Paleoclimatic Reconstruction from Laminated Lake Sediments, Bødalsvatnet, Nordenskiöld Land, Svalbard

Total Page:16

File Type:pdf, Size:1020Kb

Paleoclimatic Reconstruction from Laminated Lake Sediments, Bødalsvatnet, Nordenskiöld Land, Svalbard Master’s Thesis 2020 60 ECTS Faculty of Environmental Sciences and Natural Resource Management Paleoclimatic reconstruction from laminated lake sediments, Bødalsvatnet, Nordenskiöld Land, Svalbard Inger Marie Fausa Aasberg Environmental Science and Natural Resources Paleoclimatic reconstruction from laminated lake sediments, Bødalsvatnet, Nordenskiöld Land, Svalbard Inger Marie Fausa Aasberg This thesis was conducted in connection with the University Centre in Svalbard: August, 2020 Abstract One predicted consequence of the current warming in the Arctic is an increase of heavy precipitation events. Svalbard have experienced an increase in total annual precipitation and air temperature have affected Svalbard’s environment, in particular the regional hydroclimate. The varved proglacial sediment record preserved in Bødalsvatnet, Nordenskiöld Land, Svalbard, contains a valuable climate signal that in this study is used to reconstruct changes in precipitation and temperature the last 150 years. The thesis uses a multi-proxy approach with varve count, physical parameters (grain size, magnetic susceptibility, dry bulk density, loss-on- ignition and water content) and geochemical analysis through X-ray fluorescence (K, Ca, Mn, Fe, Ti and Zr) of surface core BSV – 2019 – 1. Age determination of the surface core were cross corelated with a 2012 by varve count and plutonium (239+240Pu) measurement. Six turbidites (E1 – E6) were identified and dated to 1936, 1945, 1957, 1983 and 1993. The six turbidites relating to mass movement events lead on by intense precipitation thought to have exceeded the 2,5 mm per hour. The current threshold for the formation of mass moment events in Svalbard. The presence of a dropstone > 1 mm within deposits from the 1957 event was likely caused by an avalanche. The 1993 and 1983 events were likely triggered by high intensity warm rainstorms related to south westerly cyclones in November and March, respectively. The mass movement event of 1974 is connected to an intense heavy precipitation event where 34 mm of rain fell during a period of 12 hours. By cross-correlation to a longer - percussion core from 2012 the paleoclimatic record was extended to approximately 1844. The change in temperature and precipitation in combination with thicker lamina during the end of LIA has similarities to the current sedimentary record and needs to be investigated further. II Sammendrag En forventet konsekvens av dagens oppvarming i Arktis er flere hendelser med intens nedbør. På Svalbard er har det vært en økning i total årlig nedbør og temperatur som har påvirket miljøet og da særlig hydroklimaet. Den proglasiale, årlige laminerte sedimenthistorien er bevart i Bødalsvatnet, Nordenskiöld Land, Svalbard. Den inneholder et viktig klimasignal som denne studien har brukt for å rekonstruere forandringer i nedbør og temperatur de siste 150 år. Denne oppgaven bruker en multi-proxy metode på overflatekjernen BVS-2019-1 basert på fysiske parametere (kornstørrelse, magnetisk susceptibilitet, tetthet, glødetap og vanninnhold) og kjemiske parameter ved røntgen-fluorescens (K, Ca, Mn, Fe, Ti og Zr). Aldersbestemmelse av sedimentkjernen er gjort ved å korrelere varv-telling fra 2019 med varv-telling og plutonium (239+240Pu) målinger fra et sediment kjerne tatt i 2012. Seks turbiditeter (E1 til E6) er identifisert og datert til 1936, 1945, 1957, 1974, 1981 og 1993. Turbiditetene er relatert til massebevegelseshendelser forårsaket av nedbør med en intensitet over 2,5 mm i timen, som er grenseverdi for massebevegelseshendelser på Svalbard. Forekomst av droppstein > 1mm er knyttet til hendelse i 1974, forårsaket av et snøskred. Hendelsene i 1983 og 1993 er knyttet til sør-vestlig sykloner som har ført til mild regnstorm med høy intensitet i henholdsvis mars og november. Hendelsen i 1974 er knyttet til intenst regnvær hvor det falt 34 mm regn over en periode på 12 timer. Ved a korrelere den lengre sediment kjernen fra 2012 ble den paleoklimatiske historien utvidet ytterligere, til ca. 1844. Forandringen i temperatur og nedbør sammen med tykkere lamina ved utgangen av LIA har likheter ved det nåværende sedimentære historien og trenger å bli studert ytterligere. III Acknowledgements I would like to thank my supervisor at the Norwegian University of Life Sciences, Mona Henriksen for supporting my choices, her guidance and knowledge. I am grateful to my University of Svalbard supervisor, Michael Retelle for his supervision, generosity and guidance. Thank you, Mike, your encouragement led me through this project. This research was supported by a grant to Retelle from the U.S. National Science Foundation, Office of Polar Programs, Arctic Natural Sciences (award number 1744433). I would like to thank Jan Christensen's Endowment for supporting my stay in Svalbard. Further I would like to thank Phil Dostie, for your guidance in the laboratory and lab technician Pete Dawson and Professsor Mike Rhodes at the Ronald B. Gilmore X-Ray Fluorescence Lab at UMass Amherst for sharing your extensive ITRAX expertise. And a big thank you to Wesley Farnsworth and Håvard Toft Larsen for all the help during my fieldwork in Bødalen. I would also like to thank Mike, Sylvia, Hannah, Emma, Julie and Leah for welcoming me to Maine and making my stay unforgettable. Thank you to my “Svalbard family” for your encouragement. And the start of 2020 has been different for many and I will like to thank Lars for suppling me with an office. And friends and family for all your support. IV TABLE OF CONTENTS Chapter 1: Introduction ........................................................................................................................................... 1 Chapter 2: Location and landscape ......................................................................................................................... 2 2.1 Study area ...................................................................................................................................................... 2 2.2 Catchment area .............................................................................................................................................. 3 2.3 Bedrock geology ........................................................................................................................................... 5 2.4 Periglacial geomorphology ........................................................................................................................... 7 2.4.1 Permafrost .............................................................................................................................................. 9 2.5 Lacustrine Sediment .................................................................................................................................... 11 2.5.1 Annual rhythmic sedimentation and surge deposits ............................................................................. 13 Chapter 3: Climate and hydrology ........................................................................................................................ 16 3.1 Glacial and climatic history......................................................................................................................... 16 3.2 Ocean circulation and climate ..................................................................................................................... 17 3.3 Temperature ................................................................................................................................................ 19 3.4 Precipitation ................................................................................................................................................ 21 3.5 Hydrology ................................................................................................................................................... 23 Chapter 4: Methods ............................................................................................................................................... 25 4.1 Outline of the work ..................................................................................................................................... 25 4.2 Fieldwork in 2019 ....................................................................................................................................... 27 4.3 Laboratory work of 2019............................................................................................................................. 27 4.3.1 Thin sections ........................................................................................................................................ 28 4.3.2 Grain Size ............................................................................................................................................. 29 4.3.3 Magnetic Susceptibility ........................................................................................................................ 31 4.3.4 Dry Bulk density, water content and Loss-on-ignition ......................................................................... 33 4.4.5 Geochemistry ....................................................................................................................................... 36 4.4 Previous analysis ......................................................................................................................................... 38 4.5 Validation of varve record..........................................................................................................................
