A Comprehensive Conceptualization Tool for Agent-Based Social

Total Page:16

File Type:pdf, Size:1020Kb

A Comprehensive Conceptualization Tool for Agent-Based Social An agent-oriented social simulation methodology for institutional driven evolving agents Amineh Ghorbani Faculty of Technology, Policy and Management Delft University of Technology Delft, The Netherlands [email protected] ABSTRACT ture (e.g. [?, ?]). Yet, a generic and formal conceptualiza- A comprehensive conceptualization tool for agent-based so- tion tool would facilitate the reuse and redevelopment of a cial simulation would increase the acceptance of this ap- model, while providing enhanced documentation [?]. proach among the social scientists similar to the exiting In model-driven software development, a conceptual model simulation approaches such as system dynamic and discrete of a system conforms to a meta-model which is a formal de- event modelling. In this research we explore this proposition scription of the set of concepts present in that system [?, to provide an opportunity for the social scientist to access ?]. While there are some meta-models in the ABM and the vast body of research in multi-agent systems area. multi-agent systems (MAS) literature, they are rarely used by others specifically social scientists. There seems to be two major reasons for this. Categories and Subject Descriptors First, the concepts provided by the current meta-models I.2.11 [ Distributed Artificial Intelligence ]: Multiagent are not comprehensive enough to capture the diverse range systems of concepts in a social system. For example, [?] and [?] conceptualize a system with a number of entities including General Terms organization, agent, environment, task, goal and role. How- ever, they do not address social structures such as norms Design, Economics, Theory, Documentation, Languages and culture. Furthermore, they do not fully specify agents: agents take roles, have capabilities and goals, but they are Keywords not decision making entities with their own personal values agent-based social simulation, methodology, conceptualiza- and preferences. In their meta-model, an agent who takes tion, tool support, institutional evolution a role must follow the role specifications and is therefore constrained in behaviour. The second reason we see for meta-models not being used 1. MOTIVATION by others is that the authors provide no visual support for With the advent of simulation platforms, more social sci- conceptualization and, only little guidelines on how to covert entists are becoming aware of the agent-based modelling and a conceptual model to executable code. On the other hand, simulation approach every year. The increase in areas of ap- the MAS literature which supports this process is too tech- plication also results in larger and more sophisticated agent- nical for those who do not have a background in computer based models. science and the concepts are thus not tangible for many so- Building complex agent-based models is a complex process cial scientists. not limited to programming. This is why many researchers provide guidelines on how to build agent-based models (e.g. [?]). The general steps that may be more or less refined by 2. REQUIREMENTS FOR A COMPREHEN- different scientists include model conceptualization/design, SIVE META-MODEL implementation, validation/verification and analysis of data. To conceptualize a social system for agent-based simula- Model conceptualization as part of the process of model de- tion there are two issues that need to be taken into consid- velopment is generally recognized to be an important step eration. in building software models. First, a comprehensive meta-model for the conceptualiza- Conceptualizing a system for the purpose of simulation tion of a social system needs to be comprehensive in terms improves the quality of the software model, allowing mod- of the coverage of social concepts. ellers to better capture, analyse and understand what they The second issue that needs to be taken into account is the are actually modelling [?]. Case-specific model conceptual- applicability and usability of the meta-model for simulation ization appears to be common practice in the ABM litera- by the social scientist. The meta-model should be able to represent entities that are conceptually close to domain ex- Appears in: Proceedings of the 11th International Confer- pert knowledge [?] or a social scientist modeller. Guidelines ence on Autonomous Agents and Multiagent Systems (AA- should facilitate the translation of concepts to executable MAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.), code. Furthermore, modellers would highly appreciate the June, 4–8, 2012, Valencia, Spain. Copyright c 2012, International Foundation for Autonomous Agents and automation of the process of conceptualization to runnable Multiagent Systems (www.ifaamas.org). All rights reserved. model to whatever extent possible. The second issue is that the meta-model should cover as dressed is the implementation of institutional evolution in many concepts in a social system as possible. A meta-model, agent-based social simulations within the MAIA develop- similar to a framework, needs to present different theories of ment tool. In the IAD framework, Ostrom and Crawford [?] human behaviour [?]