastia, , , Staurothele, Thelidium and Verrucaria. The most recent phylogenetic study on Verrucariaceae was published by Gueidan & al. (2007), presenting a multigene phylogeny of 15 genera of Verrucari- aceae, including the most species-rich ones. There the current morphology-

8 based classification was compared with a molecularly based phylogeny. It was shown that spore septation is not useful as a primary morphological feature for recognizing genera, since none of the genera Verrucaria (simple spores), Polyblastia (muriform spores), and Thelidium (transversely multi- septate spores) were monophyletic. Moreover, a squamulose thallus was shown to have evolved from a crustose thallus several times independently, and that hymenial algae also have evolved independently in distantly related groups (Gueidan & al. 2007).

Polyblastia and allied taxa Polyblastia A. Massal. is a crustose, pyrenocarpous genus of lichenized fungi belonging to the Verrucariaceae. Members of Polyblastia occur mostly on rocks and soil, sometimes on mosses, in temperate to cold areas of both hemispheres. However, our knowledge of their taxonomy, ecology and dis- tribution is, at best, only fragmentary. Species are rarely encountered and are difficult to identify. Consequently, there is little consensus on how many species this genus may include. Kirk & al. (2001) reported ca 80 Polyblastia species worldwide. Traditionally Polyblastia has been characterized as hav- ing asci without well differentiated apical apparatus, pseudoparaphyses that dissolve early into a gelatinous mass and paraphysoids forming a fringe around the interior of the ostiole; muriform spores; a trebouxioid or other non-trentepohlioid, bright green phycobiont; no algal cells in the hymenium and no chemical substances in the thallus. This circumscription of Polyblas- tia was largely canonized by Zahlbruckner (1907, 1926) in a classification that heavily rested on cardinal characters (Tibell 1998), such as photobiont association, ascoma structure and spore morphology. Thus, Verrucariaceae species with muriform ascospores and a deliquescent hamathecium without symbiotic photobionts were referred to Polyblastia, although Agonimia and Henrica also have been recognized as separate genera. Thelidium A. Massal. has usually been considered closely related to Poly- blastia. Members of this genus are saxicolous, mostly calcicolous, occurring in temperate to cold areas of both hemispheres. In the ‘sporological’ tradi- tion it has been characterized by exclusively having transverse septa, nor- mally one to three in number. ‘Submuriform’ is a frequently used term in Thelidium, for ascospores with transverse and only occasional longitudinal septa. Sometimes such longitudinal septa have been considered anomalies. Most Polyblastia species in comparison have numerous longitudinal septa, and also more numerous transverse septa. Otherwise, there is a similar range in morphological variation in thallus and ascoma structure and ecology in Thelidium and Polyblastia as traditionally construed, except for the fact that no pigmented spores occur in Thelidium.

9 Staurothele Norman is also a genus considered to be closely related to Polyblastia. In many ways it parallels Polyblastia and Thelidium as tradi- tionally conceived in being vaguely characterized and quite variable with respect to thallus and ascoma morphology, and ecology. The main diagnostic characteristic for this genus is the occurrence of symbiotic green algae in the hymenium. The spores are muriform, hyaline to dark brown, and in many species fewer than eight per ascus. Verrucaria Schrad. in a traditional sense is easily recognized. It grows on rocks or compacted sand, rarely on soil. It has discrete, scattered perithecia without pseudoparaphyses when mature, and simple ascospores. However, the morphological heterogeneity within Verrucaria was acknowledged to be problematic by Halda (1993). Gueidan & al. (2007) showed that Verrucaria is highly polyphyletic; the complexity of this taxonomic problem is best exemplified by the fact that Verrucaria species are found in eight out of ten main monophyletic groups in Verrucariaceae. Trimmatothele Norman ex Zahlbr. was described for a species of pyren- carpous lichens similar to Verrucaria, but having polysporous asci. Ertz & Diederich (2004) argued (by analogy with e.g., Buellia s.l. and Cande- lariella, which include species with both octosporous and polysporous asci) that since only the polysporous asci distinguish Trimmatothele from Verru- caria, these genera should be united, and consequently proposed the combi- nation V. perquisita (Norman) Ertz & Diederich. Henrica de Lesd. is related to Polyblastia and was until recently regarded as monotypic (see Breuss 2002, Navarro-Rosinés & Hladun, 1992). The combination of characters distinguishing Henrica from Polyblastia was indi- cated to be the umbilicate thalline squamules, the position of the perithecia, and the double-layered perithecial wall.

10 Aims

The studies presented here primarily deal with the genus Polyblastia and allied genera in the family Verrucariaceae, addressing phylogenetic, nomen- clatural and taxonomic issues. Paper I aims at elucidating the phylogenetic relationships of Polyblastia s.lat. in relation to allegedly closely related taxa using nucITS, nucLSU, and RPB1 markers. In addition, the distribution of features traditionally used for generic circumscription among species in Polyblastia s. lat. and allied gen- era is investigated. Paper II addresses the systematics of the resurrected genus Sporodictyon. The aim of this study is to better understand species delimitation in Sporodictyon with respect to variability of morphological features earlier used for species recognition in relation to a molecular phylogeny. A further aim is to provide a taxonomic revision of the species of Sporodictyon occur- ring in Northern Europe and the adjacent Arctic. The goal of Paper III is to summarize the currently available molecular phylogenies of Verrucariaceae, compare molecular data with the current morphology-based generic classification, and try to reconcile phylogeny and classification. The study was limited to 16 of the 45 genera currently in- cluded in Verrucariaceae. In Paper IV the aim is to describe a new genus, Atla, and three new spe- cies belonging to this genus. Also, it aims at providing a taxonomic revision of the genus.