Recommended publications
  • Climate in Svalbard 2100
    M-1242 | 2018 Climate in Svalbard 2100 – a knowledge base for climate adaptation NCCS report no. 1/2019 Photo: Ketil Isaksen, MET Norway Editors I.Hanssen-Bauer, E.J.Førland, H.Hisdal, S.Mayer, A.B.Sandø, A.Sorteberg CLIMATE IN SVALBARD 2100 CLIMATE IN SVALBARD 2100 Commissioned by Title: Date Climate in Svalbard 2100 January 2019 – a knowledge base for climate adaptation ISSN nr. Rapport nr. 2387-3027 1/2019 Authors Classification Editors: I.Hanssen-Bauer1,12, E.J.Førland1,12, H.Hisdal2,12, Free S.Mayer3,12,13, A.B.Sandø5,13, A.Sorteberg4,13 Clients Authors: M.Adakudlu3,13, J.Andresen2, J.Bakke4,13, S.Beldring2,12, R.Benestad1, W. Bilt4,13, J.Bogen2, C.Borstad6, Norwegian Environment Agency (Miljødirektoratet) K.Breili9, Ø.Breivik1,4, K.Y.Børsheim5,13, H.H.Christiansen6, A.Dobler1, R.Engeset2, R.Frauenfelder7, S.Gerland10, H.M.Gjelten1, J.Gundersen2, K.Isaksen1,12, C.Jaedicke7, H.Kierulf9, J.Kohler10, H.Li2,12, J.Lutz1,12, K.Melvold2,12, Client’s reference 1,12 4,6 2,12 5,8,13 A.Mezghani , F.Nilsen , I.B.Nilsen , J.E.Ø.Nilsen , http://www.miljodirektoratet.no/M1242 O. Pavlova10, O.Ravndal9, B.Risebrobakken3,13, T.Saloranta2, S.Sandven6,8,13, T.V.Schuler6,11, M.J.R.Simpson9, M.Skogen5,13, L.H.Smedsrud4,6,13, M.Sund2, D. Vikhamar-Schuler1,2,12, S.Westermann11, W.K.Wong2,12 Affiliations: See Acknowledgements! Abstract The Norwegian Centre for Climate Services (NCCS) is collaboration between the Norwegian Meteorological In- This report was commissioned by the Norwegian Environment Agency in order to provide basic information for use stitute, the Norwegian Water Resources and Energy Directorate, Norwegian Research Centre and the Bjerknes in climate change adaptation in Svalbard.
    [Show full text]
  • Terrestrial Inputs Govern Spatial Distribution of Polychlorinated Biphenyls (Pcbs) and Hexachlorobenzene (HCB) in an Arctic Fjord System (Isfjorden, Svalbard)*
    Environmental Pollution 281 (2021) 116963 Contents lists available at ScienceDirect Environmental Pollution journal homepage: www.elsevier.com/locate/envpol Terrestrial inputs govern spatial distribution of polychlorinated biphenyls (PCBs) and hexachlorobenzene (HCB) in an Arctic fjord system (Isfjorden, Svalbard)* * Sverre Johansen a, b, c, Amanda Poste a, Ian Allan c, Anita Evenset d, e, Pernilla Carlsson a, a Norwegian Institute for Water Research, Tromsø, Norway b Norwegian University of Life Sciences, Ås, Norway c Norwegian Institute for Water Research, Oslo, Norway d Akvaplan-niva, Tromsø, Norway e UiT, The Arctic University of Norway, Tromsø, Norway article info abstract Article history: Considerable amounts of previously deposited persistent organic pollutants (POPs) are stored in the Received 20 July 2020 Arctic cryosphere. Transport of freshwater and terrestrial material to the Arctic Ocean is increasing due to Received in revised form ongoing climate change and the impact this has on POPs in marine receiving systems is unknown This 11 March 2021 study has investigated how secondary sources of POPs from land influence the occurrence and fate of Accepted 13 March 2021 POPs in an Arctic coastal marine system. Available online 17 March 2021 Passive sampling of water and sampling of riverine suspended particulate matter (SPM) and marine sediments for analysis of polychlorinated biphenyls (PCBs) and hexachlorobenzene (HCB) was carried out Keywords: Particle transport in rivers and their receiving fjords in Isfjorden system in Svalbard. Riverine SPM had low contaminant < S e Terrestrial runoff concentrations ( level of detection-28 pg/g dw PCB14,16 100 pg/g dw HCB) compared to outer marine Environmental contaminants sediments 630-880 pg/g dw SPCB14,530e770 pg/g dw HCB).
