Matthew E. Smith, Ph.D

Total Page:16

File Type:pdf, Size:1020Kb

Matthew E. Smith, Ph.D Matthew E. Smith, Ph.D. Assistant Professor Department of Plant Pathology & Curator of the UF Fungal Herbarium (FLAS) University of Florida 2517 Fifield Hall Gainesville FL 32611-0680 Phone: +1.352.273.2837 Email: [email protected] Web: http://plantpath.ifas.ufl.edu/faculty/matthew-e-smith/ EDUCATION 2006 Ph.D. – Graduate Group in Ecology, University of California at Davis 1997 B.S. – Biological Sciences, University of California at Davis FELLOWSHIPS, AWARDS, AND SCHOLARSHIPS 2017 u University of Florida Term Professorship Award (2017–2020) 2017 u SEC Travel Grant [$1930] 2016 u Alexopoulos Prize, Mycological Society of America [$1000] 2015 u University of Florida Excellence Award for Assistant Professors [$5000] 2012 u American Phytopathological Society travel award – Providence, RI [$500] 2012 u FESIN – N. America Mycoflora workshop grant – New Haven, CT [$900] 2010 u Duke Preparing Future Faculty Program – Duke University 2010 u FESIN Metagenomics Scholarship – Scotland, UK [$2,000] 2007–2009 u Farlow Postdoctoral Fellowship – Harvard University [$80,000] 2006 u North American Truffling Society – Student Scholarship [$1,000] 2005 u Mycological Society of America – Best Student Presentation [$1,000] 2003 u San Francisco Mycological Society – Student Scholarship [$500] 2001, 2002 u Sonoma Mycological Association – Student Scholarship [$500] GRANTS 2017 u University of Florida College of Agricultural and Life Sciences OSBS seed grant: “DNA barcoding the macrofungi of Ordway-Swisher: documenting biodiversity and building herbarium resources for the iconic fungi of north Florida ecosystems” PI: Smith ME. co- PI: Richter BS, Healy RA. [$48,356] 1 Matthew E. Smith Curriculum Vitae 2016 u National Science Foundation Grant, Systematics and Biodiversity Science Cluster: “Ambrosia beetles and fungi: a comprehensive global survey of an increasingly important symbiosis” PI: Hulcr J. co-PI: Smith ME. [$668,983] DEB-556283 2016 u CSP Community Sequencing Project, Joint Genome Institute, US Dept. of Energy: “Genomics of the early diverging lineages of fungi and their transition to terrestrial, plant- based ecologies”. Funded Proposal 1978 2015 u National Science Foundation Grant, Advancing Digitization of Biodiversity Collections (ADBC): “Digitization TCN: Collaborative: The Microfungi Collections Consortium: A Networked Approach to Digitizing Small Fungi with Large Impacts on the Function and Health of Ecosystems” PI: Smith ME, Co-PIs: Brewer M, Kluse J. [$201,681] DBI- 1502763 2015 u National Science Foundation Grant, Genealogy of Life Cluster: “The Zygomycetes Genealogy of Life (ZyGoLife) – the conundrum of Kingdom Fungi” PI: James TY, co-PI: Smith ME. [$690,389] BIO-1441715 2015 u National Peanut Board, Southeastern Peanut Research Initiative – “Increasing our understanding of the population diversity of Sclerotium rolfsii, the white mold pathogen, in Southeastern peanut production areas” (PI: Dufault N, Co-PI: Smith ME) [$9,517] 2015 u University of Florida, Natural Area Teaching Lab (NATL) Minigrant – “NATL Lichen Biodiversity Survey”, co-advisor for Barry Kaminsky (MS Student, Biology) [$500] 2014 u National Science Foundation Grant, Systematics and Biodiversity Science Cluster: “Symbiotic ectomycorrhizal fungi in southern South America – macroecology and evolutionary history from community to landscape scale” PI: Smith ME, co-PI: Matheny PB. [$450,239] DEB-1354802 2014 u Southern Sustainable Agriculture Research and Education (SARE): “Propagation of the edible Pecan Truffle (Tuber lyonii) in pecan nurseries” PI: Smith ME, Collaborator: Tim Brenneman [$14,978] 2013 u University of Florida College of Agricultural and Life Sciences Early Career Grant: “Elucidating the Biology and Ecology of the Pecan Truffle (Tuber lyonii) in Pecan Orchards of