11 Materials and Methods

Materials and methods are described in detail and with appropriate refer- ences in the papers. Here only a brief summary, mostly without references, is provided. For Paper I, II and IV material was collected during extensive field-work in Scandinavia, Iceland and Greenland. Material from the following herbaria was also studied: AMNH, GB, H, LD, M, O, S and UPS. Voucher material is referred to in the respective papers. Comprehensive morphological studies were conducted for all papers. In Paper I and II three DNA regions were used; the nuclear ribosomal large subunit RNA gene (nucLSU), the largest subunit of the RNA poly- merase II (RPB1, region A-D, Stiller & Hall 1997), and the internal tran- scribed spacer regions of the nuclear encoded ribosomal DNA (ITS1-5.8S- ITS2 or ITS). Two DNA regions, nucITS and nucLSU were utilized in Pa- per IV. DNA regions were amplified in PCR reactions, the amplified DNA was sequenced, contigs were edited and sequences aligned. The phylogenetic relationships and confidence were inferred in Paper I and II using a Bayesian approach. In Paper I additional support values were estimated using Maximum Likelihood bootstrap (MLbs) with the help of the RAxML-VI-HPC (Stamatakis & al. 2005); and Weighted Maximum Parsi- mony bootstrapping (wMPbs) was conducted using PAUP* version 4.0b10 (Swofford 2002). For additional support values in Paper II we employed Maximum Parsimony bootstrapping (MPbs) analyses. In Paper II Bayesian inference analyses were complemented with haplotype network analyses (software TCS version 1.21; Clement & al. 2000), and the split decomposi- tion method implemented in the software SplitsTree version 4.6 (Huson & Bryant 2006). In Paper IV a Maximum Parsimony (MP) analysis of the combined dataset as well as MPbs were conducted using PAUP* 4.0b10; additional support values were provided by a Bayesian inference analysis. Paper III was based on studies of several authors in order to present an update of recent taxonomical and nomenclatural changes in the family Ver- rucariaceae. It summarizes the currently available molecular phylogenies, compares molecular data with the current morphology-based generic classi- fication, and tried to reconcile phylogeny and classification.

12 Results and discussion

Paper I Polyblastia and related genera form a strongly supported monophyletic group nested within the Verrucariaceae. Phylogenetic relationships were inferred using a Bayesian approach based on two data sets. A first analysis of a larger, two-locus data set (nucLSU and RPB1) for 128 members of the Verrucariaceae, confirmed the polyphyly of Polyblastia, Thelidium, Staurothele and Verrucaria, as currently construed. The second analysis focussed on 56 Polyblastia and allied taxa, but using an additional locus (nucITS) and two more closely related outgroup taxa. The latter analysis revealed several strongly supported groups such as Polyblastia s.str., the ‘Thelidium group’ - a mixture of Polyblastia, Thelidium, Staurothele and Verrucaria species - and the genus Sporodictyon, which is here accepted.

Ristafallet – ‘Polyblastia paradise’, Jämtland, Sweden

Polyblastia s.str. which exclusively contains Polyblastia species in the traditional sense along with P. cupularis, the type of Polyblastia, was recog- nized. The following species were accepted in Polyblastia s.str.: P. bryo- phila, P. cupularis, P. fuscoargillacea, P. gotlandica, P. hyperborea, P. integrascens, and P. sendtneri. Polyblastia sp. (T396) grows on mosses, and probably is an undescribed species. All the species in this group have colour- less, muriform, moderately sized spores with rather numerous cells, and all species have a well-developed involucrellum except for P. gotlandica – the only species in this clade, which has fully immersed perithecia. No hymenial

13 algae are present, and the species occur both on rocks and on mosses. In this restricted sense Polyblastia is not only monophyletic in our three-locus phy- logeny, but it is also morphologically rather uniform. The phylogeny of the strongly supported ‘Thelidium group’ is not com- pletely resolved, and it contains not only species traditionally placed in Thelidium, but also species currently referred to Polyblastia, Staurothele, and Verrucaria. Spore septation varies dramatically in this group, where we find non-septate, 1-septate, 3-septate, pauciseptate, and muriform spores. Most species have colourless spores, but dark spores occur in at least two and maybe three different lineages. Both the occurrence of 3-septate, pau- ciseptate and muriform spores is homoplasious, as is the occurrence of dark spores. Hymenial algae occur in one or two different lineages. Many species have a well-developed involucrellum, but nearly as many do not. It is, how- ever, interesting to note that all the species occur on more or less ba- sic/calcareous rocks.

Polyblastia bryophila – asci with ascospores

The resurrected genus Sporodictyon forms a strongly supported group in our analyses, and includes the type, S. schaererianum along with S. cruen- tum, and S. terrestris. Sporodictyon species contain very characteristic indels in the ITS1 and ITS2, and the genus is reasonably easy to characterize and recognize morphologically. The thallus is epilithic, more or less well devel- oped, and often quite thick. At least the young perithecia have an outer thal- line cover, often reaching almost to the ostiole. Perithecia are hence often described as immersed in thalline verrucae, and are further rather large, 0.5- 1.2 mm diam., and have a well-developed involucrellum. The spores are large, muriform with numerous longitudinal and transverse septa, often slightly asymmetric, with a narrower end that is slightly curved. The spores are colourless when young and later turn yellowish to very dark brown. The photobiont is a green alga, but cyanobacteria occur in most species as super- ficial cephalodia. The species grow on rocks, soil and mosses.

14 Trimmatothele is here for the first time placed in a molecular phylogeny. It is shown that T. perquisita - the type of Trimmatothele - forms a strongly supported group with Verrucaria sp. Verrucaria rupestris - type of Verrucaria - is a species not closely related to any other Verrucaria species in this study, and in our analyses is a sister to Henrica melaspora and Polyblastia sp. The placement of V. rupestris, although only moderately supported, emphasizes the taxonomic complexity of Verrucaria and implies that in the future some major taxonomic changes are needed to sort out the generic relationships. Morphological features traditionally used for characterizing Polyblastia, Thelidium, Staurothele and Verrucaria, such as spore septation and colour, occurrence of a hymenial photobiont, involucrellum structure, and substrate preference, were found to be only partially consistent within strongly sup- ported clades in our analyses, and thus are not always reliable characters for characterizing natural groups.