    [Show full text]
  • Seasonal Dynamics of the Marine CO System in Adventfjorden, a West
    RESEARCH ARTICLE Seasonal dynamics of the marine CO2 system in Adventfjorden, a west Spitsbergen fjord Ylva Ericson1,2, Melissa Chierici1,3, Eva Falck1,2, Agneta Fransson4, Elizabeth Jones3 & Svein Kristiansen5 1Department of Arctic Geophysics, University Centre in Svalbard, Longyearbyen, Norway; 2Geophysical Institute, University of Bergen, Bergen, Norway; 3Institute of Marine Research, Fram Centre, Tromsø, Norway; 4Norwegian Polar Institute, Fram Centre, Tromsø, Norway; 5Department of Arctic and Marine Biology, UiT—The Arctic University of Norway, Tromsø, Norway Abstract Keywords Marine carbonate system; aragonite; Time series of the marine CO2 system and related parameters at the IsA Sta- net community production; Arctic fjord tion, by Adventfjorden, Svalbard, were investigated between March 2015 biogeochemistry; Svalbard and November 2017. The physical and biogeochemical processes that govern changes in total alkalinity (TA), total dissolved inorganic carbon (DIC) and the Correspondence Ylva Ericson, Department of Arctic saturation state of the calcium carbonate mineral aragonite (ΩAr) were assessed on a monthly timescale. The major driver for TA and DIC was changes in salin- Geophysics, University Centre in Svalbard, ity, caused by river runoff, mixing and advection. This accounted for 77 and PO Box 156, NO-9171 Longyearbyen, Norway. E-mail: [email protected] 45%, respectively, of the overall variability. It contributed minimally to the variability in ΩAr (5%); instead, biological activity was responsible for 60% of Abbreviations the monthly variations. For DIC, the biological activity was also important, con- ArW: Arctic water; AW: Atlantic water; tributing 44%. The monthly effect of air–sea CO2 fluxes accounted for 11 and CC: coastal current; CTD: conductivity– temperature–depth instrument; DIC: 15% of the total changes in DIC and ΩAr, respectively.
    [Show full text]
  • Heavy Rain Events in Svalbard Summer and Autumn of 2016 to 2018
    Heavy Rain Events in Svalbard Summer and Autumn of 2016 to 2018 Ola Bakke Aashamar Thesis submitted for the degree of Master of Science in Meteorology Department of Geosciences Faculty of Mathematics and Natural Sciences University of Oslo Department of Arctic Geophysics The University Centre in Svalbard August 15, 2019 2 “ Når merket vel dere byfolk her i deres stengte gater selv det minste pust av den frihet som tindrer over Ishavets veldige rom? Sto en eneste av dere noensinne ensom under Herrens øyne i et øde av snø og natt? Stirret dere noen gang opp i polarlandets flammende nordlys og forstod de tause toner som strømmet under stjernene? Hva vet dere om de makter som taler i stormer, som roper i snøløsningens skred og som jubler i fuglefjellenes vårskrik? Ingenting. “ - Fritt etter John Giæver, Ishavets glade borgere (1956) ​ 3 Acknowledgements First of all, I am forever grateful to my main supervisor Marius Jonassen, who with his great insight and supportive comments gave me all the motivation and help I needed along the way towards this master thesis. Big round of applause to all the amazing students and staff at UNIS who I was lucky to meet during my stays in Svalbard, and the people at MetOs in Oslo. The times shared with you inspire me both personally and professionally, and I will always keep the memories! Then I want to thank Grete Stavik-Døvle, Terje Berntsen, Frode Stordal and Karl-Johan Ullavik Bakken for ​ ​ admitting and guiding two lost NTNU students into studies at UiO. If not for you, who knows what would have happened.
