<<

The Field

Light field = radiance function on rays Surface and field radiance Conservation of radiance Measurement from area sources Measuring rays Form factors and throughput Conservation of throughput

From London and Upton

CS348B Lecture 5 Pat Hanrahan, 2004

Light Field = Radiance(Ray)

Page 1 Incident Surface Radiance

Definition: The incoming surface radiance () is the power per unit per unit projected area arriving at a receiving surface dω dA dx2Φ (,ω ) Lx(,ω )≡ i i ddAωi

CS348B Lecture 5 Pat Hanrahan, 2004

Exitant Surface Radiance

Definition: The outgoing surface radiance (luminance) is the power per unit solid angle per unit projected area leaving at surface dω dA dx2Φ (,ω ) Lx(,ω )≡ o o ddAωi

Alternatively: the per unit projected area leaving a surface

CS348B Lecture 5 Pat Hanrahan, 2004

Page 2 Field Radiance

Definition: The field radiance (luminance) at a point in space in a given direction is the power per unit solid angle per unit area perpendicular to the direction

dω dA Lx(,ω )

CS348B Lecture 5 Pat Hanrahan, 2004

Environment Maps

L(,θ ϕ )

Miller and Hoffman, 1984

CS348B Lecture 5 Pat Hanrahan, 2004

Page 3 Spherical Gantry ⇒ Light Field

Lxy(,,,θ ϕ ) (,θ ϕ )

Capture all the light leaving an object - like a hologram

CS348B Lecture 5 Pat Hanrahan, 2004

Two-Plane Light Field

2D Array of Cameras 2D Array of Images L(,,,)uvst CS348B Lecture 5 Pat Hanrahan, 2004

Page 4 Multi-Camera Array ⇒ Light Field

CS348B Lecture 5 Pat Hanrahan, 2004

Properties of Radiance

Page 5 Properties of Radiance

1. Fundamental field quantity that characterizes the distribution of light in an environment. ∴ Radiance is a function on rays ∴ All other field quantities are derived from it 2. Radiance invariant along a ray. ∴ 5D ray space reduces to 4D 3. Response of a sensor proportional to radiance.

CS348B Lecture 5 Pat Hanrahan, 2004

1st Law: Conversation of Radiance

The radiance in the direction of a light ray remains constant as the ray propagates

2 2 22 d Φ1 d Φ2 ddΦ12=Φ

dA1 dω1 2 L1 dLddAΦ=1111ω

dω2 dA2 2 L2 dLddAΦ=2222ω r dA dA ddAωω==12 ddA 11r 2 2 2

∴L12= L

CS348B Lecture 5 Pat Hanrahan, 2004

Page 6 Radiance: 2nd Law

The response of a sensor is proportional to the radiance of the surface visible to the sensor.

Ω Aperture A Sensor

RLddALT==∫∫ ω TddA= ∫∫ ω A Ω A Ω

L is what should be computed and displayed. T quantifies the gathering power of the device.

CS348B Lecture 5 Pat Hanrahan, 2004

Quiz

Does the that a wall appears to the sensor depend on the distance?

No!! CS348B Lecture 5 Pat Hanrahan, 2004

Page 7 Irradiance from a Uniform Surface Source

Irradiance from the Environment

2 dxΦ=ii(,ω ) Lx (,ωθ )cos dAd ω Lxi (,ω ) dE( x ,ω )= Li ( x ,ωθω )cos d dω θ

dA E()xLxd= (,ω )cosθω ∫ i H2 CS348B Lecture 5 Pat Hanrahan, 2004

Page 8 Irradiance from an Area Source

A

E()xLd= ∫ cosθ ω H2 Ω = Ld∫cosθ ω Ω =ΩL Ω

CS348B Lecture 5 Pat Hanrahan, 2004

Projected Solid Angle

dω θ

cosθ dω ∫ cosθ dωπ= H2 CS348B Lecture 5 Pat Hanrahan, 2004

Page 9 Uniform Disk Source

Geometric Derivation Algebraic Derivation cosαπ 2 r Ω= ∫∫cosθφdd cosθ 10 cosα α cos2 θ = 2π 2 h 1 = παsin2 sinα r 2 = π rh22+ Ω= π sin2 α

