Analytical Sociology and Computational Social Science
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
From Factors to Actors: Computational Sociology and Agent-Based Modeling1
From Factors to Actors: Computational Sociology and Agent-Based Modeling1 Michael W. Macy Robert Willer Cornell University August, 2001 Contents: 73 citations (2.5 published pages), 1 figure (1 page), 8522 main-text words (19.5 published pages) Total length: 23 published pages 1 The first author expresses gratitude to the National Science Foundation (SES-0079381) for support during the period in which this review was written. We also thank James Kitts, Andreas Flache, and Noah Mark for helpful comments and suggestions. From Factors to Actors: Computational Sociology and Agent-Based Modeling Introduction: Agent-Based Models and Self-Organizing Group Processes Consider a flock of geese flying in tight formation. Collectively, they form the image of a giant delta-shaped bird that moves as purposively as if it were a single organism. Yet the flock has no “group mind” nor is there a “leader bird” choreographing the formation (Resnick 1994). Rather, each bird reacts to the movement of its immediate neighbors who in turn react to it. The result is the graceful dance-like movement of the flock whose hypnotic rhythm is clearly patterned yet also highly non-linear. If we tried to model the global elegance of the flock, the task would be immensely difficult because of the extreme complexity in its movement. Yet the task turns out to be remarkably easy if instead we model the dynamics of local interaction. This was demonstrated by Craig Reynolds (1987) when he modeled the movement of a population of artificial “boids” based on three simple rules: • Separation: Don't get too close to any object, including other boids. -
Westminsterresearch Sociology and Non-Equilibrium Social Science Anzola, D., Barbrook-Johnson, P., Salgado, M. and Gilbert, N
WestminsterResearch http://www.westminster.ac.uk/westminsterresearch Sociology and Non-Equilibrium Social Science Anzola, D., Barbrook-Johnson, P., Salgado, M. and Gilbert, N. This is a copy of the final version of a copy published in: Non-Equilibrium Social Science and Policy, Springer, pp. 59-69. ISBN 9783319424224 Available from the publisher, Springer via: https://dx.doi.org/10.1007/978-3-319-42424-8_4 © The Author(s) 2017. This chapter is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made. The WestminsterResearch online digital archive at the University of Westminster aims to make the research output of the University available to a wider audience. Copyright and Moral Rights remain with the authors and/or copyright owners. Whilst further distribution of specific materials from within this archive is forbidden, you may freely distribute the URL of WestminsterResearch: ((http://westminsterresearch.wmin.ac.uk/). In case of abuse or copyright appearing without permission e-mail [email protected] Sociology and Non-Equilibrium Social Science David Anzola, Peter Barbrook-Johnson, Mauricio Salgado, and Nigel Gilbert Abstract This chapter addresses the relationship between sociology and Non- Equilibrium Social Science (NESS). Sociology is a multiparadigmatic discipline with significant disagreement regarding its goals and status as a scientific discipline. Different theories and methods coexist temporally and geographically. -
Advanced Topics in Social Dynamics Family Demography Session 1(9.03
Advanced topics in social dynamics Family Demography Gøsta Esping-Andersen Bocconi 2020-21 Session 1(9.03.2021): Theoretical perspectives in the study of the family In this session we will focus on key theories within family research, from both economics and sociology. Required readings: Becker, G (1973). ‘A theory of marriage. Part 1’. Journal of Political Economy, 81: 4: 813-46 Lesthaeghe, R. (2010).‘The unfolding story of the second demographic transition’. Population and Development Review, 36(2), 211-251. Recommended readings: Esping-Andersen, G and Billari, F. 2015 ‘Retheorizing family demographic change’. Population and Development Review, 41: 1-31 McDonald, P 2013 ‘Societal foundations for explaining fertility’. Demographic Research, 28: 981-994 Lundberg, Shelly and Pollack, Robert. 2007. "The American Family and Family Economics." Journal of Economic Perspectives 21(2): 3-26. Oppenheimer, Valerie Kincade. 1988. "A Theory of Marriage Timing." American Journal of Sociology 94(3): 563-91. Session 2 (10.03). Trends in gender roles, family behavior and structure Required readings: Esping-Andersen, G 2016 Families in the 21st Century. Chapter 1: ‘The return of the family’ (this book can be downloaded gratis from SNS’ website ([email protected]) Goldin, M 2006. "The Quiet Revolution That Transformed Women’s Employment, Education, and Family." American Economic Review 96(2): 1-21. Recommended readings: (for student presentation: minimally the Sevilla-Sanz article and the van Bavel et.al. paper) Van Bavel, J 2018 ‘The reversal of the gender gap in education and its consequences for family life’. Annual Review of Sociology, 44: 341-60 England, P. Et.al., 2020 ‘Progress toward gender equality in the United States has slowed or stalled’. -
Manifesto of Computational Social Science R