Florida and nearby Southeastern States.” PI: Smith ME. [$42,032] 2012 u University of Florida, Natural Area Teaching Lab (NATL) Minigrant – “Documenting the common macrofungi of the NATL reserve”, advisor for student consortium [$500] 2012 u Instructional Improvement Grant from University of Florida College of Agricultural and Life Sciences: “Modernizing the Infrastructure for Hands-On Laboratory Education in Plant Pathology“ – Matthew E. Smith (PI), Brantlee Richter (co-PI) [$10,000] 2011–2013 u National Science Foundation Grant to Advance Digitization of Biological Collections (ADBC): “The Macrofungi Collection Consortium: Unlocking a Biodiversity Resource for Understanding Biotic Interactions, Nutrient Cycling and Human Affairs.” Principle Investigator Barbara Theirs at NYBG with collaborators at 35 fungal herbaria (Co-PI, N. Cellinese; senior personnel, M.E. Smith) [$31,428] 2 Matthew E. Smith Curriculum Vitae 2009–2011 u National Science Foundation Grant: “Ectomycorrhizal fungal diversity of the Guiana Shield, South America (#0816695)” with co-author T. Henkel (California State University at Humboldt). PI for administrative purposes – R. Vilgalys (Duke University) [$580,000] 2007–2009 u Farlow Postdoctoral Research Grant – Harvard University [$10,000] 2006 u AH & HV Smith Research Fund – Mycological Society of America [$1,000] 2003 u Forest Ecology Research Award – Mycological Society of America [$1,000] PEER REVIEWED PUBLICATIONS 89) Benny GL, Smith ME (2018) Notes on Syncephalis (Zoopgales, Zoopagomycota) from the Farlow Herbarium with the description of a new species, Syncephalis aethiopica. Mycologia. <Accepted Manuscript> 88) Alvarez-Manjarrez J, Garibay-Orijel R, Smith ME. (2017) Caryophyllales are the main hosts of a unique set of ectomycorrhizal fungi in a Neotropical dry forest. Mycorrhiza. https://doi.org/10.1007/s00572-017-0807-7 87) Healy RA, Horner HT, Bonito GM, McLaughlin DJ, Smith ME (2017) An ultrastructural study of spore wall development and septal pores in species of the Pachyphlodes (Pezizaceae, Pezizales) lineage, with a description of the new species Pachyphlodes annagardnerae. Mycological Progress. https://doi.org/10.1007/s11557-017-1348-3 88) Kuhar F, Smith ME, Mujic A(p), Truong C(p), Nouhra E. (2017) A systematic overview of Descolea (Agaricales) in the Nothofagaceae forests of Patagonia. Fungal Biology. 121(10): 876-889 https://doi.org/10.1016/j.funbio.2017.06.006 87) Chuang S-C, Ho H-M, Tsai J-L, Reynolds N, Smith ME, Benny GL, Chien C-Y (2017) Preliminary phylogeny of Coemansia (Kickxellales) with the description of four new species from Taiwan. Mycologia. <Online Early> https://doi.org/10.1080/00275514.2017.1401892 86) Ge Z-W, Brenneman T, Bonito G, Smith ME. (2017) Soil pH and mineral nutrients strongly influence truffles and other ectomycorrhizal fungi associated with commercial pecans (Carya illinoinensis). Plant and Soil. 418(1-2): 493-505. DOI: 10.1007/s11104-017-3312-z 85) Desirò A, Rimington W, Jacob A, Vande Pol N, Smith ME, Trappe JM, Bidartondo MI, Bonito G (2017) Multigene phylogeny of Endogonales, an early diverging lineage of fungi associated with plants. IMA Fungus. 8(2): 245–257. doi:10.5598/imafungus.2017.08.02.03 84) Healy RH, Donald Pfister, Alija B. Mujic, Daniela Torres, Eduardo Nouhra, Guiliana Furci, Smith ME. (2017) Pseudotricharina lanigera, a new species from the Patagonian region of Argentina. Ascomycetes.org 9(4):135-138. 83) Truong C, Kuhar F, Kaplan Z, Smith ME. (2017) Out of Gondwana: Southern temperate Amanita lineages and the description of the first sequestrate species from the Americas. Fungal Biology 121(8): 638-651. doi: 10.1016/j.funbio.2017.04.006. 