Social Emergence: Distinguishing Reflexive and Non-Reflexive Modes

Total Page:16

File Type:pdf, Size:1020Kb

Social Emergence: Distinguishing Reflexive and Non-Reflexive Modes Social Emergence: Distinguishing Reflexive and Non-reflexive Modes Christopher Goldspink Robert Kay Centre for Research in Social Simulation Head of Strategic Innovation, Department of Sociology Westpac Banking Corporation, University of Surrey. Guildford, GU1 7XH, UK Level 8, Westpac Place, 275 Kent Street, Sydney NSW 2000 [email protected] [email protected] Abstract within the context of human social systems by focusing on Emergence has a long and controversial history. In this paper processes of ‘normative’ self-organization. The aim is to we briefly review the primary strands of the debate, paying contribute both to the conceptualization of emergence as attention to its use in the fields of philosophy of science and well as to how social emergence may be meaningfully mind, social science and systems theory including the theory modeled. of complex systems. We argue that it is important to recognize We argue that the ambiguity, opaqueness and lack of why emergence in social systems is fundamentally different specification of the concept of emergence currently present a from other natural systems. The key characteristics of significant barrier to its application to the study of social reflexivity are discussed and a distinction between two systems. Furthermore we argue that social systems classes of emergence proposed. Non-reflexive emergence: represent a specific class of system, distinct from other where the agents in the system under study are not self-aware, and Reflexive emergence: where the agents in the system under natural systems where emergence may be studied. This is study are self-aware and linguistically capable. We specify the due to the capability of human agents to distinguish ‘self’ generative processes we believe are associated with each of from ‘other’ and in doing so reflexively distinguish and these categories and argue for the adoption of this distinction interact with their environment, greatly increasing the in both theoretical and practical modeling of human social scope and complexity of the emergent structures which are systems. possible. As a consequence we argue that both the form and mechanisms through which emergence occurs are not entirely analogous between natural and social systems. Introduction In this paper we review the historical and contemporary definitions of emergence, paying particular attention to its The concept of emergence has become widely used within use in the fields of philosophy of science and mind, social the social simulation community. The concept continues to be vaguely defined and to stand in for different science, general systems theory and complexity theory. This is followed by a discussion of the distinct propositions about social generative mechanisms. Within characteristics of social systems and the implications of the social simulation community, the concept has focused this difference for social simulation. The key primarily on upward causation (consistent with its usage characteristics of reflexivity will then be discussed and a within complex systems theory and associated research tentative framework will be proposed for two classes of programs such as those into artificial life) (Sawyer, 2003). Few attempts have been made to reconcile this use of the emergence, specifically: concept with its wider philosophical use and with the ∞ Non-reflexive emergence: where the agents in the parallel debates about the micro-macro link and the system under study are not self-aware, and relationship between structure and agency within the social sciences. Relatively little attempt has been made to ∞ Reflexive emergence: where the agents in the system identify the defining characteristics of human social under study are self-aware and linguistically capable. systems and to critically re-examine the concept within this context. Similarly derivative concepts such as We then specify the generative processes associated with downward causation and ‘immergence’ (Castelfranchi, each of these classes. 1998b) have only recently begun to be explored in the In proposing these two classes we do not preclude the simulation of human social systems. One current attempt distinction of other specific forms of emergence, but seek to to advance our understanding of upward and downward highlight the need for differing approaches to the study of causation in social systems is the EU funded project different system types, with a view to enhancing the Emergence in the Loop (EMIL). EMIL is concerned to explanatory power and applicability of the emergence explicate the mechanisms of emergence and immergence concept to various system classes. Copyright © 2007, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved. 48 A Brief History of the Concept of Emergence 5. May be capable of top-down causation. 6. Are characterized by multiple realization or wild The notion of emergence has a long history, having been disjunction (Fodor, 1974) (alternative micro-states invoked in a number of disciplines with varying degrees of may generate the same macro states). centrality to the theoretical and methodological development of associated fields. The concept remains A key concept is supervenience: a specification of the ambiguous and contentious, covering: ‘loose’ determinisms held to apply between levels such that ‘…an entity cannot change at a higher level without …a wide spectrum of ontological commitments. also changing at a lower level’ (Sawyer, 2001: 556). According to some the emergents are no more than patterns, with no causal powers of their own; for Within this stream prominence of place is given to both downward and upward causation. Clayton and Davies others they are substances in their own right… (2006) specify downward causation as involving macro (Clayton, 2006: 14). structures placing constraint on lower level processes hence ‘Emergent entities provide the context in which The first explicit use of the concept has been attributed to local, bottom up causation takes place and is made George Henry Lewes, in 1875 (Ablowitz, 1939). Following Lewes the concept rose to prominence primarily possible’ (Peterson, 2006: 697). This concept appears similar to that of ‘immergence’ within the social within the philosophy of science but more recently can be simulation literature and is worth exploring a little more seen to have been advanced within three distinct streams: fully as it is otherwise absent within the approach to philosophy, particularly philosophy of mind; systems emergence typical of complex systems inspired approaches theory, in particular complex systems; and social science (Sawyer, 2003, 2005). where it has largely been referred to under the heading of the micro-macro link and/or the problem of structure and Davies (2006) argues that the mechanism of downward causation can usefully be considered in terms of agency. Interestingly there has been relatively little cross boundaries. Novelty, he argues, may have its origin in a influence between these streams. While it is beyond the system being ‘open’. If novel order emerges it must do so scope of this paper to present a full comparison or to within the constraints of physics. He concludes: attempt a synthesis of the different streams, some brief comments are offered on the alternative perspectives and … top-down talk refers not to vitalistic augmentation contribution of each to the wider debate. of known forces, but rather to the system harnessing existing forces for its own ends. The problem is to The Contribution from Philosophy of science understand how this harnessing happens, not at the level of individual intermolecular interactions, but The philosophy of science and philosophy of mind stream overall – as a coherent project. It appears that once a is arguably the oldest – some date it back to Plato system is sufficiently complex, then new top down (Peterson, 2006) but the debate is widely seen as having come to focus with the British Emergentists (Eronen, rules of causation emerge (Davies 2006: 48). 2004; Shrader, 2005; Stanford Encyclopaedia of For Davies then, top-down causation is associated with Philosophy, 2006). This school sought to deal with the self-organization. For Davies it is the ‘openness’ of some apparent qualitatively distinct properties associated with systems that ‘provides room’ for self-organizing process to different phenomena (physical, chemical, biological, arise, but he concludes, ‘openness to the environment mental) in the context of the debate between mechanism and vitalism: the former being committed to Laplacian merely explains why there may be room for top-down causation; it tells us nothing about how that causation causal determinism and hence reductionism and the latter works.’ The devil then, is in the detail of the mechanisms invoking ‘non-physical’ elements in order to explain the specific to particular processes in particular contexts and qualitative difference between organic and in-organic particular phenomenal domains. matter. This stream remains focused on explaining different properties of classes of natural phenomena and with the relationship between brains and minds (See Clayton & The contribution from Social Science Davies, 2006 for a recent summary of the positions). The micro-macro problem – the relationship between the Peterson (2006: 695) summarizes the widely agreed actions of individuals and resulting social structures and characteristics of emergent phenomena within this stream the reciprocal constraint those structures place on as follows.
Recommended publications
  • A Primer on Complexity: an Introduction to Computational Social Science
    A Primer on Complexity: An Introduction to Computational Social Science Shu-Heng Chen Department of Economics National Chengchi University Taipei, Taiwan 116 [email protected] 1 Course Objectives This course is to enable the students of social sciences to have some initial experiences of computational modeling of social phenomena or social processes.In this regard, it severs as the beginning course for preparing students of social sciences to have computational thinkingof social phenomena.On the other hand, the course is also to serve as a beginning course for the students of computer science or students with a strong taste for program- ming andmodeling who are, however, very curious of social phenomena, and want to see whether they can develop their talents in the axis of social sciences. 2 Course Description National Chengchi University is internationally well-known for its social sciences, but what are the natures of social sciences, and, to what extent, do they differ from sciences? Are these differences fundamentally or just superficially? The current social sciences are divided into economics, business, management, political sciences, sociology, psychology, public administration, anthropology, ethnology, religion, geography, law, international relations, etc. Is this division necessary, logical? When a social phenomenon is presenting itself to us, such as populism, polarization, segregation, racism, exploitation, injustice, global warming, income inequality, social exclusiveness or inclusiveness, green energy promotion, anti-gouging legislation, riots, tuition freeze, mass media regulation, finan- cial crisis, nationalism, globalization, will it identify itself: to which sister discipline it belongs? Economics? Psychology? Ethnology? If the purpose of social sciences is to enhance our understanding (harness) of social phenomena, and hence to enable us to develop a good conversation quality among cit- izens of the society from which the social phenomena emerge, then we probably need to promote good conversations among social scientists first.