. This is essential for ABM because not provide a structure for institutional statements that covers all problems can be answered with the same theory. For ex- rules, norms and shared strategies in social systems and a ample, while some models can use rational actors, bounded diversity of other social concepts. Based on this structure, rationality might be required for some other model and rou- we are exploring methods of institutional evolution: emer- tine based problem solving or merely rule following actors gence of new institutions, extinction of old ones and update might be sufficient for yet other models. of institutions by agents. A meta-model for ABM requires a detailed definition of To evaluate this research, we are testing our concepts individuals as the key concept of a social system , their so- and tools with various case studies ( four case studies to cial and physical surroundings, and their operational envi- date). We would also provide an evaluation framework based ronment. Individuals, characterized by their demographic on a set of comparison factors to evaluate and compare properties, preferences, personal values, capabilities and de- this methodology with other agent-based social simulation cision making are highly influenced by the social context methodologies. A evaluative survey will also be conducted they are embedded in. Rules, norms, institutions and cul- to collect the feedback of the current users of MAIA. ture are in fact the necessary preconditions for individual interaction [?]. Nonetheless, individuals are not merely rule 5. REFERENCES followers. They are intelligent entities who, based on their [1] A. Ballinas-Hern´andez, A. Mu~noz-Mel´endez, and individual characteristics, may decide to violate rules under A. Rangel-Huerta. Multiagent system applied to the certain conditions. modeling and simulation of pedestrian traffic in While understanding and explaining individual behaviour counterflow. Journal of Artificial Societies and Social is extremely complex, social rules or institutions are more Simulation, 14(3):2, 2011. elicitable [?]. Therefore, institutions are more feasible to identify and capture by the modellers and have the poten- [2] J. B´ezivin. On the unification power of models. tial to be used as the basis for more complex concepts. In- Software and Systems Modeling, 4(2):171{188, 2005. stitution as a broadly used expression can provide a major [3] S. Crawford and E. Ostrom. A grammar of structure for conceptualizing social systems [?]. The insti- institutions. American Political Science Review, pages tutional analysis and development framework (IAD) is one 582{600, 1995. of the institutional frameworks that provides a collection [4] A. Ghorbani, H. Aldewereld, M. Dignum, and of concepts present in a social system with an institutional P. Noriega. The dutch eat at 5:30 pm:shared strategies perspective [?]. Researchers have successfully used the IAD for agent reasoning. accepted in AAMAS 2012 paper in analysing and designing social systems for many years 249, 2012. providing a broad view of the underlying components. [5] G. Gilbert and K. Troitzsch. Simulation for the social scientist. Open Univ Pr, 2005. 3. A TOOL FOR AGENT-ORIENTED SOCIAL [6] S. Hassan, R. Fuentes-Fern´andez, J. Gal´an, A. L´opez-Paredes, and J. Pav´on. Reducing the SIMULATION modeling gap: On the use of metamodels in In this thesis we base our work on the IAD framework agent-based simulation. In 6th Conference of the and in fact extend and formalize its components to present European Social Simulation Association (ESSA 2009), a meta-model for conceptualizing social systems specifically pages 1{13, 2009. for agent-based social simulation. We aim at addressing all [7] T. Iba, Y. Matsuzawa, and N. Aoyama. From the issues mentioned above in order to provide a compre- conceptual models to simulation models: Model driven hensive conceptualization tool. To facilitate the use of this development of agent-based simulations. In 9th meta-model which we call MAIA (M odelling Agent systems Workshop on Economics and Heterogeneous based on I nstitutional Analysis), we propose a methodology Interacting Agents, 2004. that provides guidelines on how to produce executable code [8] E. Ostrom. Understanding institutional from a conceptualized model. Furthermore, we investigate diversityOstrom2005. Princeton Univ Pr, 2005. how human language can be converted
Recommended publications
  • A Primer on Complexity: an Introduction to Computational Social Science
    A Primer on Complexity: An Introduction to Computational Social Science Shu-Heng Chen Department of Economics National Chengchi University Taipei, Taiwan 116 [email protected] 1 Course Objectives This course is to enable the students of social sciences to have some initial experiences of computational modeling of social phenomena or social processes.In this regard, it severs as the beginning course for preparing students of social sciences to have computational thinkingof social phenomena.On the other hand, the course is also to serve as a beginning course for the students of computer science or students with a strong taste for program- ming andmodeling who are, however, very curious of social phenomena, and want to see whether they can develop their talents in the axis of social sciences. 2 Course Description National Chengchi University is internationally well-known for its social sciences, but what are the natures of social sciences, and, to what extent, do they differ from sciences? Are these differences fundamentally or just superficially? The current social sciences are divided into economics, business, management, political sciences, sociology, psychology, public administration, anthropology, ethnology, religion, geography, law, international relations, etc. Is this division necessary, logical? When a social phenomenon is presenting itself to us, such as populism, polarization, segregation, racism, exploitation, injustice, global warming, income inequality, social exclusiveness or inclusiveness, green energy promotion, anti-gouging legislation, riots, tuition freeze, mass media regulation, finan- cial crisis, nationalism, globalization, will it identify itself: to which sister discipline it belongs? Economics? Psychology? Ethnology? If the purpose of social sciences is to enhance our understanding (harness) of social phenomena, and hence to enable us to develop a good conversation quality among cit- izens of the society from which the social phenomena emerge, then we probably need to promote good conversations among social scientists first.