3 Matthew E. Smith Curriculum Vitae 82) Smith ME, Henkel TW, Williams GC, Aime MC, Fremier AK, Vilgalys R (2017) Investigating niche partitioning of ectomycorrhizal fungi in specialized rooting zones of the monodominant leguminous tree Dicymbe corymbosa. New Phytologist 215(1): 443-453 doi: 10.1111/nph.14570 81) Lazarus KL, Benny GL, Ho H-M, Smith ME (2017) Phylogenetic systematics of Syncephalis (Zoopagales, Zoopagomycotina), a genus of ubiquitous mycoparasites. Mycologia 109(2) :333-349. doi: 10.1080/00275514.2017.1307005. 80) Renolds NK Smith ME, Tretter ED, Gause J, Heeney D, Cafaro MJ, Smith JF, Novak SJ, Bourland WA, White MM (2017) Resolving relationships at the animal-fungal divergence: A molecular phylogenetic study of the protist trichomycetes (Ichthyosporea, Eccrinida). Molecular Phylogenetics and Evolution. 109: 447-464. https://doi.org/10.1016/j.ympev.2017.02.007 79) Truong C, Mujic AB, Healy R, Kuhar F, Furci G, Torres D, Niskanen T, Sandoval-Leiva PA, Fernández N, Escobar JM, Moretto A, Palfner G, Pfister D, Nourha E, Swenie R, Sánchez-García M, Matheny PB, Smith ME. (2017) How to know the fungi: combining field inventories and DNA-barcoding to document fungal diversity. New Phytologist. 214(3) :913-919. DOI: 10.1111/nph.14509 78) Orihara T, Smith ME. (2017) Unique phylogenetic position of the African truffle-like fungus Octaviania ivoryana (Boletaceae, Boletales) and the proposal of a new genus, Afrocastellanoa. Mycologia. 108(2): 323-332. doi: 10.1080/00275514.2017.1301750doi/full/10.1080/00275514.2017.1301750 77) Kumar LM, Smith ME, Nouhra ER, Orihara T, Pfister DH, McLaughlin DJ, Healy RA (2017) A molecular and morphological re-examination of the generic limits of truffles in the Tarzetta-Geopyxis lineage - Paurocotylis, Hydnocystis, and Densocarpa. Fungal Biology. 121(3) :264–284. DOI: 10.1016/j.funbio.2016.12.004. 76) Sulzbacher MA, Grebnec T, Cabral TS, Gianchi AJ, Goto BT, Smith ME, Baseia IG. (2016) Restingomyces, a new sequestrate genus from the Brazilian Atlantic rainforest that is phylogenetically related to early-diverging taxa in Trappeaceae
Recommended publications
  • Appendix K. Survey and Manage Species Persistence Evaluation
    Appendix K. Survey and Manage Species Persistence Evaluation Establishment of the 95-foot wide construction corridor and TEWAs would likely remove individuals of H. caeruleus and modify microclimate conditions around individuals that are not removed. The removal of forests and host trees and disturbance to soil could negatively affect H. caeruleus in adjacent areas by removing its habitat, disturbing the roots of host trees, and affecting its mycorrhizal association with the trees, potentially affecting site persistence. Restored portions of the corridor and TEWAs would be dominated by early seral vegetation for approximately 30 years, which would result in long-term changes to habitat conditions. A 30-foot wide portion of the corridor would be maintained in low-growing vegetation for pipeline maintenance and would not provide habitat for the species during the life of the project. Hygrophorus caeruleus is not likely to persist at one of the sites in the project area because of the extent of impacts and the proximity of the recorded observation to the corridor. Hygrophorus caeruleus is likely to persist at the remaining three sites in the project area (MP 168.8 and MP 172.4 (north), and MP 172.5-172.7) because the majority of observations within the sites are more than 90 feet from the corridor, where direct effects are not anticipated and indirect effects are unlikely. The site at MP 168.8 is in a forested area on an east-facing slope, and a paved road occurs through the southeast part of the site. Four out of five observations are more than 90 feet southwest of the corridor and are not likely to be directly or indirectly affected by the PCGP Project based on the distance from the corridor, extent of forests surrounding the observations, and proximity to an existing open corridor (the road), indicating the species is likely resilient to edge- related effects at the site.