    [Show full text]
  • Varieties of Emergence
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/228792799 Varieties of emergence Article · January 2002 CITATIONS READS 37 94 1 author: Nigel Gilbert University of Surrey 364 PUBLICATIONS 9,427 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Consumer Behavior View project Agent-based Macroeconomic Models: An Anatomical Review View project All content following this page was uploaded by Nigel Gilbert on 19 May 2014. The user has requested enhancement of the downloaded file. 1 VARIETIES OF EMERGENCE N. GILBERT, University of Surrey, UK* ABSTRACT** The simulation of social agents has grown to be an innovative and powerful research methodology. The challenge is to develop models that are computationally precise, yet are linked closely to and are illuminating about social and behavioral theory. The social element of social simulation models derives partly from their ability to exhibit emergent features. In this paper, we illustrate the varieties of emergence by developing Schelling’s model of residential segregation (using it as a case study), considering what might be needed to take account of the effects of residential segregation on residents and others; the social recognition of spatially segregated zones; and the construction of categories of ethnicity. We conclude that while the existence of emergent phenomena is a necessary condition for models of social agents, this poses a methodological problem for those using simulation to investigate social phenomena. INTRODUCTION Emergence is an essential characteristic of social simulation. Indeed, without emergence, it might be argued that a simulation is not a social simulation.
    [Show full text]
  • Self-Regulation Via Neural Simulation
    Self-regulation via neural simulation Michael Gileada,b,1, Chelsea Boccagnoa, Melanie Silvermana, Ran R. Hassinc, Jochen Webera, and Kevin N. Ochsnera,1 aDepartment of Psychology, Columbia University, New York, NY 10027; bDepartment of Psychology, Ben-Gurion University of the Negev, Be’er Sheva 8410501, Israel; and cDepartment of Psychology, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel Edited by Marcia K. Johnson, Yale University, New Haven, CT, and approved July 11, 2016 (received for review January 24, 2016) Can taking the perspective of other people modify our own affective Although no prior work has addressed these questions, per se, responses to stimuli? To address this question, we examined the the literatures on emotion regulation (1, 5–11) and perspective- neurobiological mechanisms supporting the ability to take another taking (12–18) can be integrated to generate testable hypotheses. person’s perspective and thereby emotionally experience the world On one hand, research on emotion regulation has shown that as they would. We measured participants’ neural activity as they activity in lateral prefrontal cortex (i.e., dorsolateral prefrontal attempted to predict the emotional responses of two individuals that cortex and ventrolateral prefrontal cortex) and middle medial differed in terms of their proneness to experience negative affect. prefrontal cortex (i.e., presupplementary motor area, anterior Results showed that behavioral and neural signatures of negative ventral midcingulate cortex, and anterior dorsal midcingulate affect (amygdala activity and a distributed multivoxel pattern reflect- cortex) (19) supports the use of cognitive strategies to modulate ing affective negativity) simulated the presumed affective state of activity in (largely) subcortical systems for triggering affective the target person.
    [Show full text]
  • Control Theory
    Control theory S. Simrock DESY, Hamburg, Germany Abstract In engineering and mathematics, control theory deals with the behaviour of dynamical systems. The desired output of a system is called the reference. When one or more output variables of a system need to follow a certain ref- erence over time, a controller manipulates the inputs to a system to obtain the desired effect on the output of the system. Rapid advances in digital system technology have radically altered the control design options. It has become routinely practicable to design very complicated digital controllers and to carry out the extensive calculations required for their design. These advances in im- plementation and design capability can be obtained at low cost because of the widespread availability of inexpensive and powerful digital processing plat- forms and high-speed analog IO devices. 1 Introduction The emphasis of this tutorial on control theory is on the design of digital controls to achieve good dy- namic response and small errors while using signals that are sampled in time and quantized in amplitude. Both transform (classical control) and state-space (modern control) methods are described and applied to illustrative examples. The transform methods emphasized are the root-locus method of Evans and fre- quency response. The state-space methods developed are the technique of pole assignment augmented by an estimator (observer) and optimal quadratic-loss control. The optimal control problems use the steady-state constant gain solution. Other topics covered are system identification and non-linear control. System identification is a general term to describe mathematical tools and algorithms that build dynamical models from measured data.