Manifesto of computational social science R. Conte, N. Gilbert, G. Bonelli, C. Cioffi-Revilla, G. Deffuant, J. Kertesz, V. Loreto, S. Moat, J.P. Nadal, A. Sanchez, et al. To cite this version: R. Conte, N. Gilbert, G. Bonelli, C. Cioffi-Revilla, G. Deffuant, et al.. Manifesto of computational social science. The European Physical Journal. Special Topics, EDP Sciences, 2012, 214, p. 325 - p. 346. 10.1140/epjst/e2012-01697-8. hal-01072485 HAL Id: hal-01072485 https://hal.archives-ouvertes.fr/hal-01072485 Submitted on 8 Oct 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Eur. Phys. J. Special Topics 214, 325–346 (2012) © The Author(s) 2012. This article is published THE EUROPEAN with open access at Springerlink.com PHYSICAL JOURNAL DOI: 10.1140/epjst/e2012-01697-8 SPECIAL TOPICS Regular Article Manifesto of computational social science R. Conte1,a, N. Gilbert2, G. Bonelli1, C. Cioffi-Revilla3,G.Deffuant4,J.Kertesz5, V. Loreto6,S.Moat7, J.-P. Nadal8, A. Sanchez9,A.Nowak10, A. Flache11, M. San Miguel12, and D. Helbing13 1 ISTC-CNR, Italy 2 CRESS, University -
Modelling Communities and Populations: an Introduction to Computational Social Science
STUDIA METODOLOGICZNE NR 39 • 2019, 123–152 DOI: 10.14746/sm.2019.39.5 Andrzej Jarynowski, Michał B. Paradowski, Andrzej Buda Modelling communities and populations: An introduction to computational social science Abstract. In sociology, interest in modelling has not yet become widespread. However, the methodology has been gaining increased attention in parallel with its growing popularity in economics and other social sciences, notably psychology and political science, and the growing volume of social data being measured and collected. In this paper, we present representative computational methodologies from both data-driven (such as “black box”) and rule-based (such as “per analogy”) approaches. We show how to build simple models, and discuss both the greatest successes and the major limitations of modelling societies. We claim that the end goal of computational tools in sociology is providing meaningful analyses and calculations in order to allow making causal statements in sociological ex- planation and support decisions of great importance for society. Keywords: computational social science, mathematical modelling, sociophysics, quantita- tive sociology, computer simulations, agent-based models, social network analysis, natural language processing, linguistics. 1. One model of society, but many definitions Social reality has been a fascinating area for mathematical description for a long time. Initially, many mathematical models of social phenomena resulted in simplifications of low application value. However, with their grow- ing validity (in part due to constantly increasing computing power allowing for increased multidimensionality), they have slowly begun to be applied in prediction and forecasting (social engineering), given that the most interesting feature of social science research subjects – people, organisations, or societies – is their complexity, usually based on non-linear interactions. -
Classroom Social Dynamics Management: Why the Invisible Hand of the Teacher Matters For
Running head: MANAGING CLASSROOM SOCIAL DYNAMICS Classroom Social Dynamics Management: Why the Invisible Hand of the Teacher Matters for Special Education Thomas W. Farmer, PhD1 Molly Dawes, PhD1 Jill V. Hamm, PhD2 David Lee, PhD3 Meera Mehtaji, MEd4 Abigail S. Hoffman, PhD2 Debbie S. Brooks, PhD3 1College of William & Mary 2The University of North Carolina at Chapel Hill 3The Pennsylvania State University 4Virginia Commonwealth University Author Notes: This work was supported by research grants (R305A120812; R305A140434) from the Institute of Education Sciences. The views expressed in this article are ours and do not represent the granting agency. This article was blind peer-reviewed. Keywords: invisible hand, classroom management, social dynamics, intensive interventions Conflict of Interest: The author declares no conflict of interest. Remedial and Special Education Vol 39 No. 3, 2018 MANAGING CLASSROOM SOCIAL DYNAMICS 2 Abstract The invisible hand is a metaphor that refers to teachers’ impact on the classroom peer ecology. Although teachers have the capacity to organize the classroom environment and activities in ways that contribute to students’ social experiences, their contributions are often overlooked in research on students’ peer relations and the development of social interventions. To address this, researchers have begun to focus on clarifying strategies to manage classroom social dynamics. The goal of this paper is to consider potential contributions of this perspective for understanding the social experiences of students with disabilities and to explore associated implications for the delivery of classroom focused interventions to support their adaptation. Conceptual foundations of classroom social dynamics management and empirical research on the peer relationships of students with disabilities are outlined and the potential of the concept of the invisible hand is discussed in relation to other social support interventions for students with disabilities. -
Social Network Analysis of Mental Models in Emergency Management Teams