    [Show full text]
  • Peziza and Pezizaceae Inferred from Multiple Nuclear Genes: RPB2, -Tubulin, and LSU Rdna
    Molecular Phylogenetics and Evolution 36 (2005) 1–23 www.elsevier.com/locate/ympev Evolutionary relationships of the cup-fungus genus Peziza and Pezizaceae inferred from multiple nuclear genes: RPB2, -tubulin, and LSU rDNA Karen Hansen ¤, Katherine F. LoBuglio, Donald H. PWster Harvard University Herbaria, Cambridge, MA 02138, USA Received 5 May 2004; revised 17 December 2004 Available online 22 April 2005 Abstract To provide a robust phylogeny of Pezizaceae, partial sequences from two nuclear protein-coding genes, RPB2 (encoding the sec- ond largest subunit of RNA polymerase II) and -tubulin, were obtained from 69 and 72 specimens, respectively, to analyze with nuclear ribosomal large subunit RNA gene sequences (LSU). The three-gene data set includes 32 species of Peziza, and 27 species from nine additional epigeous and six hypogeous (truZe) pezizaceous genera. Analyses of the combined LSU, RPB2, and -tubulin data set using parsimony, maximum likelihood, and Bayesian approaches identify 14 Wne-scale lineages within Pezizaceae. Species of Peziza occur in eight of the lineages, spread among other genera of the family, conWrming the non-monophyly of the genus. Although parsimony analyses of the three-gene data set produced a nearly completely resolved strict consensus tree, with increased conWdence, relationships between the lineages are still resolved with mostly weak bootstrap support. Bayesian analyses of the three- gene data, however, show support for several more inclusive clades, mostly congruent with Bayesian analyses of RPB2. No strongly supported incongruence was found among phylogenies derived from the separate LSU, RPB2, and -tubulin data sets. The RPB2 region appeared to be the most informative single gene region based on resolution and clade support, and accounts for the greatest number of potentially parsimony informative characters within the combined data set, followed by the LSU and the -tubulin region.
    [Show full text]
  • Análisis Bibliográfico Sobre La Interacción Entre Carya Illinoinensis Y
    Trabajo Final de Carrera Título: Análisis bibliográfico sobre la interacción entre Carya illinoinensis y hongos del género Tuber. Alumno: Rocío Quiroga N° legajo: 28249/4 D.N.I.: 40.622.852. Correo electrónico: [email protected] Teléfono: 1165982418 Director: Gabriela Andrea Morelli Co- director: Mario Carlos Nazareno Saparrat Fecha de entrega: 12/07/2021 1 1 1- MODALIDAD 2 Investigación bibliográfica. 3 2- RESUMEN 4 Carya illinoinensis o Nuez Pecán es hoy en día un cultivo que está adquiriendo 5 importancia en el país por su alto valor nutricional como alimento. Debido a esto, surge 6 la necesidad de buscar alternativas que sean sustentables, para lograr un mejor 7 desarrollo y calidad del cultivo. Aquí es donde entran en juego las micorrizas como una 8 de las alternativas y, principalmente las ectomicorrizas que se forman como resultado 9 de la simbiosis del árbol con algunas especies de hongos, lo que otorga tanto 10 beneficios a la planta como al hongo. Uno de los géneros de hongos ectomicorrícicos 11 que se puede nombrar es Tuber sp., el cual se caracteriza por formar un cuerpo 12 fructífero hipogeo que se conoce con el nombre de Trufa, la cual hoy en día se 13 comercializa en muchos países del mundo y tiene un gran valor económico. Por eso 14 mismo, el objetivo de este trabajo final fue indagar la información disponible sobre la 15 interacción entre Carya illinoinensis y hongos del género Tuber y analizar su potencial 16 en la producción de plantas de vivero. Luego de realizar esta investigación 17 bibliográfica se puede inferir el gran potencial de esta interacción para la producción 18 de ambos cultivos en conjunto, ya que hay una gran diversidad de trabajos que 19 demuestran que es factible lograr una interacción entre Carya illinoinensis y algunos 20 hongos del género Tuber, como T.