    [Show full text]
  • Theory Development with Agent-Based Models 1
    Running head: THEORY DEVELOPMENT WITH AGENT-BASED MODELS 1 Theory Development with Agent-Based Models Paul E. Smaldino Johns Hopkins University Jimmy Calanchini University of California, Davis Cynthia L. Pickett University of California, Davis In press at Organizational Psychology Review Running head: THEORY DEVELOPMENT WITH AGENT-BASED MODELS 2 Abstract Many social phenomena do not result solely from intentional actions by isolated individuals, but rather emerge as the result of repeated interactions among multiple individuals over time. However, such phenomena are often poorly captured by traditional empirical techniques. Moreover, complex adaptive systems are insufficiently described by verbal models. In this paper, we discuss how organizational psychologists and group dynamics researchers may benefit from the adoption of formal modeling, particularly agent-based modeling, for developing and testing richer theories. Agent-based modeling is well-suited to capture multi-level dynamic processes and offers superior precision to verbal models. As an example, we present a model on social identity dynamics used to test the predictions of Brewer’s (1991) optimal distinctiveness theory, and discuss how the model extends the theory and produces novel research questions. We close with a general discussion on theory development using agent-based models. Keywords: group dynamics, agent-based modeling, formal models, optimal distinctiveness, social identity Running head: THEORY DEVELOPMENT WITH AGENT-BASED MODELS 3 Introduction "A mathematical theory may be regarded as a kind of scaffolding within which a reasonably secure theory expressible in words may be built up. ... Without such a scaffolding verbal arguments are insecure." – J.B.S. Haldane (1964) There are many challenges that face group dynamics researchers.
    [Show full text]
  • Modeling Memes: a Memetic View of Affordance Learning
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations Spring 2011 Modeling Memes: A Memetic View of Affordance Learning Benjamin D. Nye University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Artificial Intelligence and Robotics Commons, Cognition and Perception Commons, Other Ecology and Evolutionary Biology Commons, Other Operations Research, Systems Engineering and Industrial Engineering Commons, Social Psychology Commons, and the Statistical Models Commons Recommended Citation Nye, Benjamin D., "Modeling Memes: A Memetic View of Affordance Learning" (2011). Publicly Accessible Penn Dissertations. 336. https://repository.upenn.edu/edissertations/336 With all thanks to my esteemed committee, Dr. Silverman, Dr. Smith, Dr. Carley, and Dr. Bordogna. Also, great thanks to the University of Pennsylvania for all the opportunities to perform research at such a revered institution. This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/336 For more information, please contact [email protected]. Modeling Memes: A Memetic View of Affordance Learning Abstract This research employed systems social science inquiry to build a synthesis model that would be useful for modeling meme evolution. First, a formal definition of memes was proposed that balanced both ontological adequacy and empirical observability. Based on this definition, a systems model for meme evolution was synthesized from Shannon Information Theory and elements of Bandura's Social Cognitive Learning Theory. Research in perception, social psychology, learning, and communication were incorporated to explain the cognitive and environmental processes guiding meme evolution. By extending the PMFServ cognitive architecture, socio-cognitive agents were created who could simulate social learning of Gibson affordances.