Paper II The traditional method for recognizing fungal (and lichen) species is by morphology. When evaluating molecular phylogenies in relation to previous morphology-based species recognition, four mementos were formulated by Grube & Kroken (2000) to be considered before current classification and species recognition is changed. They concern taxon sampling, confidence in the molecular phylogenies, research of taxonomic background and nomen- clature, and finally suggestions for handling species complexes and cryptic species. In Paper II species delimitation in Sporodictyon is investigated.

Sporodictyon schaererianum – thallus with perithecia

In Sporodictyon terrestris and S. schaererianum considerable morphological variation was encountered, but no consistent discrete sets of morphological

15 characters for distinguishing subgroups could be found. Morphological variation has historically caused the description of several vaguely character- ized species, e.g. Polyblastia inumbrata, P. viridescens, P. sommerfeltii, and P. subpyrenophora. To clarify uncertainties regarding species recognition in Sporodictyon, three molecular markers were used; the ITS and LSU regions of the nuclear encoded ribosomal DNA, and RPB1 (the A-D region); assum- ing the ribosomal DNA to be an independent marker from the protein coding RPB1. The MrBayes, TCS, and SplitsTree analyses in this paper indicate diversity in all three regions, and four distinct monophyletic clades corre- sponding to four species recognized (S. minutum, S. terrestris, S. cruentum and S. schaererianum) are observed. A Bayesian analysis of the nucITS region revealed four highly supported monophyletic clades corresponding to the aforementioned species. However, a clear differentiation of S. terrestris in two subclades was observed. Se- quences of S. schaererianum also belonged to two different groups. The analysis of the nucLSU region supported the same four clades as the nucITS analysis, with high support for all clades except for S. minutum. Two sub- clades were also well supported, one in S. schaererianum and two in S. ter- restris. Similarly, the analysis of RPB1 again showed four well supported monophyletic groups corresponding to the species recognized, and the same subclades as in the ITS analysis were found. In the TCS analysis of nucLSU two clusters at the 95% level were ob- tained: S. cruentum and a second one with all the rest of the sequences con- nected. At the 99% level four separate clusters were obtained, congruent with the 95% level resolution in the RPB1; these levels visualizing groupings that correspond to the species recognized here. However, in the TCS haplo- type analysis of nucITS sequences (satisfying the 95% connection limit) six groups were obtained. The splits graphs did not show any major conflict in the data, and the same pattern was revealed with respect to groups and subgroups as in the mcmc and TCS analyses. Sporodictyon schaererianum and S. terrestris were morphologically quite variable, especially with respect to thallus structure. Two distinct subclades were found in both species, but they could, however, not be distinguished morphologically and may be regarded as cryptic species. Thallus thickness and colour, and excipulum structure were found to be quite variable in the Sporodictyon and offer little guidance for species recognition, whereas some other morphological characters did. Ascoma size, spore pigmentation, spore size and thallus structure were useful features for species recognition. The species, as recognized here, were characterized by a combination of morpho- logical features. Thus S. terrestris and S. schaererianum are often easily identified already in the field, but the variation within these species in single features, such as thallus thickness, thallus structure and thallus colour is rather bewildering. Thallus structure, thalline cover of the perithecia, and

16 spore size and colour clearly distinguish S. schaererianum – with at maturity very dark brown spores – from S. terrestris, which has spores that at matur- ity are straw coloured.

Sporodictyon schaererianum - spores

Sporodictyon cruentum is recognized in the field by its smooth and slightly glossy thallus and rather thin thalline cover of the perithecia. Sporodictyon minutum has much smaller perithecia then the species hitherto mentioned, but being quite rare it was observed in the field only during the last two years of fieldwork. It is, admittedly, in the field not easily distin- guished from some species in Polyblastia s.lat. Sporodictyon arcticum was not studied in the field, but this species seems reasonably easy to recognize by gross morphology, particularly by its very thick thalline cover of the perithecia and almost punctiform ostiole. It may be difficult to distinguish from S. terrestris, but differs by having dark brown spores. A taxonomic revision of Sporodictyon, occurring in Northern Europe and the adjacent Arctic was provided. Two new species, S. arcticum and S. minu- tum were described. Polyblastia theleodes is a name that has been misap- plied for S. schaererianum. Several taxonomic synonyms were proposed, particularly for S. terrestris, and lectotypes for several species names were designated.

Paper III The scope of this paper was to summarize the problems addressed during the Second Workshop on Verrucariales in 2007 in Akureyri (Iceland), and to propose a new preliminary taxonomy of the generic level. The most impor- tant aspect of this was to compare traditional, morphology-based generic delimitations with recent molecular phylogenies. Many of the genera were

17 shown to be in need of emendation, and new genera: , Para- and Wahlenbergiana, were also described. The paper aimed at providing a starting point for subsequent taxonomic studies on Verrucari- aceae.

In the guideline proposed by Nimis (1998) in order to test the relevance of newly delimited generic entities, five criteria were suggested: (1) DNA test- ing for monophyly; (2) phylogenetic analysis; (3) number of characters used; (4) number of species considered; (5) information content of the new split- ting. The first criterion (DNA testing for monophyly) constituted the founda- tion of our work, and it also indirectly entailed criteria (2) and (3). In several instances the generic delimitation as proposed here could not have been jus- tified without using DNA data.

Godafoss, Iceland 2007.

In general, the use of Nimis’ five criteria was found to be extremely help- ful in re-delimitating genera in Verrucariaceae, although their application were sometime slightly modified, mostly in order to address problems de- pending on the scarcity of morphological characters in this family. Some taxonomical changes were accordingly proposed here for taxa for which enough data was available. Many changes remain to be proposed, but they

18 need further investigations based on additional taxon and gene sampling, as well as morphological and ecological studies. Further nomenclatural changes will no doubt also be brought about by the examination of type specimens. However, the main genera of Verrucariaceae and their phylogenetic rela- tionships are now starting to be discernable, and this will hopefully help lichenologists to establish a more natural generic classification in the family.