CS348B Lecture 5 Pat Hanrahan, 2004

Spherical Source

Geometric Derivation Algebraic Derivation

r Ω= ∫ cosθ dω R = π sin2 α α r 2 = π R2

Ω= π sin2 α CS348B Lecture 5 Pat Hanrahan, 2004

Page 10 The

Solar constant (normal incidence at zenith) Irradiance 1353 W/m2 Illuminance 127,500 lm/m2 = 127.5 kilolux Solar angle α = .25 degrees = .004 radians (half angle) 22 Ω= π sin απα ≈ = 6 x 10-5 Solar radiance EWm1.353× 1032 / W L == =2.25 × 107 Ω× 610−52sr m ⋅ sr

CS348B Lecture 5 Pat Hanrahan, 2004

Polygonal Source

CS348B Lecture 5 Pat Hanrahan, 2004

Page 11 Polygonal Source

CS348B Lecture 5 Pat Hanrahan, 2004

Polygonal Source

CS348B Lecture 5 Pat Hanrahan, 2004

Page 12 Lambert’s Formula

γ iiN γ i 3

Ai ∑ A1 i=1 −A2

−A3 nn Aiii=•γ NN ∑∑Aiii= γ NN• ii==11

CS348B Lecture 5 Pat Hanrahan, 2004

Penumbras and Umbras

CS348B Lecture 5 Pat Hanrahan, 2004

Page 13 Measuring Rays = Throughput

Throughput Counts Rays

Define an infinitesimal beam as the set of rays intersecting two infinitesimal surface elements

ru(,,112 v u , v 2 )

dA111(,) u v dA222(,) u v

2 dA12 dA dT= 2 x12− x Measure the number of rays in the beam

This quantity is called the throughput

CS348B Lecture 5 Pat Hanrahan, 2004

Page 14 Parameterizing Rays

Parameterize rays wrt to receiver ru(,,,)2222 v θ φ

dω222(,)θφ dA222(,) u v

2 dA1 dT==2 dA222 dω dA xx12−

CS348B Lecture 5 Pat Hanrahan, 2004

Parameterizing Rays

Parameterize rays wrt to source ru(,,,)1111 v θ φ

dA111(,) u v dω111(,)θφ

2 dA2 d T== dA1112 dA dω xx12−

CS348B Lecture 5 Pat Hanrahan, 2004

Page 15 Parameterizing Rays

Tilting the surfaces reparameterizes the rays ru(,, v u , v ) 112 2 dA111(,) u v dA222(,) u v

2 cosθθ12 cos d T= 2 dA12 dA xx12− = ddAω11i = ddAω22i All these throughputs must be equal.

CS348B Lecture 5 Pat Hanrahan, 2004

Parameterizing Rays: S2 × R2

Parameterize rays by rxy(,,,)θ φ ω Projected area A()ω

Measuring the number or rays that hit a shape Td= ∫∫ωθϕ(, ) dAxy (,) SR22 = Ad(,θϕ ) ωθϕ (, ) Sphere: ∫ 22 S2 TA==44ππ R = 4π A

CS348B Lecture 5 Pat Hanrahan, 2004

Page 16 Parameterizing Rays: M2 × S2

Parameterize rays by ruv(,,θφ , ) (,)θφ   (,)uv TdAuv= (,) cosθ dωθϕ (, ) ∫∫ MH22 ()N  N   S π

22 Sphere: TS==ππ4 R S Crofton’s Theorem: 4ππASA= ⇒= 4

CS348B Lecture 5 Pat Hanrahan, 2004

Form Factors

Page 17 Types of Throughput

1. Infinitesimal beam of rays cosθ cosθ′ d2 T(, dA dA′′ )≡ dA ()() x dA x xx− ′ 2 2. Infinitesimal-finite beam cosθθ cos ′ dT(,) dA A′′ dA≡ dA () x  dA () x ∫ 2 A′ xx− ′ 3. Finite-finite beam cosθ cosθ′ TAA(,′′ )≡ dAxdAx () () ∫∫ 2 AA′ xx− ′