    [Show full text]
  • Pecan Truffles Truffles (Tuberales)
    Pecan Truffles Truffles (Tuberales) • Below-ground reproductive structures formed Tim Brenneman by about 200 species of ascomycetes to Department of Plant Pathology produce and disperse spores (There are at least 1000 species of hypogeous fungi) University of Georgia, Tifton • Spores not discharged; odor attracts animals • Gathered for food since before the time of Christ. Some species are among the most sought after delicacies in the world No chocolate here, but many types of The Most Expensive Foods edible fungi associated with pecans You Can Buy MSN, Jan 2013 “Available from September to December, white truffles are a gourmet indulgence that'll cost you — around $200 an ounce, which amounts to about 2 pieces. These special mushrooms, which can only be located by trained pigs or dogs, are found in the Piedmont region of Italy and are becoming increasingly rare every year.” Tuber lyonii – pecan truffle Mycorrhizae (Gr. Mykes = Mushroom + rhiza = root) • A symbiotic (living together) association between the hyphae of certain fungi and the roots of plants. • Truffles are ectomycorrhizae, forming a mantle of growth over the root tips (versus endomycorrhizae) 1 Ectomycorrhizae Pecan root with mycorrhizae • Root hairs do not develop and the roots are often short and branched • Widespread in nature on many woody plants such as oaks, beech, willow, pines (and pecans!) Mycorrhizae • Most are Basidiomycetes but some, like truffles, are Ascomycetes Benefits of Ectomycorrhizae Pecan truffles Hyphae extend into soil to; • Originally discovered in Austin, Texas under a 1. solubilize minerals pecan tree and described as Tuber texense (Heimsch, 1958) 2. improve nutrient uptake • Found in Georgia in 1987 in a pecan orchard 3.
    [Show full text]
  • Truffles and False Truffles: a Primer by Britt A
    Two views of Tuber canaliculatum. Photos: John Plschke III. Truffles and False Truffles: A Primer by Britt A. Bunyard; photos by John Plischke III Nothing in biology makes sense except in the light of evolution. —Theodosius Dobzhansky (1900–1979) Truffles have been the stuff of legend and culinary delight for genus of the most highly prized species of truffles.) As with every- centuries, even millennia. Historically, all mushrooms have been thing in nature, though, there is a reason. regarded with mystery or suspicion due mostly to their habit of materializing overnight (completely unlike other “plants”) and Form follows function: the convoluted hymenium often in rings (which was clearly the work of dancing fairies). Truffles are curiouser still in that they develop entirely under- Although it may not be obvious upon first inspection, species of ground. Theophrastus (372–287 B.C.) is credited with the earli- truffle are most closely related to members of the order Pezizales, est authorship of the group; he considered them the strangest of which includes Peziza, the eyelash fungus (Scutellinia scutellata), all plants (you will recall that, until fairly recently, fungi were and the beautiful scarlet cup (Sarcoscypha coccinea). But how did classified as plants) because they lack any plantlike features, in- members of the genus Tuber and their relatives go from a flattened cluding roots. morphology and epigeous (above ground) growth habit to highly When we think of truffles, we hardly get an image of the convoluted and hypogeous (subterranean)? In his terrific book typical fungus fruitbody, much less that of a mushroom. Not The Fifth Kingdom, Bryce Kendrick illustrates the evolutionary classified with true mushrooms (the Basidiomycetes), the truffles sequence from a flattened, above-ground cup like Peziza that likely possess sac-like spore producing structures (the ascus; plural gave rise to fungi that were increasingly convoluted like Genea.