Paper IV The new genus Atla (Verrucariaceae) was described. Atla wheldonii was earlier referred to Polyblastia, and three additional species were included in the genus: A. alpina, A. palicei and A. praetermissa, all described as new. Using a concatenated matrix of nucITS and nucLSU sequences in a MP analysis, all Atla species were monophyletic with strong support. Sporodic- tyon was the strongly supported sister group, whereas Henrica, Verrucaria rupestris and Thelidium sp. formed the sister group of Atla/Sporodictyon, although only with low support. In order to stabilize name usage sequence information was included with the descriptions of the species, this being particularly important when new species are described.

Atla alpina, Abisko Canyon, Torne Lappmark, Sweden.

Atla is not easily characterized morphologically; however none of the spe- cies needs to be mistaken for a Sporodictyon even in the field. Atla species are encountered in wet and humid habitats, the epilithic species mainly on rocks along riverbeds and streams. Atla wheldonii occurs on damp basic, unstable soil colonized by cyanobacteria and mosses. It is in Scandinavia often associated with Thelocarpon impressellum and spongiosa, and occurs along ditches and road-sides of fairly new road-cuts. All four species were found on calciferous rocks and soil in Northern Scandinavia, A. alpina also occurs in Central Europe, and A. wheldonii likewise in Central

19 Europe, the Pyrenees and in the British Isles. An identification key to the species and a revision of the genus was supplied.

Concluding remarks The traditional classification of Verrucariaceae was shaped in the mid- nineteen century aided by a technological break-through; light microscopes of good quality and resolution power became available to biologists, and particularly Italian lichenologists (like De Notaris and Garovaglio) under- took systematic investigations and based a new, revolutionary classification, first of all on spore structure. The microscope itself was even sometimes presented as an icon of this paradigm.

Today, we can base our classification on inference about the evolution, on phylogenetic hypotheses, and we have access to an enormous wealth of in- formation; we can trace the evolutionary changes of the past in the DNA sequences.

20 This welding together of two sources of information has here been started for one of the largest families of lichenized fungi, Verrucariaceae, which is also the perhaps most neglected of them. It has indeed, for a very long time been left nearly untouched by lichen taxonomists as rather ‘hopeless’ to un- derstand. This study provides a basis for new knowledge about the evolu- tionary history of the Verrucariaceae, and also new concepts and entities for its classification. It also has pointed at a number of problems to be solved.

21 Sammanfattning (Swedish summary)

Att förstå lavar Flercelliga och med oss någotsånär likstora organismer är också ofta i flera avseenden lika oss människor. Det är oproblematiskt att veta vad som är en individ, och intuitivt uppfattar vi oftast utan större besvär grupper av indivi- der som speciella ‘slag’ – det som inom biologin oftast motsvaras av arter, som t.ex. räv eller blåsippa. Oftast har dessa organismer också en fortplant- ning som liknar vår, arvsmassa från olika individer förenas i en sexuell pro- cess och ger upphov till en ny individ.

Sporodictyon schaererianum, ‘Tentamen Dispositionis Methodicae lichenum i Longobardia nascentium’; Sancto Garovaglio.

Det är lätt att våra idéer om andra organismer färgas av detta betraktelse- sätt, men många organismer är inte lika suveränt individuella. Under livets utveckling har en intim samverkan mellan olika typer av organismer ofta lett till att de inblandande parterna kunnat vinna fördelar, haft framgång och överlevt också i ett längre perspektiv. Redan vår egen kropps celler består faktiskt av ett hopplock av olika, en gång självständiga organismer som för- enats i en intim samverkan, en symbios. Just symbios har varit ett fram- gångsrecept för många grupper av organismer. Men ofta har den varit mind- re ”intim” än den nästan totala integrering som skett i våra celler. Andra

22 exempel på symbioser som har nyckelfunktioner på global nivå är samver- kan mellan växter och svampar, i så kallad mykorrhiza; mellan växter och cyanobakterier; och mellan alger och koralldjur. Lavarna är symbiotiska processer som vi finner i naturen. Det dröjde länge innan vi insåg att det också här rör sig om en symbios, lavarna är utse- endemässigt karaktäristiska och de ingående parterna är så väl integrerade att först en noggrann undersökning avslöjar att flera, radikalt olika organismer är inblandade. Det vi kallar lavar har alltid (minst) en svamp som deltagare, och vidare minst en alg eller cyanobakterie. Det är alltså högst olika orga- nismgrupper med väldigt olika utvecklingshistorier och färdigheter som samverkar! Lavsymbiosen omfattar kanske oftast två kontrahenter, men andra stabila kombinationer omfattar ofta t.ex. en svamp, en alg och en cya- nobakterie. Även mer komplicerade konfigurationer är kända, med t.ex. yt- terligare kommensalistiska eller icke-patogena svampar inblandade.

Ristafallet, Jämtland

För att förstå lavarnas ekologi och utveckling måste vi alltså förstå hur de processer som påverkar deras kortsiktiga överlevnadschanser i olika miljöer och, långsiktigt, hur deras evolution fungerar både med hänsyn till de ingå- ende komponenterna såväl som hela systemet/processen.

Att namnge lavar Lavarna är alltså inte vad de kanske synes vara, men vi envisas med att vilja förstå dem och namnge dem som andra organismer. En konvention för namngivningen är att det formell är den ingående svampen som bär lavens namn. En annan är att om en art getts flera namn det äldsta i allmänhet är det accepterade. Ett stabilt namnbruk är viktigt för att vi skall kunna kommuni- cera om olika arter av betydelse, t.ex. arter som är skadegörare eller viktiga biologiska indikatorarter på miljöstatus. Kring detta finns ett regelverk för

23 namngivning sanktionerat i den Internationella Koden för Botanisk Nomen- klatur.