CS348B Lecture 5 Pat Hanrahan, 2004

Probability of Ray Intersection

Probability of a ray hitting A’ given it hits A TAA(,)′ Pr(AA′ | ) = TA() A′ TAA(,)′ = ′ πA dA() x

cosθ cosθ′ TAA(,)′′= dAxdAx () () ∫∫ 2 AA′ xx− ′ A TA()=π A dA() x

CS348B Lecture 5 Pat Hanrahan, 2004

Page 18 Probability of Ray Intersection

cosθ cosθ′ TAA(,)′′= dAxdAx () () ∫∫ 2 AA′ xx− ′ =π Gxx(,)()()′′ dAx dAx A′ ∫∫ AA′ dA() x′

cosθθ cos ′ Gxx(,′ )≡ 2 Vxx (,′ ) π xx− ′ 0 ¬visible A Vxx(,′ )=  1 visible dA() x

CS348B Lecture 5 Pat Hanrahan, 2004

Form Factor

Probability of a ray hitting A’ given it hits A Pr(A′′′′ |ATA ) ( )== Pr( AA | ) TA ( ) TAA ( , ) A′ Form factor definition FAA(,)Pr(|)′′= A A dA() x′ FAA(,′′ )= Pr(| AA )

Form factor reciprocity FAAA(,)′′′= FAAA (,) A TA()=π A dA() x

CS348B Lecture 5 Pat Hanrahan, 2004

Page 19 Form Factor

Power transfer from a constant source Φ=(,AA′′ ) LTAA (, ) TAA(,′ ) = LT() A′ A′ TA()′ dA() x′ =Φ()(,)A′′FAA

A TA()=π A dA() x

CS348B Lecture 5 Pat Hanrahan, 2004

Differential Form Factor

Probability of a ray leaving dA(x) hitting A’ TdAAdA(,)′ TdAAdA (,)′′ TdAA (,) Pr(AdA′ | ) === TdA() ππ dA = ∫Gxx(,′′ ) dAx ( ) A′ A′ dA() x′

dA() x

CS348B Lecture 5 Pat Hanrahan, 2004

Page 20 Form Factor

Power transfer from a constant source ddAALTdAAΦ=(,)′′ (,) TdAA(,)′ = LT() A′ A′ TA()′ dA() x′ =Φ()(,)A′′FdAA

A dA() x

CS348B Lecture 5 Pat Hanrahan, 2004

Radiant Exitance

Definition: The radiant (luminous) exitance is the energy per unit area leaving a surface. dΦ Mx()≡ o dA Wlm  = lux mm22 

In computer graphics, this quantity is often referred to as the (B)

CS348B Lecture 5 Pat Hanrahan, 2004

Page 21 Uniform Diffuse Emitter

M = Ldcosθ ω ∫ o H2 Lo(,x ω ) = L cosθ dω o ∫ H2 dω

= πLo θ

M L = o π dA

CS348B Lecture 5 Pat Hanrahan, 2004

Form Factor

Irradiance from a constant source ddAAΦ=Φ(,)′′ ()(,) AFdAA ′ Φ()A′ = A′FdAA(,)′ A′ A′ = M()(, A′′ F A dA ) dA dA() x′

EdA()= MA ()(,)′′ FAdA

A dA() x

CS348B Lecture 5 Pat Hanrahan, 2004

Page 22 Form Factors and Throughput

Throughput measures the number of rays in a set of rays Form factors represent the probability of ray leaving a surface intersecting another surface „ Only a function of surface geometry Differential form factor „ Irradiance calculations Form factors „ Radiosity calculations (energy balance)

CS348B Lecture 5 Pat Hanrahan, 2004

Conservation of Throughput

„ Throughput conserved during propagation „ Number of rays conserved „ Assuming no attenuation or scattering „ n2 (index of refraction) times throughput invariant under the laws of geometric optics „ at an interface „ Refraction at an interface „ Causes rays to bend (kink) „ Continuously varying index of refraction „ Causes rays to curve; mirages

CS348B Lecture 5 Pat Hanrahan, 2004

Page 23 Conservation of Radiance

Radiance is the ratio of two quantities: 1. Power 2. Throughput

∆Φ∆()Td Φ Lr()== lim ∆→T 0 ∆TdT

Since power and throughput are conserved,

∴ Radiance conserved

CS348B Lecture 5 Pat Hanrahan, 2004

Quiz

Does radiance increase under a magnifying glass?

No!!

CS348B Lecture 5 Pat Hanrahan, 2004

Page 24