    [Show full text]
  • A Preliminary Checklist of Arizona Macrofungi
    A PRELIMINARY CHECKLIST OF ARIZONA MACROFUNGI Scott T. Bates School of Life Sciences Arizona State University PO Box 874601 Tempe, AZ 85287-4601 ABSTRACT A checklist of 1290 species of nonlichenized ascomycetaceous, basidiomycetaceous, and zygomycetaceous macrofungi is presented for the state of Arizona. The checklist was compiled from records of Arizona fungi in scientific publications or herbarium databases. Additional records were obtained from a physical search of herbarium specimens in the University of Arizona’s Robert L. Gilbertson Mycological Herbarium and of the author’s personal herbarium. This publication represents the first comprehensive checklist of macrofungi for Arizona. In all probability, the checklist is far from complete as new species await discovery and some of the species listed are in need of taxonomic revision. The data presented here serve as a baseline for future studies related to fungal biodiversity in Arizona and can contribute to state or national inventories of biota. INTRODUCTION Arizona is a state noted for the diversity of its biotic communities (Brown 1994). Boreal forests found at high altitudes, the ‘Sky Islands’ prevalent in the southern parts of the state, and ponderosa pine (Pinus ponderosa P.& C. Lawson) forests that are widespread in Arizona, all provide rich habitats that sustain numerous species of macrofungi. Even xeric biomes, such as desertscrub and semidesert- grasslands, support a unique mycota, which include rare species such as Itajahya galericulata A. Møller (Long & Stouffer 1943b, Fig. 2c). Although checklists for some groups of fungi present in the state have been published previously (e.g., Gilbertson & Budington 1970, Gilbertson et al. 1974, Gilbertson & Bigelow 1998, Fogel & States 2002), this checklist represents the first comprehensive listing of all macrofungi in the kingdom Eumycota (Fungi) that are known from Arizona.
    [Show full text]
  • Boletus Edulis and Cistus Ladanifer: Characterization of Its Ectomycorrhizae, in Vitro Synthesis, and Realised Niche
    UNIVERSIDAD DE MURCIA ESCUELA INTERNACIONAL DE DOCTORADO Boletus edulis and Cistus ladanifer: characterization of its ectomycorrhizae, in vitro synthesis, and realised niche. Boletus edulis y Cistus ladanifer: caracterización de sus ectomicorrizas, síntesis in vitro y área potencial. Dª. Beatriz Águeda Hernández 2014 UNIVERSIDAD DE MURCIA ESCUELA INTERNACIONAL DE DOCTORADO Boletus edulis AND Cistus ladanifer: CHARACTERIZATION OF ITS ECTOMYCORRHIZAE, in vitro SYNTHESIS, AND REALISED NICHE tesis doctoral BEATRIZ ÁGUEDA HERNÁNDEZ Memoria presentada para la obtención del grado de Doctor por la Universidad de Murcia: Dra. Luz Marina Fernández Toirán Directora, Universidad de Valladolid Dra. Asunción Morte Gómez Tutora, Universidad de Murcia 2014 Dª. Luz Marina Fernández Toirán, Profesora Contratada Doctora de la Universidad de Valladolid, como Directora, y Dª. Asunción Morte Gómez, Profesora Titular de la Universidad de Murcia, como Tutora, AUTORIZAN: La presentación de la Tesis Doctoral titulada: ‘Boletus edulis and Cistus ladanifer: characterization of its ectomycorrhizae, in vitro synthesis, and realised niche’, realizada por Dª Beatriz Águeda Hernández, bajo nuestra inmediata dirección y supervisión, y que presenta para la obtención del grado de Doctor por la Universidad de Murcia. En Murcia, a 31 de julio de 2014 Dra. Luz Marina Fernández Toirán Dra. Asunción Morte Gómez Área de Botánica. Departamento de Biología Vegetal Campus Universitario de Espinardo. 30100 Murcia T. 868 887 007 – www.um.es/web/biologia-vegetal Not everything that can be counted counts, and not everything that counts can be counted. Albert Einstein Le petit prince, alors, ne put contenir son admiration: -Que vous êtes belle! -N´est-ce pas, répondit doucement la fleur. Et je suis née meme temps que le soleil..