Social Network Analysis of Mental Models in Emergency Management Teams Bjørn Sætrevik1,2 & Euryph Line Solheim Kvamme 1,3 1: Operational Psychology Research Group, Department of Psychosocial Science, Faculty of Psychology, University of Bergen, Christies gate 12, NO-5015 Bergen. 2: Email: [email protected], corresponding author 3: Email: [email protected] Abstract Field studies of team interaction patterns may be the preferred way to examine the impact of social processes and mechanisms on team’s performance, but limitations in data quality may require adapted approaches. Social network analysis may be used to explore a team’s interaction, and to test whether social dynamics is associated with team performance. We pre-registered a novel approach for measuring social networks of teams in an extant field dataset of eleven emergency management teams performing a scenario training exercise. Our aim was to test whether teams with more evenly distributed interaction patterns have a more accurate and shared understanding of the task at hand. Our findings support the pre-registered hypotheses that more distributed and denser team networks are associated with more accurate and more shared mental models, while there was no support for associations between mental models and the individual’s position in the network. Keywords Social network analysis; mental models; shared mental models; situation awareness; emergency management teams; teamwork; social interaction 1: Introduction dyadic relationships between relevant individuals, groups or institutions (Borgatti & Foster, 2003; Henttonen, 2010). 1.1: Theoretical background The approach assumes that individuals are embedded in 1.1.1: The role of social networks in team performance multi-level relational structures (Balkundi & Harrison, Most work is performed by some form of team (Cross, 2006; Monge & Contractor, 2003; Newman, 2010; Streeter Rebele, & Grant, 2016). -
Social Demography
2nd term 2019-2020 Social demography Given by Juho Härkönen Register online Contact: [email protected] This course deals with some current debates and research topics in social demography. Social demography deals with questions of population composition and change and how they interact with sociological variables at the individual and contextual levels. Social demography also uses demographic approaches and methods to make sense of social, economic, and political phenomena. The course is structured into two parts. Part I provides an introduction to some current debates, with the purpose of laying a common background to Part II, in which these topics are deepened by individual presentations of more specific questions. In Part I, read all the texts assigned to the core readings, plus one from the additional readings. Brief response papers (about 1 page) should identify the core question/debate addressed in the readings and the summarize evidence for/against core arguments. The response papers are due at 17:00 the day before class (on Brightspace). Similarly, the classroom discussions should focus on these topics. The purpose of the additional reading is to offer further insights into the core debate, often through an empirical study. You should bring this insight to the classroom. Part II consists of individual papers (7-10 pages) and their presentations. You will be asked to design a study related to a current debate in social demography. This can expand and deepen upon the topics discussed in Part I, or you can alternatively choose another debate that was not addressed. Your paper and presentation can—but does not have to—be something that you will yourself study in the future (but it cannot be something that you are already doing). -
Module 7 Key Thinkers Lecture 36 Auguste Comte and Herbert Spencer
NPTEL – Humanities and Social Sciences – Introduction to Sociology Module 7 Key Thinkers Lecture 36 Auguste Comte and Herbert Spencer The thoughts of Auguste Comte (1798-1857), who coined the term sociology, while dated and riddled with weaknesses, continue in many ways to be important to contemporary sociology. First and foremost, Comte's positivism — the search for invariant laws governing the social and natural worlds — has influenced profoundly the ways in which sociologists have conducted sociological inquiry. Comte argued that sociologists (and other scholars), through theory, speculation, and empirical research, could create a realist science that would accurately "copy" or represent the way things actually are in the world. Furthermore, Comte argued that sociology could become a "social physics" — i.e., a social science on a par with the most positivistic of sciences, physics. Comte believed that sociology would eventually occupy the very pinnacle of a hierarchy of sciences. Comte also identified four methods of sociology. To this day, in their inquiries sociologists continue to use the methods of observation, experimentation, comparison, and historical research. While Comte did write about methods of research, he most often engaged in speculation or theorizing in order to attempt to discover invariant laws of the social world. Comte's famed "law of the three stages" is an example of his search for invariant laws governing the social world. Comte argued that the human mind, individual human beings, all knowledge, and world history develop through three successive stages. The theological stage is dominated by a search for the essential nature of things, and people come to believe that all phenomena are created and influenced by gods and supernatural forces. -