Vi vet faktiskt inte så mycket…

En första förutsättning för att kunna benämna organismer är ju dock att vi känner dem väl. Växter och djur i Sverige har varit välkända och beskrivna av biologer på ett systematiskt sätt i synnerhet under tiden efter Linné, och vår flora och fauna är nu mycket välkänd. Med alger och i synnerhet svam- par – inklusive lavar - förhåller det sig mycket annorlunda. Vi är fortfarande i en utforskningsfas, och ett storartat projekt med publikationsserien ’Natio- nalnyckeln’, har initierats för att beskriva alla mångcelliga organismer i Sve- rige. Inom detta projekt har grupper som är särskilt dåligt kända identifierats, och för några av dem har forskningsanslag givits för att förbättra kännedo- men. Detta avhandlingsarbete har finansierats av ett sådant anslag till projek- tet “Taxonomisk revision av släktet Polyblastia i Sverige”.

Henrica melaspora

Bakgrunden till att resurser satsats på att försöka kartlägga denna lav- grupp är att inom Verrucariaceae, den familj Polyblastia hör till, arterna sedan länge betraktats som näst intill omöjliga att känna igen och på ett ra- tionellt sätt avgränsa. Dom är inte bara små och fula (jo, jag måste erkänna det!), de är också många och morfologiskt mycket variabla. Följaktligen har de ganska konsekvent undvikits av lavsystematiker under det senaste halv- seklet, och i Sverige publicerades den senaste kritiska granskningen av släk- tet Polyblastia för 130 år sedan! Läget för att kunna erhålla en bättre förståelse av den här gruppen har nu emellertid radikalt förbättrats eftersom vi numera till en relativt rimlig inve- stering i tid och pengar kan ösa ur det hav av information som organismernas arvsmassa, DNA, innehåller. Det är främst genom att utnyttja denna infor-

24 mation, samt genom omfattande fältstudier och studier av arternas morfolo- giska variation som de här redovisade framstegen kunnat göras.

Släktskapsförhållanden inom familjen Verrucariaceae

Medan avgränsningen av familjen Verrucariaceae har varit ganska klar, har släktavgränsningen inom familjen sedan länge erkänts som ytterst problema- tisk. Familjen är ganska stor med cirka 750 arter och 45 släkten. Ett antal släkten beskrevs redan för mer än hundra år sedan, och grundades på vad som då var den senaste teknologin erbjöd; noggranna ljusmikroskopiska studier, framför allt av sporernas utseende. Sporernas struktur, tillsammans med bålens morfologi, blev grundstenen i den släktavgränsning som kommit att råda intill idag. Under de senaste femtio åren har många lavforskare kännt otillfredsställelse med dessa släkten och misstänkt att de inte motsvarat na- turliga (monofyletiska) grupper, d.v.s. samlat arter närmast släkt med var- andra. I artikel I har molekylär information använts för att förstå, dels vilka na- turliga grupper närbesläktade med Polyblastia som finns inom Verrucariaca- eae, dels för att undersöka om Polyblastia är monofyletiskt. Svaret på den senare frågan blev ett mycket klart nej, men samtidigt kunde en mindre grupp arter urskiljas som den kärna för vilket namnet Polyblastia fortfarande kan användas. Arbetet skedde i samband med en undersökning av släktsam- banden inom Verrucariaceae vid Duke University i USA ledd av Cécile Gue- idan, som startats parallellt med detta projekt. Ett annat resultat av undersök- ningarna i artikel I var att ett antal andra naturliga grupper hittades. Sam- mantaget innebar detta att de släkten som tidigare har använts måste ges en ny innebörd, och flera naturliga grupper, som inte tidigare hittats, bör upp- märksammats genom att de betraktas som särskilda släkten. Genom de nya insikter om släktsamband som framkommit genom Cécile Gueidans (Duke University) och mina undersökningar framstod behovet av en genomgripande revision av släktsystematiken inom Verrucariaceae klart. Vi tog därför initiativet till att organisera en workshop om Verrucariaceae, vilket ägde rum på Island i juni 2007 vid Akureyri Natural History Museum, med Starri Heiðmarsson som värd. Där samlades de flesta aktiva forskarna intresserade av Verrucariaceae och enades om att gemensamt skriva en upp- sats som skulle kunna integrera den nya kunskapen om släktskap inom fa- miljen med morfologiska data, samt att i denna föreslå en ny klassifikation.

25

Författarkollektivet till artikel III (de flesta) Från vänster, övre raden: Hörður Kristinsson, Maria Prieto, Alan Orange, Sanja Savi, Juha Pykälä, Lars Fröberg; nedre raden: Leif Tibell, Cécile Gueidan, Starri Heiðmarsson, Beata Krzewicka, Christine Keller, Holger Thüs, François Lutzoni

Detta har resulterat i artikel III, vilken som författare har flertalet av del- tagarna vid mötet i Akureyri. Publicerandet av denna artikel har samordnats av Cécile Gueidan, men jag har genom artiklarna I och II, och genom att skriva delar av artikeln gett viktiga bidrag. Här presenteras många nya idéer om släktskap och klassifikation inom Verrucariaceae. Flertalet släkten, sär- skilt bland de mest välbekanta, som t.ex. Polyblastia, Thelidium, Staurothele och Verrucaria, har getts en ny omskrivning (se också artikel I). Som ex- empel kan det kanske synas chockerande att släktet Verrucaria, som tidigare ansetts vara familjens största med cirka 300 arter, numera endast omfattar en art! Släkten som tidigare inte erkänts accepteras nu sedan de visats vara na- turliga på basis av molekylära data, t.ex. Sporodictyon (närmare behandlat i artikel II), Trimmatothele (först visat i artikel I), eller varit mycket dåligt kända, t.ex. Henrica, som behandlats inom mitt avhandlingsarbete.