    [Show full text]
  • Springtime Nitrogen Oxides and Tropospheric Ozone in Svalbard: Local and Long-Range Transported Air Pollution
    EGU21-9126 https://doi.org/10.5194/egusphere-egu21-9126 EGU General Assembly 2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Springtime nitrogen oxides and tropospheric ozone in Svalbard: local and long-range transported air pollution Alena Dekhtyareva1, Mark Hermanson2, Anna Nikulina3, Ove Hermansen4, Tove Svendby5, Kim Holmén6, and Rune Graversen7 1Geophysical Institute, University of Bergen and Bjerknes Centre for Climate Research, Bergen, Norway ([email protected]) 2Hermanson and Associates LLC, Minneapolis, USA 3Department of Research Coordination and Planning, Arctic and Antarctic Research Institute, Russia 4Department of Monitoring and Information Technology, NILU - Norwegian Institute for Air Research, Norway 5Department of Atmosphere and Climate, NILU - Norwegian Institute for Air Research, Norway 6International director, Norwegian Polar Institute, Longyearbyen, Norway 7Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø, Norway Svalbard is a near pristine Arctic environment, where long-range transport from mid-latitudes is an important air pollution source. Thus, several previous studies investigated the background nitrogen oxides (NOx) and tropospheric ozone (O3) springtime chemistry in the region. However, there are also local anthropogenic emission sources on the archipelago such as coal power plants, ships and snowmobiles, which may significantly alter in situ atmospheric composition. Measurement results from three independent research projects were combined to identify the effect of emissions from various local sources on the background concentration of NOx and O3 in Svalbard. The hourly meteorological and chemical data from the ground-based stations in Adventdalen, Ny-Ålesund and Barentsburg were analysed along with daily radiosonde soundings and weekly data from O3 sondes.
    [Show full text]
  • Written Exam SH-201 the History of Svalbard the University Centre in Svalbard, Monday 6 February 2012
    Written exam SH-201 The History of Svalbard The University Centre in Svalbard, Monday 6 February 2012 The exam is a 3 hour written test. It consists of two parts: Part I is a multiple choice test of factual knowledge. Note: This sheet with answers to part I shall be handed in. Part II (see below) is an essay part where you write extensively about one of two alternative subjects. No aids except dictionary are permitted. You may answer in English, Norwegian, Swedish or Danish. 1 2 Part I counts approximately /3 and part II counts /3 of the grade at the evaluation, but adjustment may take place. Both parts must be passed in order to pass the whole exam. Part I: Multiple choice test. Make only one cross for each question. In what year was Bjørnøya discovered by Willem 1. 1569 1596 1603 Barentsz? 2. When did land-based whaling end on Svalbard? ca. 1630 ca. 1680 ca. 1720 Which geographical region did most Russian 3. Pechora Murmansk White Sea hunters and trappers come from? When did Norwegian hunters and trappers start 4. ca. 1700 the 1750s the 1820s going to Svalbard regularly? From when dates the first map to show the whole 5. 1598 1714 1872 Svalbard archipelago? A famous scientific expedition visited Svalbard in 6. Chichagov Fram 1838–39. Which name is it known under? Recherche Svalbard was for a long time a no man’s land. In 7. Norway Sweden Russia 1871, who took an initiative to annex the islands? 8. When did Norway formally take over sovereignty? 1916 1920 1925 When was the Sysselmann (Governor of Svalbard) 9.