    [Show full text]
  • Varieties of Emergence
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/228792799 Varieties of emergence Article · January 2002 CITATIONS READS 37 94 1 author: Nigel Gilbert University of Surrey 364 PUBLICATIONS 9,427 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Consumer Behavior View project Agent-based Macroeconomic Models: An Anatomical Review View project All content following this page was uploaded by Nigel Gilbert on 19 May 2014. The user has requested enhancement of the downloaded file. 1 VARIETIES OF EMERGENCE N. GILBERT, University of Surrey, UK* ABSTRACT** The simulation of social agents has grown to be an innovative and powerful research methodology. The challenge is to develop models that are computationally precise, yet are linked closely to and are illuminating about social and behavioral theory. The social element of social simulation models derives partly from their ability to exhibit emergent features. In this paper, we illustrate the varieties of emergence by developing Schelling’s model of residential segregation (using it as a case study), considering what might be needed to take account of the effects of residential segregation on residents and others; the social recognition of spatially segregated zones; and the construction of categories of ethnicity. We conclude that while the existence of emergent phenomena is a necessary condition for models of social agents, this poses a methodological problem for those using simulation to investigate social phenomena. INTRODUCTION Emergence is an essential characteristic of social simulation. Indeed, without emergence, it might be argued that a simulation is not a social simulation.
    [Show full text]
  • Self-Regulation Via Neural Simulation
    Self-regulation via neural simulation Michael Gileada,b,1, Chelsea Boccagnoa, Melanie Silvermana, Ran R. Hassinc, Jochen Webera, and Kevin N. Ochsnera,1 aDepartment of Psychology, Columbia University, New York, NY 10027; bDepartment of Psychology, Ben-Gurion University of the Negev, Be’er Sheva 8410501, Israel; and cDepartment of Psychology, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel Edited by Marcia K. Johnson, Yale University, New Haven, CT, and approved July 11, 2016 (received for review January 24, 2016) Can taking the perspective of other people modify our own affective Although no prior work has addressed these questions, per se, responses to stimuli? To address this question, we examined the the literatures on emotion regulation (1, 5–11) and perspective- neurobiological mechanisms supporting the ability to take another taking (12–18) can be integrated to generate testable hypotheses. person’s perspective and thereby emotionally experience the world On one hand, research on emotion regulation has shown that as they would. We measured participants’ neural activity as they activity in lateral prefrontal cortex (i.e., dorsolateral prefrontal attempted to predict the emotional responses of two individuals that cortex and ventrolateral prefrontal cortex) and middle medial differed in terms of their proneness to experience negative affect. prefrontal cortex (i.e., presupplementary motor area, anterior Results showed that behavioral and neural signatures of negative ventral midcingulate cortex, and anterior dorsal midcingulate affect (amygdala activity and a distributed multivoxel pattern reflect- cortex) (19) supports the use of cognitive strategies to modulate ing affective negativity) simulated the presumed affective state of activity in (largely) subcortical systems for triggering affective the target person.
