Dalteparin: Pharmacological Properties and Clinical Efficacy in the Prophylaxis and Treatment of Thromboembolic Diseases

Total Page:16

File Type:pdf, Size:1020Kb

Dalteparin: Pharmacological Properties and Clinical Efficacy in the Prophylaxis and Treatment of Thromboembolic Diseases April 30, 2004 EUROPEAN JOURNAL OF MEDICAL RESEARCH 215 Eur J Med Res (2004) 9: 215-224 © I. Holzapfel Publishers 2004 DALTEPARIN: PHARMACOLOGICAL PROPERTIES AND CLINICAL EFFICACY IN THE PROPHYLAXIS AND TREATMENT OF THROMBOEMBOLIC DISEASES Graham F. Pineo and Russell D. Hull University of Calgary, Thrombosis Research Unit, Foothills Hospital, Calgary, AB, Canada Abstract: Dalteparin is a low molecular weight rides or molecular weight of 5kD such as the heparin (LMWH) with a mean molecular weight LMWHs are unable to bind thrombin and anti- of approximately 5,000. As with the other low thrombin simultaneously resulting in an increase molecular weight heparins, dalteparin has certain in the ratio of anti-factor Xa to anti-factor IIa ac- advantages over unfractionated heparin (UFH) tivities [1, 2]. For dalteparin this ratio is 2.5:1 most important of which are improved bio-avail- compared with UFH which has an anti-factor Xa ability by subcutaneous injection, a prolonged to anti-factor IIa activity ratio of 1:1. antithrombotic activity which is highly correlated The antithrombotic effect of UFH is assessed with body weight permitting the once daily ad- by its ability to prolong the activated partial ministration of the drug. Other possible advantag- thromboplastin time (APTT). Prolongation of the es of LMWH including dalteparin include a lower APTT is associated with the higher molecular incidence of heparin induced thrombocytopenia weight fragments of LMWH and may reflect the and thrombosis and decreased tendency to pro- undesirable hemorrhage inducing properties of duce osteopenia on prolonged administration. heparin [2]. Because of the shorter side chain Dalteparin has been subjected to a large number lengths and the reduced anti-factor IIa effects of of well designed randomised clinical trials for the LMWH relative to UFH, the antithrombotic effi- prevention and treatment of venous thromboem- cacy of the LMWHs including dalteparin is meas- bolism. Based on data from the randomised clini- ured in terms of their ability to inhibit factor Xa, cal trials, dalteparin has been approved interna- [5, 6] although there is evidence that the activated tionally for a wide spectrum of clinical indica- clotting time may be useful for monitoring the tions. anti-coagulant [7] effect of low-molecular-weight heparin (dalteparin) during coronary artery inter- Key words: Low molecular weight heparin ventions. The doses of dalteparin for both preven- (LMWH); unfractionated heparin (UFH); venous tion and treatment of venous thomboembolism thromboembolism; deep vein thrombosis; pulmo- [3] or coronary indications [8] are expressed in nary embolism; acute anticoagulation; prophylaxis units of anti-factor Xa activity relative to the first International Standard for LMWHs, the reference DALTEPARIN: standard adapted for LMWH by the World INTRODUCTION TO THE COMPOUND Health Organization in 1988 [6]. Unfortunately the anti-Xa activity of a LMWH CHEMISTRY does not predict its anti-thrombotic or hemor- rhagic effects in patients being treated for venous Dalteparin sodium is a sulphated polysaccharide thromboembolism. It seems clear that the obtained by partial nitrous acid depolymerization LMWHs function through a mechanism only par- from standard UFH of porcine origin. The mean tially related to the anti-Xa and IIa activity of the molecular weight of dalteparin is approximately drug. The anti-thrombotic half-life of intravenous 5.7kD [1, 2]. The anticoagulant effect of LMWHs dalteparin in man as measured using the Wessler’s such as dalteparin differs from that of heparin. stasis technique is significantly longer than the The main anticoagulant effect of heparin is due to plasma half-life measured by the anti-Xa or anti- the presence of the pentasaccharide sequence with IIa activity (5 to more than 8 hours versus 1.6 to a high affinity for antithrombin [3, 4]. Heparin 2.4 hours for anti-Xa levels and 1 to 1.4 hours for must bind to antithrombin and thrombin simulta- anti-IIa respectively) [9]. Measurement of anti-Xa neously to form a ternary complex in order to in- levels have been recommended in certain clinical activate thrombin. The