    [Show full text]
  • Sess Report 2018
    SESS REPORT 2018 The State of Environmental Science in Svalbard – an annual report Xxx 1 SESS report 2018 The State of Environmental Science in Svalbard – an annual report ISSN 2535-6321 ISBN 978-82-691528-0-7 Publisher: Svalbard Integrated Arctic Earth Observing System (SIOS) Editors: Elizabeth Orr, Georg Hansen, Hanna Lappalainen, Christiane Hübner, Heikki Lihavainen Editor popular science summaries: Janet Holmén Layout: Melkeveien designkontor, Oslo Citation: Orr et al (eds) 2019: SESS report 2018, Longyearbyen, Svalbard Integrated Arctic Earth Observing System The report is published as electronic document, available from SIOS web site www.sios-svalbard.org/SESSreport Contents Foreword .................................................................................................................................................4 Authors from following institutions contributed to this report ...................................................6 Summaries for stakeholders ................................................................................................................8 Permafrost thermal snapshot and active-layer thickness in Svalbard 2016–2017 .................................................................................................................... 26 Microbial activity monitoring by the Integrated Arctic Earth Observing System (MamSIOS) .................................................................................. 48 Snow research in Svalbard: current status and knowledge gaps ............................................
    [Show full text]
  • Glossary of Stratigraphic Names
    Downloaded from http://mem.lyellcollection.org/ by guest on September 23, 2021 Glossary of stratigraphic names This index attempts to list in alphabetical order all proper strati- completed here in square brackets where it differs. Constituent graphic names from Svalbard literature. It cannot be complete, units are listed generally from the top down. although most names encountered during work on this book have As explained in Sections 18.3 and 19.3.2 correlated units in the an entry. Each entry begins with the name and its stratigraphic rank Hammerfest Basin have been included. abbreviated. The name occurs and may be defined in the translation of the Aavatsmarkbreen Fm (Harland et al. 1993) Comfortlessbreen Russian Publication of Gramberg et al. (1990, Dallmann & Mork Gp; V2, Edi; 9 13. 1991 (eds)). This is a valuable source of further information which * Aberdeenflya Fm (SKS 1996, after Rye Larsen ) McVitiepynten supplements this work. Gramberg et al. is indeed especially valu- Sbgp; Pg; 9 20. able because the Russian entries are interpreted by the authors' *t Adriabukta Fro. (Birkenmajer & Turnau 1962) Billefjorden Gp; colleagues. However, the presently recommended equivalents of Meranfjellet, Julhogda, Haitanna mbrs; Cl,Tou-Vis; 10, 17. many named units are different from that work. :~t Adventdalen Gp (Parker 1967) Janusfjellet Subgp; Carolinefjel- * Names have been recommended for use by the Stratigrafisk let, Helvetiafjellet, Rurikfjellet, Agardhfjellet, Kong Karls Komite for Svalbard (SKS) of Norsk Stratigrafisk Komite (NSK). Land, Kongsoya fms; J2-K~; 4 5, 19; it has been suggested to At the time of collation of this book the SKS had provisionally include Kolmule, Kolje, Knurr, Hekkingen and Fuglen fms of agreed only on post-Devonian stratigraphic nomenclature, hence Hammerfest Basin.