    [Show full text]
  • Theory Development with Agent-Based Models 1
    Running head: THEORY DEVELOPMENT WITH AGENT-BASED MODELS 1 Theory Development with Agent-Based Models Paul E. Smaldino Johns Hopkins University Jimmy Calanchini University of California, Davis Cynthia L. Pickett University of California, Davis In press at Organizational Psychology Review Running head: THEORY DEVELOPMENT WITH AGENT-BASED MODELS 2 Abstract Many social phenomena do not result solely from intentional actions by isolated individuals, but rather emerge as the result of repeated interactions among multiple individuals over time. However, such phenomena are often poorly captured by traditional empirical techniques. Moreover, complex adaptive systems are insufficiently described by verbal models. In this paper, we discuss how organizational psychologists and group dynamics researchers may benefit from the adoption of formal modeling, particularly agent-based modeling, for developing and testing richer theories. Agent-based modeling is well-suited to capture multi-level dynamic processes and offers superior precision to verbal models. As an example, we present a model on social identity dynamics used to test the predictions of Brewer’s (1991) optimal distinctiveness theory, and discuss how the model extends the theory and produces novel research questions. We close with a general discussion on theory development using agent-based models. Keywords: group dynamics, agent-based modeling, formal models, optimal distinctiveness, social identity Running head: THEORY DEVELOPMENT WITH AGENT-BASED MODELS 3 Introduction "A mathematical theory may be regarded as a kind of scaffolding within which a reasonably secure theory expressible in words may be built up. ... Without such a scaffolding verbal arguments are insecure." – J.B.S. Haldane (1964) There are many challenges that face group dynamics researchers.
    [Show full text]
  • Modeling Memes: a Memetic View of Affordance Learning
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations Spring 2011 Modeling Memes: A Memetic View of Affordance Learning Benjamin D. Nye University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Artificial Intelligence and Robotics Commons, Cognition and Perception Commons, Other Ecology and Evolutionary Biology Commons, Other Operations Research, Systems Engineering and Industrial Engineering Commons, Social Psychology Commons, and the Statistical Models Commons Recommended Citation Nye, Benjamin D., "Modeling Memes: A Memetic View of Affordance Learning" (2011). Publicly Accessible Penn Dissertations. 336. https://repository.upenn.edu/edissertations/336 With all thanks to my esteemed committee, Dr. Silverman, Dr. Smith, Dr. Carley, and Dr. Bordogna. Also, great thanks to the University of Pennsylvania for all the opportunities to perform research at such a revered institution. This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/336 For more information, please contact [email protected]. Modeling Memes: A Memetic View of Affordance Learning Abstract This research employed systems social science inquiry to build a synthesis model that would be useful for modeling meme evolution. First, a formal definition of memes was proposed that balanced both ontological adequacy and empirical observability. Based on this definition, a systems model for meme evolution was synthesized from Shannon Information Theory and elements of Bandura's Social Cognitive Learning Theory. Research in perception, social psychology, learning, and communication were incorporated to explain the cognitive and environmental processes guiding meme evolution. By extending the PMFServ cognitive architecture, socio-cognitive agents were created who could simulate social learning of Gibson affordances.
    [Show full text]
  • Manifesto of Computational Social Science R
    Manifesto of computational social science R. Conte, N. Gilbert, G. Bonelli, C. Cioffi-Revilla, G. Deffuant, J. Kertesz, V. Loreto, S. Moat, J.P. Nadal, A. Sanchez, et al. To cite this version: R. Conte, N. Gilbert, G. Bonelli, C. Cioffi-Revilla, G. Deffuant, et al.. Manifesto of computational social science. The European Physical Journal. Special Topics, EDP Sciences, 2012, 214, p. 325 - p. 346. 10.1140/epjst/e2012-01697-8. hal-01072485 HAL Id: hal-01072485 https://hal.archives-ouvertes.fr/hal-01072485 Submitted on 8 Oct 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Eur. Phys. J. Special Topics 214, 325–346 (2012) © The Author(s) 2012. This article is published THE EUROPEAN with open access at Springerlink.com PHYSICAL JOURNAL DOI: 10.1140/epjst/e2012-01697-8 SPECIAL TOPICS Regular Article Manifesto of computational social science R. Conte1,a, N. Gilbert2, G. Bonelli1, C. Cioffi-Revilla3,G.Deffuant4,J.Kertesz5, V. Loreto6,S.Moat7, J.-P. Nadal8, A. Sanchez9,A.Nowak10, A. Flache11, M. San Miguel12, and D. Helbing13 1 ISTC-CNR, Italy 2 CRESS, University
    [Show full text]
  • Mechanistic Models in Computational Social Science
    Mechanistic Models in Computational Social Science Petter Holme1*, Fredrik Liljeros2 1 Department of Energy Science, Sungkyunkwan University, 440-746 Suwon, Korea 2 Department of Sociology, Stockholm University, 10961 Stockholm, Sweden * Correspondence: Petter Holme, [email protected] Abstract Quantitative social science is not only about regression analysis or, in general, data in- ference. Computer simulations of social mechanisms have an over 60 years long his- tory. Tey have been used for many diferent purposes—to test scenarios, to test the consistency of descriptive theories (proof-of-concept models), to explore emergent phe- nomena, for forecasting, etc. In this essay, we sketch these historical developments, the role of mechanistic models in the social sciences and the infuences from the natural and formal sciences. We argue that mechanistic computational models form a natural common ground for social and natural sciences, and look forward to possible future information fow across the social-natural divide. Background In mainstream empirical social science, a result of a study often consists of two conclu- sions. First, that there is a statistically signifcant correlation between a variable de- scribing a social phenomenon and a variable thought to explain it. Second, that the correlations with other, more basic, or trivial, variables (called control, or confounding, variables) are weaker. Tere has been a trend in recent years to criticize this approach for putting too little emphasis on the mechanisms behind the correlations [Woodward 2014, Salmon 1998, Hedström Ylikoski 2010]. It is often argued that regression analysis (and the linear, additive models they assume) cannot serve as causal explanations of an open system such as usually studied in social science.