    [Show full text]
  • 9B Taxonomy to Genus
    Fungus and Lichen Genera in the NEMF Database Taxonomic hierarchy: phyllum > class (-etes) > order (-ales) > family (-ceae) > genus. Total number of genera in the database: 526 Anamorphic fungi (see p. 4), which are disseminated by propagules not formed from cells where meiosis has occurred, are presently not grouped by class, order, etc. Most propagules can be referred to as "conidia," but some are derived from unspecialized vegetative mycelium. A significant number are correlated with fungal states that produce spores derived from cells where meiosis has, or is assumed to have, occurred. These are, where known, members of the ascomycetes or basidiomycetes. However, in many cases, they are still undescribed, unrecognized or poorly known. (Explanation paraphrased from "Dictionary of the Fungi, 9th Edition.") Principal authority for this taxonomy is the Dictionary of the Fungi and its online database, www.indexfungorum.org. For lichens, see Lecanoromycetes on p. 3. Basidiomycota Aegerita Poria Macrolepiota Grandinia Poronidulus Melanophyllum Agaricomycetes Hyphoderma Postia Amanitaceae Cantharellales Meripilaceae Pycnoporellus Amanita Cantharellaceae Abortiporus Skeletocutis Bolbitiaceae Cantharellus Antrodia Trichaptum Agrocybe Craterellus Grifola Tyromyces Bolbitius Clavulinaceae Meripilus Sistotremataceae Conocybe Clavulina Physisporinus Trechispora Hebeloma Hydnaceae Meruliaceae Sparassidaceae Panaeolina Hydnum Climacodon Sparassis Clavariaceae Polyporales Gloeoporus Steccherinaceae Clavaria Albatrellaceae Hyphodermopsis Antrodiella
    [Show full text]
  • Current Status of Truffle Cultivation: Recent Results and Future Perspectives ______Alessandra Zambonelli1, Mirco Iotti1, Ian Hall2
    A. Zambonelli, M. Iotti, I. Hall Micologia Italiana vol. 44 (2015) ISSN 2465-311X DOI: 10.6092/issn.2465-311X/5593 Current status of truffle cultivation: recent results and future perspectives ________________________________________________________________________________ Alessandra Zambonelli1, Mirco Iotti1, Ian Hall2 1Department of Agricultural Science, Bologna University, viale Fanin 46, 40127 Bologna Italy 2 Truffles & Mushrooms (Consulting) Ltd, P.O. Box 268, Dunedin, New Zealand Correspondig Author M. Iotti e-mail: [email protected] Abstract In this review the current status of truffle cultivation in Europe and outside Europe is reported. While the cultivation of Tuber melanosporum (Périgord black truffle), Tuber aestivum (summer or Burgundy truffle) and Tuber borchii (bianchetto truffle) gave good results, only the Italian white truffle (Tuber magnatum), which is the most expensive, has yet to be successfully cultivated. In future a revolutionary approach to truffle cultivation would be the application of mycelial inoculation techniques for producing Tuber infected plants which will allow to select the fungal strains adapted to specific climatic, edaphic conditions and hosts. The new insights which will be gained by the extensive Tuber genome sequencing programme will also help to improve truffle cultivation techniques. Keywords: Tuber melanosporum; Tuber magnatum; Tuber borchii; Tuber aestivum; cultivation; mycelial inoculation Riassunto I tartufi sono funghi ascomiceti appartenenti all’ordine delle Pezizales anche se molti ricercatori considerano “veri tartufi” solo le specie apparteneti al genere Tuber, che comprende le specie di maggiore interesse gastronomico e commerciale quali Tuber melanosporum (tartufo nero pregiato), Tuber magnatum (tartufo bianco pregiato), Tuber aestivum (tartufo estivo o uncinato) e Tuber borchii (tartufo bianchetto). L’elevato valore economico di questi tartufi ha suscitato grande interesse riguardo la loro coltivazione fin dal lontano rinascimento.
    [Show full text]
  • A Checklist of Clavarioid Fungi (Agaricomycetes) Recorded in Brazil
    A checklist of clavarioid fungi (Agaricomycetes) recorded in Brazil ANGELINA DE MEIRAS-OTTONI*, LIDIA SILVA ARAUJO-NETA & TATIANA BAPTISTA GIBERTONI Departamento de Micologia, Universidade Federal de Pernambuco, Av. Nelson Chaves s/n, Recife 50670-420 Brazil *CORRESPONDENCE TO: [email protected] ABSTRACT — Based on an intensive search of literature about clavarioid fungi (Agaricomycetes: Basidiomycota) in Brazil and revision of material deposited in Herbaria PACA and URM, a list of 195 taxa was compiled. These are distributed into six orders (Agaricales, Cantharellales, Gomphales, Hymenochaetales, Polyporales and Russulales) and 12 families (Aphelariaceae, Auriscalpiaceae, Clavariaceae, Clavulinaceae, Gomphaceae, Hymenochaetaceae, Lachnocladiaceae, Lentariaceae, Lepidostromataceae, Physalacriaceae, Pterulaceae, and Typhulaceae). Among the 22 Brazilian states with occurrence of clavarioid fungi, Rio Grande do Sul, Paraná and Amazonas have the higher number of species, but most of them are represented by a single record, which reinforces the need of more inventories and taxonomic studies about the group. KEY WORDS — diversity, taxonomy, tropical forest Introduction The clavarioid fungi are a polyphyletic group, characterized by coralloid, simple or branched basidiomata, with variable color and consistency. They include 30 genera with about 800 species, distributed in Agaricales, Cantharellales, Gomphales, Hymenochaetales, Polyporales and Russulales (Corner 1970; Petersen 1988; Kirk et al. 2008). These fungi are usually humicolous or lignicolous, but some can be symbionts – ectomycorrhizal, lichens or pathogens, being found in temperate, subtropical and tropical forests (Corner 1950, 1970; Petersen 1988; Nelsen et al. 2007; Henkel et al. 2012). Some species are edible, while some are poisonous (Toledo & Petersen 1989; Henkel et al. 2005, 2011). Studies about clavarioid fungi in Brazil are still scarce (Fidalgo & Fidalgo 1970; Rick 1959; De Lamônica-Freire 1979; Sulzbacher et al.