    [Show full text]
  • Supplement of Solid Earth, 12, 1025–1049, 2021 © Author(S) 2021
    Supplement of Solid Earth, 12, 1025–1049, 2021 https://doi.org/10.5194/se-12-1025-2021-supplement © Author(s) 2021. CC BY 4.0 License. Supplement of Early Cenozoic Eurekan strain partitioning and decoupling in central Spitsbergen, Svalbard Jean-Baptiste P. Koehl Correspondence to: Jean-Baptiste P. Koehl ([email protected]) The copyright of individual parts of the supplement might differ from the article licence. 1 S1: (a) Photographs in non-polarized and (b) polarized light of a thick section in Devonian sandstone including fractured quartz (qz) crosscut by healed fractures (hf) showing no displacement and by quartz-rich cataclastic fault rock filled with calcite cement (upper part); (c) Photographs in non-polarized and (d) polarized light of cataclased Devonian sandstone comprised of quartz crystals showing mild undulose extinction (ue) and grainsize reduction along the subvertical, east-dipping fault in the gully under the coal mine in Pyramiden (see Figure 2 for the location of the fault). Brittle cracks incorporate clasts of quartz, and a matrix of quartz, calcite and brownish, iron-rich clay minerals. 2 S2: Uninterpreted seismic sections in Sassenfjorden–Tempelfjorden (a–f) and Reindalspasset (g). See Figure 1b for location. 3 S3: Field photograph of steeply east-dipping, partly overturned Lower Devonian dark sandstone near the bottom of the gully below the mine entrance. 4 S4: Uninterpreted field photograph of Figure 3b in Pyramiden. 5 S5: (a) Interpreted and (b) uninterpreted field photograph along the northern shore of Sassenfjorden showing uppermost Pennsylvanian–lower Permian strata of the Wordiekammen and Gipshuken formations thrusted and folded top-west by a low-angle Eurekan thrust.
    [Show full text]
  • Svalbard 2015–2016 Meld
    Norwegian Ministry of Justice and Public Security Published by: Norwegian Ministry of Justice and Public Security Public institutions may order additional copies from: Norwegian Government Security and Service Organisation E-mail: [email protected] Internet: www.publikasjoner.dep.no KET T Meld. St. 32 (2015–2016) Report to the Storting (white paper) Telephone: + 47 222 40 000 ER RY M K Ø K J E L R I I Photo: Longyearbyen, Tommy Dahl Markussen M 0 Print: 07 PrintMedia AS 7 9 7 P 3 R 0 I 1 08/2017 – Impression 1000 N 4 TM 0 EDIA – 2 Svalbard 2015–2016 Meld. St. 32 (2015–2016) Report to the Storting (white paper) 1 Svalbard Meld. St. 32 (2015–2016) Report to the Storting (white paper) Svalbard Translation from Norwegian. For information only. Table of Contents 1 Summary ........................................ 5 6Longyearbyen .............................. 39 1.1 A predictable Svalbard policy ........ 5 6.1 Introduction .................................... 39 1.2 Contents of each chapter ............... 6 6.2 Areas for further development ..... 40 1.3 Full overview of measures ............. 8 6.2.1 Tourism: Longyearbyen and surrounding areas .......................... 41 2Background .................................. 11 6.2.2 Relocation of public-sector jobs .... 43 2.1 Introduction .................................... 11 6.2.3 Port development ........................... 44 2.2 Main policy objectives for Svalbard 11 6.2.4 Svalbard Science Centre ............... 45 2.3 Svalbard in general ........................ 12 6.2.5 Land development in Longyearbyen ................................ 46 3 Framework under international 6.2.6 Energy supply ................................ 46 law .................................................... 17 6.2.7 Water supply .................................. 47 3.1 Norwegian sovereignty .................. 17 6.3 Provision of services .....................