    [Show full text]
  • A Common Protocol for Agent-Based Social Simulation Abstract 1
    A Common Protocol for Agent-Based Social Simulation Roberto Leombruni, Matteo Richiardi, LABORatorio Revelli Centre for Employment Studies, via Real Collegio 30, 10024 Moncalieri, Torino, Italy. Email: [email protected] Nicole J. Saam, Institut für Soziologie Ludwig-Maximilians-Universität München, Konradstr. 6 D-80801 München, Germany. Email: [email protected] Michele Sonnessa, Department of Computer Science, University of Torino, Corso Svizzera 185, Torino, Italy. Email: [email protected] Abstract Traditional (i.e. analytical) modelling practices in the social sciences rely on a very well established, although implicit, methodological protocol, both with respect to the way models are presented and to the kinds of analysis that are performed. Unfortunately, computer-simulated models often lack such a reference to an accepted methodological standard. This is one of the main reasons for the scepticism among mainstream social scientists that results in low acceptance of papers with agent-based methodology in the top journals. We identify some methodological pitfalls that, according to us, are common in papers employing agent-based simulations, and propose appropriate solutions. We discuss each issue with reference to a general characterization of dynamic micro models, which encompasses both analytical and simulation models. In the way, we also clarify some confusing terminology. We then propose a three-stage process that could lead to the establishment of methodological standards in social and economic
    [Show full text]
  • Simulating the Spatial Diffusion of Memes on Social Media Networks
    International Journal of Geographical Information Science ISSN: 1365-8816 (Print) 1362-3087 (Online) Journal homepage: https://www.tandfonline.com/loi/tgis20 Simulating the spatial diffusion of memes on social media networks Lanxue Dang, Zhuo Chen, Jay Lee, Ming-Hsiang Tsou & Xinyue Ye To cite this article: Lanxue Dang, Zhuo Chen, Jay Lee, Ming-Hsiang Tsou & Xinyue Ye (2019) Simulating the spatial diffusion of memes on social media networks, International Journal of Geographical Information Science, 33:8, 1545-1568, DOI: 10.1080/13658816.2019.1591414 To link to this article: https://doi.org/10.1080/13658816.2019.1591414 Published online: 23 May 2019. Submit your article to this journal Article views: 556 View related articles View Crossmark data Citing articles: 1 View citing articles Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=tgis20 INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 2019, VOL. 33, NO. 8, 1545–1568 https://doi.org/10.1080/13658816.2019.1591414 RESEARCH ARTICLE Simulating the spatial diffusion of memes on social media networks Lanxue Danga, Zhuo Chenb, Jay Leeb,c, Ming-Hsiang Tsoud and Xinyue Yee aHenan Key Laboratory of Big Data Analysis and Processing, School of Computer and Information Engineering, Henan University, Kaifeng, Henan, China; bDepartment of Geography, Kent State University, Kent, OH, USA; cCollege of Environment and Planning, Henan University, Kaifeng, Henan, China; dDepartment of Geography, San Diego State University, San Diego, CA, USA; eUrban Informatics & Spatial Computing Lab, Department of Informatics, New Jersey Institute of Technology, Newark, NJ, USA ABSTRACT ARTICLE HISTORY This article reports the findings from simulating the spatial diffu- Received 5 September 2018 sion processes of memes over social media networks by using the Accepted 4 March 2019 approach of agent-based modeling.