    [Show full text]
  • Manifesto of Computational Social Science R
    Manifesto of computational social science R. Conte, N. Gilbert, G. Bonelli, C. Cioffi-Revilla, G. Deffuant, J. Kertesz, V. Loreto, S. Moat, J.P. Nadal, A. Sanchez, et al. To cite this version: R. Conte, N. Gilbert, G. Bonelli, C. Cioffi-Revilla, G. Deffuant, et al.. Manifesto of computational social science. The European Physical Journal. Special Topics, EDP Sciences, 2012, 214, p. 325 - p. 346. 10.1140/epjst/e2012-01697-8. hal-01072485 HAL Id: hal-01072485 https://hal.archives-ouvertes.fr/hal-01072485 Submitted on 8 Oct 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Eur. Phys. J. Special Topics 214, 325–346 (2012) © The Author(s) 2012. This article is published THE EUROPEAN with open access at Springerlink.com PHYSICAL JOURNAL DOI: 10.1140/epjst/e2012-01697-8 SPECIAL TOPICS Regular Article Manifesto of computational social science R. Conte1,a, N. Gilbert2, G. Bonelli1, C. Cioffi-Revilla3,G.Deffuant4,J.Kertesz5, V. Loreto6,S.Moat7, J.-P. Nadal8, A. Sanchez9,A.Nowak10, A. Flache11, M. San Miguel12, and D. Helbing13 1 ISTC-CNR, Italy 2 CRESS, University
    [Show full text]
  • Mechanistic Models in Computational Social Science
    Mechanistic Models in Computational Social Science Petter Holme1*, Fredrik Liljeros2 1 Department of Energy Science, Sungkyunkwan University, 440-746 Suwon, Korea 2 Department of Sociology, Stockholm University, 10961 Stockholm, Sweden * Correspondence: Petter Holme, [email protected] Abstract Quantitative social science is not only about regression analysis or, in general, data in- ference. Computer simulations of social mechanisms have an over 60 years long his- tory. Tey have been used for many diferent purposes—to test scenarios, to test the consistency of descriptive theories (proof-of-concept models), to explore emergent phe- nomena, for forecasting, etc. In this essay, we sketch these historical developments, the role of mechanistic models in the social sciences and the infuences from the natural and formal sciences. We argue that mechanistic computational models form a natural common ground for social and natural sciences, and look forward to possible future information fow across the social-natural divide. Background In mainstream empirical social science, a result of a study often consists of two conclu- sions. First, that there is a statistically signifcant correlation between a variable de- scribing a social phenomenon and a variable thought to explain it. Second, that the correlations with other, more basic, or trivial, variables (called control, or confounding, variables) are weaker. Tere has been a trend in recent years to criticize this approach for putting too little emphasis on the mechanisms behind the correlations [Woodward 2014, Salmon 1998, Hedström Ylikoski 2010]. It is often argued that regression analysis (and the linear, additive models they assume) cannot serve as causal explanations of an open system such as usually studied in social science.
    [Show full text]
  • A Common Protocol for Agent-Based Social Simulation Abstract 1
    A Common Protocol for Agent-Based Social Simulation Roberto Leombruni, Matteo Richiardi, LABORatorio Revelli Centre for Employment Studies, via Real Collegio 30, 10024 Moncalieri, Torino, Italy. Email: [email protected] Nicole J. Saam, Institut für Soziologie Ludwig-Maximilians-Universität München, Konradstr. 6 D-80801 München, Germany. Email: [email protected] Michele Sonnessa, Department of Computer Science, University of Torino, Corso Svizzera 185, Torino, Italy. Email: [email protected] Abstract Traditional (i.e. analytical) modelling practices in the social sciences rely on a very well established, although implicit, methodological protocol, both with respect to the way models are presented and to the kinds of analysis that are performed. Unfortunately, computer-simulated models often lack such a reference to an accepted methodological standard. This is one of the main reasons for the scepticism among mainstream social scientists that results in low acceptance of papers with agent-based methodology in the top journals. We identify some methodological pitfalls that, according to us, are common in papers employing agent-based simulations, and propose appropriate solutions. We discuss each issue with reference to a general characterization of dynamic micro models, which encompasses both analytical and simulation models. In the way, we also clarify some confusing terminology. We then propose a three-stage process that could lead to the establishment of methodological standards in social and economic
    [Show full text]
  • Systems Theory
    1 Systems Theory BRUCE D. FRIEDMAN AND KAREN NEUMAN ALLEN iopsychosocial assessment and the develop - nature of the clinical enterprise, others have chal - Bment of appropriate intervention strategies for lenged the suitability of systems theory as an orga - a particular client require consideration of the indi - nizing framework for clinical practice (Fook, Ryan, vidual in relation to a larger social context. To & Hawkins, 1997; Wakefield, 1996a, 1996b). accomplish this, we use principles and concepts The term system emerged from Émile Durkheim’s derived from systems theory. Systems theory is a early study of social systems (Robbins, Chatterjee, way of elaborating increasingly complex systems & Canda, 2006), as well as from the work of across a continuum that encompasses the person-in- Talcott Parsons. However, within social work, sys - environment (Anderson, Carter, & Lowe, 1999). tems thinking has been more heavily influenced by Systems theory also enables us to understand the the work of the biologist Ludwig von Bertalanffy components and dynamics of client systems in order and later adaptations by the social psychologist Uri to interpret problems and develop balanced inter - Bronfenbrenner, who examined human biological vention strategies, with the goal of enhancing the systems within an ecological environment. With “goodness of fit” between individuals and their its roots in von Bertalanffy’s systems theory and environments. Systems theory does not specify par - Bronfenbrenner’s ecological environment, the ticular theoretical frameworks for understanding ecosys tems perspective provides a framework that problems, and it does not direct the social worker to permits users to draw on theories from different dis - specific intervention strategies.