    [Show full text]
  • Fungi of the Fortuna Forest Reserve: Taxonomy and Ecology with Emphasis on Ectomycorrhizal Communities
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.16.045724; this version posted April 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Fungi of the Fortuna Forest Reserve: Taxonomy and ecology with emphasis on ectomycorrhizal communities Adriana Corrales1 and Clark L. Ovrebo2 1 Department of Biology, Faculty of Natural Sciences, Universidad del Rosario. Bogota, 111221, Colombia. 2 Department of Biology, University of Central Oklahoma. Edmond, OK. USA. ABSTRACT Panamanian montane forests harbor a high diversity of fungi, particularly of ectomycorrhizal (ECM) fungi, however their taxonomy and diversity patterns remain for the most part unexplored. Here we present state of the art fungal taxonomy and diversity patterns at Fortuna Forest Reserve based on morphological and molecular identification of over 1,000 fruiting body collections of macromycetes made over a period of five years. We compare these new results with previously published work based on environmental sampling of Oreomunnea mexicana root tips. We compiled a preliminary list of species and report 22 new genera and 29 new fungal species for Panama. Based on fruiting body collection data we compare the species composition of ECM fungal communities associated with Oreomunnea stands across sites differing in soil fertility and amount of rainfall. We also examine the effect of a long-term nitrogen addition treatment on the fruiting body production of ECM fungi. Finally, we discuss the biogeographic importance of Panama collections which fill in the knowledge gap of ECM fungal records between Costa Rica and Colombia.
    [Show full text]
  • Re-Thinking the Classification of Corticioid Fungi
    mycological research 111 (2007) 1040–1063 journal homepage: www.elsevier.com/locate/mycres Re-thinking the classification of corticioid fungi Karl-Henrik LARSSON Go¨teborg University, Department of Plant and Environmental Sciences, Box 461, SE 405 30 Go¨teborg, Sweden article info abstract Article history: Corticioid fungi are basidiomycetes with effused basidiomata, a smooth, merulioid or Received 30 November 2005 hydnoid hymenophore, and holobasidia. These fungi used to be classified as a single Received in revised form family, Corticiaceae, but molecular phylogenetic analyses have shown that corticioid fungi 29 June 2007 are distributed among all major clades within Agaricomycetes. There is a relative consensus Accepted 7 August 2007 concerning the higher order classification of basidiomycetes down to order. This paper Published online 16 August 2007 presents a phylogenetic classification for corticioid fungi at the family level. Fifty putative Corresponding Editor: families were identified from published phylogenies and preliminary analyses of unpub- Scott LaGreca lished sequence data. A dataset with 178 terminal taxa was compiled and subjected to phy- logenetic analyses using MP and Bayesian inference. From the analyses, 41 strongly Keywords: supported and three unsupported clades were identified. These clades are treated as fam- Agaricomycetes ilies in a Linnean hierarchical classification and each family is briefly described. Three ad- Basidiomycota ditional families not covered by the phylogenetic analyses are also included in the Molecular systematics classification. All accepted corticioid genera are either referred to one of the families or Phylogeny listed as incertae sedis. Taxonomy ª 2007 The British Mycological Society. Published by Elsevier Ltd. All rights reserved. Introduction develop a downward-facing basidioma.
    [Show full text]