Revision av Sporodictyon

En av de naturliga grupper som på molekylär basis hittades under arbetet med artikel I innehåller typen för släktet Sporodictyon, ett släkte som be- skrevs redan 1852. I artikel I accepteras Sporodictyon, och i artikel II be- handlas det i detalj. Artavgränsningen inom släktet har varit problematisk, eftersom den morfologiska variationen är stor, men efter studier av tre olika regioner av arternas DNA kunde fem distinkta arter urskiljas. Tre av dessa var redan tidigare beskrivna: S. cruentum, S. schaererianum och S. terrestris. Efter undersökningar av typmaterial visade sig ett flertal namn vara syno- nymer till dessa. Dessutom hittades två för vetenskapen tidigare okända ar- ter. Sporodictyon arcticum förekommer i Arktis och S. minutum är hittills

26 endast känd från Skandinavien. Artikeln är baserad på ett omfattande materi- al från fältarbete och herbarier, och innehåller detaljerad information om arternas morfologi, ekologi och utbredning. Det visade sig att det namn som oftast använts i litteraturen för en Sporodictyon-art, (‘Polyblastia theleo- des’), felaktigt har använts för S. schaererianum.

Ett nytt släkte, Atla

För en annan naturlig grupp som uppmärksammats redan i artikel I finns inget namn att tillgå. Följaktligen beskrevs släktet Atla som nytt för veten- skapen (artikel IV). Tidigare har bara en art som kan inkluderas i detta släk- te varit känd, A. wheldonii. Denna art, som beskrevs från England och även är känd från Pyrenéerna och Österrike, hittades under fältarbetet på ett flertal lokaler i Skandinavien. Dessutom hittades tre arter, som efter DNA-studier visat sig tillhöra samma naturliga grupp, A. alpina, A. palicei och A. praetermissa, alla nya för vetenskapen. I de molekylära studierna visade sig Atla vara närmast släkt med Sporodictyon. En av arterna, Atla alpina, har ganska stora fruktkroppar och en del material insamlat alltsedan 1800-talet hittades i olika herbarier. Arten har förväxlats med Sporodictyon schaererianum, och således förbi- setts. Artikel IV innehåller även detaljerad information om arternas morfo- logi, ekologi och utbredning.

27 Om ett och annat - annat…

En del aspekter, som varit viktiga i mitt avhandlingsarbete står inte i artik- larna! Mötena med de här små lavarna har varit förknippade med stora na- turupplevelser. Det är inte en slump att viktiga insamlingslokaler varit Tänn- forsen, Ristafallet, Handölan, Abiskojokk, Målselvsfossen (Norges ‘Natio- nalfoss’!), Grönland och Goðafoss på Island. Namn med poetisk lyster.

Och det fantastiska namnlösa vattenfallet vid Tverreleven i Troms!

Dessa är inte bara svindlande vackra platser utan de härbärgerar också en mycket rik biologisk mångfald, inte minst bland lavarna, med flera mycket sällsynta och också ofta rödlistade och hotade arter. Många av dem är bero- ende av en kalkhaltig berggrund i kombination med hög och jämn fuktighet, t.ex. genom forsdimmor, och givetvis av en av mänskliga ingrepp oskadad miljö, särskilt då frånvaro av vattenreglering. De arter som avhandlats här finns inte på några rödlistor. Ännu. Men många av dem förtjänar säkert en plats där. Nu har vi kunskapsunderlaget för att börja ta reda på tillståndet för dessa arter. Och därmed också ta vårt ansvar för dem och de platser där de finns.

28 Acknowledgements – Tack –Zahvala – Hvala

I am sitting at my red painted working desk at home, looking through the window; many vivid memories coming out, warming my heart. So, the time for my thesis defence is approaching. I have met many people during my PhD path, which helped me in one way or another, enriching my life, adding quality to it, offering thoughts, provoking my interest and challenging some ideas. When I am thinking about the choices which brought me to this point - and why I am into biology at all, being the black sheep in my family - I think of my professor of biology in the primary school in Ljubljana. He is the one to blame! He managed to trigger my interest in biology in such a way that, when I was sitting at the stairs of the University in Belgrade, my choice of faculty was guided with the thought that biology really is something I can do all my life. And also something I would continue to be challenged by and enjoy. The same was true when I saw the advertisement for a PhD position, which after a few months brought me to Uppsala. Dragi moji roditelji, Gorane, moj dragi bato, bez vaše ljubavi i podrške moj boravak u Uppsali ne bi bio mogu. Nedostajali ste mi i u isto vreme bili moja snažna podrška – hvala vam od srca!!! Leif, thank you very much for being my supervisor during my PhD study period! Your critical way of thinking, good observations and knowledge helped me a lot when I was trying to cope with these small inconspicuous objects. I wouldn’t succeed to cut the Gordian knot(s) without the discus- sions we have had, and your sharp-eyed comments on enigmatic material. I have learnt so much from you! I would like to thank Mats Thulin, Bengt Oxelman, Katarina Andreasen, Sandra Baldauf and Niklas Wikström (thanks for comments on ‘kappan’) for reading/valuable comments on manuscripts for my thesis! Mats a special thank for commenting on all my papers in every little detail! Stefan Ekman thanks for helpful comments on my second paper. To my present (and former) fellow students and post-docs: Andreas, Anja, Anneleen, Catarina, Donatha, Il-Chan, Hugo, Karolina, Mattias, Samira, Sunniva (heja! finishing team, from Andreas to Sunniva – per as- pera ad astra - all the best with your theses!), Annika, Björn-Axel, Božo,