Auguste Comte
Module-2 AUGUSTE COMTE (1798-1857) Developed by: Dr. Subrata Chatterjee Associate Professor of Sociology Khejuri College P.O- Baratala, Purba Medinipur West Bengal, India AUGUSTE COMTE (1798-1857) Isidore-Auguste-Marie-François-Xavier Comte is regarded as the founders of Sociology. Comte’s father parents were strongly royalist and deeply sincere Roman Catholics. But their sympathies were at odds with the republicanism and skepticism that swept through France in the aftermath of the French Revolution. Comte resolved these conflicts at an early age by rejecting Roman Catholicism and royalism alike. Later on he was influenced by several important French political philosophers of the 18th century—such as Montesquieu, the Marquis de Condorcet, A.-R.-J. Turgot, and Joseph de Maistre. Comte’s most important acquaintance in Paris was Henri de Saint-Simon, a French social reformer and one of the founders of socialism, who was the first to clearly see the importance of economic organization in modern society. The major works of Auguste Comte are as follows: 1. The Course on Positive Philosophy (1830-1842) 2. Discourse on the Positive Sprit (1844) 3. A General View of Positivism (1848) 4. Religion of Humanity (1856) Theory of Positivism As a philosophical ideology and movement positivism first assumed its distinctive features in the work of the French philosopher Auguste Comte, who named the systematized science of sociology. It then developed through several stages known by various names, such as Empiriocriticism, Logical Positivism and Logical Empiricism and finally in the mid-20th century flowed into the movement known as Analytic and Linguistic philosophy. -
Who Is Doing Computational Social Science? Trends in Big Data Research
A SAGE White Paper Who Is Doing Computational Social Science? Trends in Big Data Research Katie Metzler Publisher for SAGE Research Methods, SAGE Publishing David A. Kim Stanford University, Department of Emergency Medicine Nick Allum Professor of Sociology and Research Methodology, University of Essex Angella Denman University of Essex www.sagepublishing.com Contents Overview ........................................................................................................................1 What Have We Learned About Those Doing Big Data Research? .....................................1 What Have We Learned About Those Who Want to Engage in Big Data Research in the Future? ...................................................................................1 What Have We Learned About Those Teaching Research Methods? .................................2 Methodology .................................................................................................................2 Analysis .........................................................................................................................2 Challenges Facing Big Data Researchers in the Social Sciences ....................................11 Challenges Facing Educators ............................................................................................16 Barriers to Entry ................................................................................................................16 Conclusion ..................................................................................................................17 -
Social Network Analysis with Content and Graphs
SOCIAL NETWORK ANALYSIS WITH CONTENT AND GRAPHS Social Network Analysis with Content and Graphs William M. Campbell, Charlie K. Dagli, and Clifford J. Weinstein Social network analysis has undergone a As a consequence of changing economic renaissance with the ubiquity and quantity of » and social realities, the increased availability of large-scale, real-world sociographic data content from social media, web pages, and has ushered in a new era of research and sensors. This content is a rich data source for development in social network analysis. The quantity of constructing and analyzing social networks, but content-based data created every day by traditional and social media, sensors, and mobile devices provides great its enormity and unstructured nature also present opportunities and unique challenges for the automatic multiple challenges. Work at Lincoln Laboratory analysis, prediction, and summarization in the era of what is addressing the problems in constructing has been dubbed “Big Data.” Lincoln Laboratory has been networks from unstructured data, analyzing the investigating approaches for computational social network analysis that focus on three areas: constructing social net- community structure of a network, and inferring works, analyzing the structure and dynamics of a com- information from networks. Graph analytics munity, and developing inferences from social networks. have proven to be valuable tools in solving these Network construction from general, real-world data presents several unexpected challenges owing to the data challenges. Through the use of these tools, domains themselves, e.g., information extraction and pre- Laboratory researchers have achieved promising processing, and to the data structures used for knowledge results on real-world data.