    [Show full text]
  • Agent-Based Computational Economics Documentation Release 0.9.3B0
    Agent-Based Computational Economics Documentation Release 0.9.3b0 Davoud Taghawi-Nejad Jul 24, 2021 Contents 1 Introduction 3 1.1 Design..................................................3 1.2 Download and Installation........................................7 1.3 Interactive jupyter notebook Tutorial..................................9 1.4 Walk through...............................................9 1.5 Tutorial for Plant Modeling....................................... 16 1.6 Examples................................................. 20 1.7 unit testing................................................ 24 2 Simulation Programming 25 2.1 The simulation in start.py........................................ 25 2.2 Agents.................................................. 28 2.3 Groups.................................................. 29 2.4 Physical goods and services....................................... 31 2.5 Trade................................................... 32 2.6 Messaging................................................ 32 2.7 Firm and production........................................... 32 2.8 Household and consumption....................................... 35 2.9 Observing agents and logging...................................... 36 2.10 Retrieval of the simulation results.................................... 37 2.11 NotEnoughGoods Exception....................................... 38 3 Advanced 39 3.1 Quote................................................... 39 3.2 Spatial and Netlogo like Models..................................... 39
    [Show full text]
  • Social Emergence: Distinguishing Reflexive and Non-Reflexive Modes
    Social Emergence: Distinguishing Reflexive and Non-reflexive Modes Christopher Goldspink Robert Kay Centre for Research in Social Simulation Head of Strategic Innovation, Department of Sociology Westpac Banking Corporation, University of Surrey. Guildford, GU1 7XH, UK Level 8, Westpac Place, 275 Kent Street, Sydney NSW 2000 [email protected] [email protected] Abstract within the context of human social systems by focusing on Emergence has a long and controversial history. In this paper processes of ‘normative’ self-organization. The aim is to we briefly review the primary strands of the debate, paying contribute both to the conceptualization of emergence as attention to its use in the fields of philosophy of science and well as to how social emergence may be meaningfully mind, social science and systems theory including the theory modeled. of complex systems. We argue that it is important to recognize We argue that the ambiguity, opaqueness and lack of why emergence in social systems is fundamentally different specification of the concept of emergence currently present a from other natural systems. The key characteristics of significant barrier to its application to the study of social reflexivity are discussed and a distinction between two systems. Furthermore we argue that social systems classes of emergence proposed. Non-reflexive emergence: represent a specific class of system, distinct from other where the agents in the system under study are not self-aware, and Reflexive emergence: where the agents in the system under natural
    [Show full text]
  • Agent-Based Computational Models and Generative Social Science
    Agent-Based Computational Models And Generative Social Science JOSHUA M. EPSTEIN Economic Studies, Brookings Institution, Washington, D.C., 20036, USA External Faculty, Santa Fe Institute, Santa Fe, NM, 87501, USA e-mail: [email protected] Received April 6, 1999; accepted May 18, 1999 This article argues that the agent-based computational model permits a distinctive approach to social science for which the term “generative” is suitable. In defending this terminology, features distinguishing the approach from both “inductive” and “deductive” science are given. Then, the following specific contributions to social science are discussed: The agent-based computational model is a new tool for empirical research. It offers a natural environment for the study of connectionist phenomena in social science. Agent-based modeling pro- vides a powerful way to address certain enduring—and especially interdisciplinary—questions. It allows one to subject certain core theories—such as neoclassical microeconomics—to important types of stress (e.g., the effect of evolving preferences). It permits one to study how rules of individual behavior give rise—or “map up”—to macroscopic regularities and organizations. In turn, one can employ laboratory behavioral research findings to select among competing agent-based (“bottom up”) models. The agent-based approach may well have the important effect of decoupling individual rationality from macroscopic equilibrium and of separating decision science from social science more generally. Agent-based modeling offers powerful new forms of hybrid theo- retical-computational work; these are particularly relevant to the study of non-equilibrium systems. The agent- based approach invites the interpretation of society as a distributed computational device, and in turn the interpretation of social dynamics as a type of computation.
    [Show full text]