29 Cajsa, Christina (thanks for Gotland, good comments on ‘kappan’!), Dick, Doug, Elisabeth, Frida, Hege, Heidi, Henrik, Jesper, Johan, Johannes, Kat- inka, Kristina, Magnus, Maria, Per E., Per K., Rikke, Sylvain, Yonas, Åsa… with your interesting personalities, comments, discussions, smiles... thanks a lot for being an important part of my PhD world!! Božo, posebej pa tebi, veliko hvala za prijetno druženje, smeh in pogovore! Catarina, I will never forget Kolmården and your brave drive through the Safari park (I have a problem with bears!), Öland, Runmarö, Sri-Lanka, Stockholm and your welcoming family, which made me to feel at home. Thanks! Nahid, with your competence, patient and interest to keep everything in the lab going, you have been of great help! Thanks Afsaneh, Agneta and Ulla (for dealing with the complicated paper- and economy world); help regarding computers I got from Stefan, Mikael and Håkan; thanks! An important part of my professional life in Uppsala is connected with the lichen-mycology group, and the Herbarium. Anders thanks a lot for all your help; your knowledge of Latin is much appreciated (and thanks for providing the Latin diagnoses). Roland thanks for your support, Barbro for help with customs regulations and loans! Tobias, Måns, Ave, Zdenk, Starri, Björn, Anders (again), Tassilo, Ekaterina; thanks for the lichen specimens you have sent to me! Moj dolazak u Uppsalu 2003. godine ne bi bio mogu bez podrške, koju sam dobila iz Prirodnjakog muzeja u Beogradu. Dr Vasiu, hvala vam na razumevanju i slaganju da odem u Uppsalu. Dragi moji prijatelji i muzealci: Duda, Olja, Saška, Mileva (moje drugarice, hvala Vam na svemu!), Boris, Miroslav, Marjan….. sjajni ste!! We met in Tartu, Cécile, at the IAL meeting, and realized that partly we were on the same track towards understanding the Verrucariaceae. With your visit to Uppsala in 2005 we suddenly got it going, and all since our emails have ping-ponged at all times of the day, back and forth, back and forth. You have been a very encouraging sparring-partner, and our cooperation (to- gether with François) has been very stimulating, productive and pleasant. Thanks!!! François, thanks also for your support to this project and for your diplomatic navigation in Iceland to get paper III afloat! And thanks to you all, participants of the Verrucariaceae workshop in Akureyri 2007 (you are there, on a picture, in the Swedish summary), for joining the project on the generic classification of Verrucariaceae - and special thanks to Starri and Hörður for hosting the meeting and organizing a most wonderful and pro- ductive time in Iceland! Verrucariaceae will never be the same.....

Till sist ett STORT tack till Artdatabanken för att ha finansierat och där- igenom möjliggjort min forskning!

30 References

Amtoft, A. 2006. A treatment of the lichen genus Dermatocarpon (Verrucariaceae) in the Ozarks based on morphological, molecular and ecological studies. Master thesis. New York Botanical Garden. Amtoft, A., Lutzoni, F. & Miadlikowska, J. 2008. Dermatocarpon (Verrucari- aceae) in the Ozark Highlands, North America. Bryologist 111: 1--40. Breuss, O. 2002. The Lichen Genus Henrica (Verucariaceae) New to America. The Bryologist 105: 398—399. Clement, M., Posada, D. & Crandall, K.A. 2000. TCS: a computer program to estimate gene genealogies. Molecular Ecology 9(10): 1657--1660. Eriksson, O.E. 2006. Outline of Ascomycota - 2006. Myconet 12: 1--82. Ertz, D. & Diederich, P. 2004. Revision of Trimmatothele (Verrucariaceae), and description of Oevstedalia for antarctica, a new lichen genus with true ascoconidia. Mycological Progress 3: 229--236 Geiser, D.M., Gueidan, C., Miadlikowska, J., Lutzoni, F., Kauff, F., Hofstetter, V., Fraker, E., Schoch, C., Tibell, L., Untereiner, W.A. & Aptroot, A. 2006. Eurotiomycetes: Eurotiomycetidae and Chaetothyriomycetidae. Mycologia 98: 1054--1065. Grube, M. & Kroken, S. 2000. Molecular approaches and the concept of species and species complexes in lichenized fungi. Mycological Research 104(11): 1284--1294. Gueidan, C., Roux, C. & Lutzoni, F. 2007. Using a multigene phylogenetic analy- sis to assess generic delineation and character evolution in Verrucariaceae (Ver- rucariales, Ascomycota). Mycological Research 111: 1147--1170. Halda, J. 2003. A taxonomic study of the calcicolous endolithic species of the ge- nus Verrucaria (Ascomycotina, Verrucariales) with the lid-like and radiately opening involucrellum. Acta Mus. Richnov., Sect. Nat. 10: 1--148. Hawksworth, D.L., Kirk, P.M., Sutton, B.C. & Pegler, D.N. 1995. Dictionary of the Fungi, 8th edition. CAB International, Wallingford, U.K. Heiðmarsson, S. 1996. Pruina as a taxonomic character in the lichen genus Derma- tocarpon. The Bryologist 99: 315--320. Heiðmarsson, S. 2003. Molecular study of (Verrucaria- les) and allied taxa. Mycological Research 107: 459--468. Hibbett, D.S., Binder, M., Bischoff, J.F., Blackwell, M., Cannon, P.F., Eriksson, O., Huhndorf, S., James, T., Kirk, P.M., Lücking, R., Lumbsch, T., Lut- zoni, F., Matheny, P.B., Mclaughlin, D.J., Powell, M.J., Redhead, S., Schoch, C.L., Spatafora, J.W., Stalpers, J.A., Vilgalys, R., Aime, M.C., Ap- troot, A., Bauer, R., Begerow, D., Benny, G.L., Castlebury, L.A., Crous, P.W., Dai, Y.-C., Gams, W., Geiser, D.M., Griffith, G.W., Gueidan, C., Hawksworth, D.L., Hestmark, G., Hosaka, K., Humber, R.A., Hyde, K., Kõljalg, U., Kurtzman, C.P., Larsson, K.-H., Lichtwardt, R., Longcore, J., Miadlikowska, J., Miller, A., Moncalvo, J.-M., Mozley-Standridge, S., Oberwinkler, F., Parmasto, E., Reeb, V., Rogers, J.D., Roux, C., Ryvarden,