    [Show full text]
  • And Flight Behaviour in Subpopulations of Svalbard Reindeer Rangifer
    Vigilance and fright- and flight behaviour in subpopulations of Svalbard reindeer Rangifer tarandus platyrhynchus in Nordenskiöld Land, Svalbard Vaktsomhet og frykt- og fluktåtferd i subpopulasjonar av svalbardrein Rangifer tarandus platyrhynchus på Nordenskiöld Land, Svalbard Steinar Lund MASTER THESIS 60 CREDITS 2008 OF DEPARTMENT OF LIFE SCIENCES NORWEGIAN UNIVERSITY ECOLOGY AND NATURAL RESOURCE MANAGAMENT PREFACE This Master thesis, written at the Department of Ecology and Natural Resource Management at the Norwegian University of Life Sciences, is the final 60 credits of my Master of Science degree in Natural Resource Management. The thesis is part of a larger research programme conducted by The University of Oslo. The field work was funded by The Research Council of Norway, Norwegian Polar Institute and Framkomiteens Polarfond. I would like to thank my supervisors Olav Hjeljord and Eigil Reimers. A special thanks to Eigil for thoroughly supervision throughout the whole process and for allowing me to take part in this project. Also thanks to Pål Preede Revheim and Vidar Selås for tips on the statistical part of the thesis. Last but not least, thank you Ronny Steen and Knut Fredrik Øi, my good friends and field companions in thick and thin. So many hours under the midnight sun, so many miles wandered in the spectacular landscape of Svalbard. Norwegian University of Life Sciences Ås, May 13th 2008 Steinar Lund 1 ABSTRACT Svalbard reindeer Rangifer tarandus platyrhynchus survival is based upon minimal energy output and optimal grazing during summer, to withstand a marginal Arctic climate. Svalbard reindeer is by nature relaxed upon encounters with humans, due to the absence of coevolution with predators and humans.
    [Show full text]
  • Gatekart Over Longyearbyen
    6YkZciYVaZc K:,K:>:CÇ 6YkZci[_dgYZc K:>)%%Æ<GJ H_³h`gZciZc K:>'(- K:>'(+ 7n`V^V$L]Vg[ H_³dbgYZi K:>*%% K:>'() <gjkZYVaZc K:>'%%Æ=>AB6GG:@HI:CHK:>Ç K:>(%+ 7_³gcYVaZc K:>'(' K :> (%% K:>(%. B6K:>:CÇ<6C<K:>I>A;ANEA6HH:C K:>(%*Æ7JG $;DDIE6I=ID6>GEDGI K:>(%, K K:>'(% :> *% (B :A@ H`_²g^c\V :K: >:C Adc\nZVgZakV K:>(%( A^V K:>(%% K:>''- K:>*%% + K:>'' <VbaZ K:>(%' Adc\nZVgWnZc K:>'') K:>*%& K :> ''' K:>''% K:>&%% K:>(%% K:>'&- K:>'&+ K:>'&* K:>'&) K:>'&( K =Vj\Zc : > K:>&%' ' & % K:>&%%Æ9G6BB:CHK:>:CÇ K:>&%+ <gjkZ'W ?jaZc^hhZ\gjkV CnWnZc HkZgYgjeWnZc K:>&%% <gV[^h`WZVgWZ^YZahZ/HkVaWVgYGZ^hZa^k6H^hVbVgWZ^YbZYAjcYWaVYBZY^V6H!Igdbh³#@Vgi\gjccaV\Adc\nZVgWnZcad`VahingZ OVERNATTING ACCOMMODATION RaBi’s Bua HELSETJENESTER HEALTH SERVICES Arctic Adventures Rebekkas Gave & Suvenir Apotek Chemist/pharmacy Basecamp Spitsbergen Skinnboden Arctic Products Fysioterapeut Physiotherapis Gjestehuset 102 Sport 1 Svalbard Longyearbyen Sykehus Hospital Longyearbyen Camping Sportscenteret PolarLegeSenteret Medical Centre Mary-Ann’s Polarrigg Svalbard Arctic Sport/Skandinavisk Høyfjellsutstyr Tannlege Dentist Radisson SAS Polar Hotel Spitsbergen Svalbardbutikken (Coop Svalbard) Spitsbergen Guesthouse Svalbardbutikken Lyd & Bilde SEVERDIGHETER ATTRACTIONS Spitsbergen Hotel Atelier Aino Artist’s Workshop Svalbard Villmarkssenter TJENESTER SERVICES Barentszhuset The Barentsz House Arctic Autorent Car rental Galleri Svalbard Svalbard Art Gallery MAT OG DRIKKE FOOD & DRINK Bydrift Longyearbyen Gruve 3 Mine no. 3 Barentsz Pub & Spiseri Kultur- og fritidsforetak KF Kirkegård
    [Show full text]