    [Show full text]
  • Information Systems Foundations Theory, Representation and Reality
    Information Systems Foundations Theory, Representation and Reality Information Systems Foundations Theory, Representation and Reality Dennis N. Hart and Shirley D. Gregor (Editors) Workshop Chair Shirley D. Gregor ANU Program Chairs Dennis N. Hart ANU Shirley D. Gregor ANU Program Committee Bob Colomb University of Queensland Walter Fernandez ANU Steven Fraser ANU Sigi Goode ANU Peter Green University of Queensland Robert Johnston University of Melbourne Sumit Lodhia ANU Mike Metcalfe University of South Australia Graham Pervan Curtin University of Technology Michael Rosemann Queensland University of Technology Graeme Shanks University of Melbourne Tim Turner Australian Defence Force Academy Leoni Warne Defence Science and Technology Organisation David Wilson University of Technology, Sydney Published by ANU E Press The Australian National University Canberra ACT 0200, Australia Email: [email protected] This title is also available online at: http://epress.anu.edu.au/info_systems02_citation.html National Library of Australia Cataloguing-in-Publication entry Information systems foundations : theory, representation and reality Bibliography. ISBN 9781921313134 (pbk.) ISBN 9781921313141 (online) 1. Management information systems–Congresses. 2. Information resources management–Congresses. 658.4038 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the publisher. Cover design by Brendon McKinley with logo by Michael Gregor Authors’ photographs on back cover: ANU Photography Printed by University Printing Services, ANU This edition © 2007 ANU E Press Table of Contents Preface vii The Papers ix Theory Designing for Mutability in Information Systems Artifacts, Shirley Gregor and Juhani Iivari 3 The Eect of the Application Domain in IS Problem Solving: A Theoretical Analysis, Iris Vessey 25 Towards a Unied Theory of Fit: Task, Technology and Individual, Michael J.
    [Show full text]
  • Emergent Behavior in Systems of Systems John S
    Emergent Behavior in Systems of Systems John S. Osmundson Thomas V. Huynh Department of Information Sciences Department of Systems Engineering Naval Postgraduate School Naval Postgraduate School 1 University Circle 1 University Circle Monterey, CA 93943, USA Monterey, CA 93943, USA [email protected] [email protected] Gary O. Langford Department of Systems Engineering Naval Postgraduate School 1 University Circle Monterey, CA 93943 [email protected] Copyright © 2008 by John Osmundson, Thomas Huynh and Gary Langford. Published and used by INCOSE with permission. Abstract. As the development of systems of systems becomes more important in global ventures, so does the issues of emergent behavior. The challenge for systems engineers is to predict and analyze emergent behavior, especially undesirable behavior, in systems of systems. In this paper we briefly discuss definitions of emergent behavior, describe a large-scale system of system that exhibits emergent behavior, review previous approaches to analyzing emergent behavior, and then present a system modeling and simulation approach that has promise of allowing systems engineers to analyze potential emergent behavior in large scale systems of systems. Introduction Recently there has been increased interest in what has been become known as systems of systems (SoS) and SoS engineering. Examples of SoS are military command, control, computer, communications and information (C4I) systems (Pei 2000), intelligence, surveillance and reconnaissance (ISR) systems (Manthrope 1996), intelligence collection management systems (Osmundson et al 2006a), electrical power distribution systems (Casazza and Delea 2000) and food chains (Neutel 2002.), among others. Much of this current interest in SoS is focused on the desire to integrate existing systems to achieve new capabilities that are unavailable by operation of any of the existing single individual systems.
    [Show full text]