31 L., Sampaio, J.P., Schuessler, A., Sugiyama, J., Thorn, R.G., Tibell, L., Untereiner, W.A., Walker, C., Wang, Z., Weir, A., Weiss, M., White, M., Winka, K., Yao & Y.-J. & Zhang, N. 2007. A higher-level phylogenetic clas- sification of the Fungi. Mycological Research 111: 509--547. Huson, D.H. & Bryant, D. 2006. Application of Phylogenetic Networks in Evolu- tionary Studies. Molecular Biology and Evolution 23(2): 254--267. Kirk, P.M., Cannon, P.F., David, J.C. & Stalpers, J.A. (Eds) 2001. Ainsworth & Bisby's Dictionary of the Fungi. 9th edition. CAB International, Wallingford, Oxon. Liu, Y. & Hall, B.D. 2004. Body plan evolution of ascomycetes, as inferred from an RNA polymerase II phylogeny. Proceedings of the National Academy of Sci- ences of the United States of America 101: 4507–4512. Lumbsch, H.T. Wirtz, N., Lindemuth, R. & Schmitt, I. 2002. Higher level phy- logenetic relationships of euascomycetes (Pezizomycotina) inferred from a combined analysis of nuclear and mitochondrial data. Mycological Progress 1: 57–70. Lumbsch, H.T., Schmitt, I., Palice, Z., Wiklund, E., Ekman, S. & Wedin, M. 2004. Supraordinal phylogenetic relationships of based on a Bayesian analysis of combined nuclear and mitochondrial sequences. Molecular Phylogenetics and Evolution 31: 822–832. Lumbsch, H.T., Schmitt, I., Lindemuth, R., Miller, A., Mangold, A., Fernandez, F. & Huhndorf, S. 2005. Performance of four ribosomal DNA regions to infer higher-level phylogenetic relationships of inoperculate euascomycetes (Leotio- myceta). Molecular Phylogenetics and Evolution 34: 512–524. Lutzoni, F., Pagel, M. & Reeb, V. 2001. Major fungal lineages are derived from lichen symbiotic ancestors. Nature 411: 937-940. Lutzoni, F., Kauff, F., Cox, C., McLaughlin, D., Celio, G., Dentinger, B., Padamsee, M., Hibbett, D., James, T., Baloch, E., Grube, M., Reeb, V., Hof- stetter, V., Schoch, C., Arnold, A.E., Miadlikowska, J., Spatafora, J., John- son, D., Hambleton, S., Crockett, M., Shoemaker, R., Sung, G.H., Lücking, R., Lumbsch, T., O’Donnell, K., Binder, M., Diederich, P., Ertz, D., Guei- dan, C., Hansen, K., Harris, R.C., Hosaka, K., Lim, Y.W., Matheny, B., Ni- shida, H., Pfister, D., Rogers, J., Rossman, A., Schmitt, I., Sipman, H., Stone, J., Sugiyama, J., Yahr, R. & Vilgalys, R. 2004. Assembling the fungal tree of life: Progress, classification, and evolution of subcellular traits. American Journal of Botany 91: 1446--1480. Navarro-Rosinés, P. & Hladun, N.L. 1992. Henrica ramulosa B. de Lesd. (Verru- cariaceae, líquenes) en los Pirineos del Valle de Arán. Cryptog. Bryol. Lichénol. 13: 125--131. Nimis, P.L. 1998. A critical appraisal of modern generic concepts in lichenology. The Lichenologist 30: 427--438. Sanders, W.B. 2001. Lichens: interface between mycology and plant morphology. Bioscience 51: 1025-1035. Spatafora, J.W., Sung, G.H., Johnson, D., O’Rourke, B., Serdani, M., Spotts, R., Lutzoni, F., Hofstetter, V., Miadlikowska, J., Reeb, V., Gueidan, C., Fraker, E., Lumbsch, T., Lücking, R., Schmitt, I., Hosaka, K., Aptroot, A., Roux, C., Miller, A., Geiser, D., Hafellner, J., Hestmark, G., Arnold, A.E., Büdel, B., Rauhut, A., Hewitt, D., Untereiner, W.A., Cole, M.S., Scheideg- ger, C., Schultz, M., Sipman, H. & Schoch, C. 2006. A five-gene phylogeny of Pezizomycotina. Mycologia 98(6): 1018--1028.

32 Stamatakis, A., Ludwig, T. & Meier, H. 2005. RAxML-iii: A fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics 21: 456–463. Stiller, J.W. & Hall, B.D. 1997. The origin of red algae: Implications for plastid evolution. Proceedings of the National Academy of Sciences of the United States of America 94: 4520–4525. Swofford, D.L. 2002. PAUP: Phylogenetic Analysis Using Parsimony (and Other Methods), vers. 4.0b10. Sinuaer, Sunderland. Tibell, L. 1998. Practice and prejudice in lichen classification. The Lichenologist 30: 439-453. Zahlbruckner, A. 1903-1908. Lichenes, Spezieller Teil. Pp. 49--249 in: Engler, A., Prantl, K. (eds), Die Natürlichen Pflanzenfamilien. Abt.1, t.1. Engelmann, Leip- zig. Zahlbruckner, A. 1926. Lichenes, Spezieller Teil. Pp. 61--270 in: Engler, A., Prantl, K. (eds), Die Natürlichen Pflanzenfamilien, band 8, ed. 2. Engelmann, Leipzig.

33 Acta Universitatis Upsaliensis Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 370

Editor: The Dean of the Faculty of Science and Technology

A doctoral dissertation from the Faculty of Science and Technology, Uppsala University, is usually a summary of a number of papers. A few copies of the complete dissertation are kept at major Swedish research libraries, while the summary alone is distributed internationally through the series Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology. (Prior to January, 2005, the series was published under the title “Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology”.)

ACTA UNIVERSITATIS UPSALIENSIS Distribution: publications.uu.se UPPSALA urn:nbn:se:uu:diva-8326 2007