accelerated inactivation of circumstances such as in patients with mild to activated factor X (Xa) by heparin and antithrom- moderate renal failure, [10] patients who are mor- bin is less dependent on binding to the enzyme bidly obese and patients who bleed on LMWH [3]. Heparin molecules with fewer than 18 saccha- treatment. In a recent study in patients in inten- 216 EUROPEAN JOURNAL OF MEDICAL RESEARCH April 30, 2004 sive care units anti-Xa levels were measured 2-4 should be based on total body weight or adjusted hours after administration of 5,000 units of daltep- body weight but not on lean body weight [21]. arin to 13 consecutive patients with a wide range Further work is required to clarify this important of renal function [11]. Creatinine clearance was point. measured and compared with anti-Xa levels. The In a recent study patients treated for venous anti-Xa levels were consistently less than 0.5 thromboembolism with once daily therapeutic unit/s mL and there was no clear relationship to doses of dalteparin for at least 5 days were strati- creatinine clearance or bleeding events. The au- fied into three groups: thors concluded anti-Xa levels found 2-4 hours • Within 20% of ideal body weight (IBW) after injection of 5,000 units of dalteparin were • 20-40% over IBW consistently less than 0.5 units/mL and did not • >40% over IBW. vary significantly with renal function [11]. Anti-Xa levels (peak and trough) were similar Anti-Xa levels are not readily available in many in the three groups indicating no effect of body centres, and in clinical practice monitoring of weight on drug levels [22]. anti-Xa levels is seldom necessary. In the event of an accidental overdose of daltep- arin or if serious bleeding occurs during daltepar- PHARMACODYNAMICS in therapy, the slow intravenous infusion of pro- tamine sulfate is recommended [3]. Such treat- Doses of dalteparin used for therapy when admin- ments lead to a 74% decrease in factor Xa levels istered to healthy subjects do not produce signifi- and are thought to inhibit antithrombin activity cant changes in platelet aggregation, fibrinolysis by binding to fragments with longer side chains or global coagulation tests such as the prothrom- [23]. bin time, thrombin time or APTT [12]. Similarly, prophylactic doses of dalteparin i.e. 5,000 units PREVENTION OF VENOUS THROMBOEMBOLISM once or twice daily do not markedly affect APTT, platelet factor IV or lipoprotein lipase release [13]. Dalteparin has been extensively studied in the pre- Ongoing studies suggest that dalteparin prolongs vention of venous thromboembolism in patients the activated clotting time (ACT) in a dose related undergoing moderate to high-risk surgery and in fashion [7]. medical patients. The results of these clinical trials has been extensively reviewed recently [24]. PHARMACOKINETICS Furthermore, a comprehensive review of the pre- vention of venous thromboembolism was recently Dalteparin is rapidly absorbed after subcutaneous published [25]. administration (87% bio availability) with peak plasma concentrations being attained after 2.8 to 4 PREVENTION OF VENOUS THROMBOEMBOLISM IN hours and plasma elimination half-life being 2.4 to GENERAL SURGERY 4 hours [12-16]. Although the LMWHs are bound to red blood cells data with dalteparin suggest that Following initial dose findings studies a number erythrocyte binding does not interfere with the of pivotal studies were performed comparing dal- availability of the drug [17]. As with other teparin with UFH 5,000 units 2-3 times daily [26, LMWHs dalteparin is primarily eliminated by 27]. These studies showed dalteparin to be of renal clearance raising concern that there may be equal efficacy compared with UFH. The study by accumulation of the LMWHs in patients with Kakkar et al. was designed to detect a 50% reduc- moderate to severe renal failure [18]. Further tion in bleeding rates [27]. This study showed that work with the individual LMWHs is required to wound hematomas developed in fewer patients clarify this issue. treated with dalteparin than with UFH and a sig- For treatment of DVT the dalteparin dose is nificantly greater number of patients in the UFH capped at 18,000 units in Canada when the once group required reoperation for wound hematoma daily dosing is used. The rational for capping the or bleeding control. Severe bleeding occurred less dose is based on pharmacokinetic data suggesting frequently in the dalteparin group compared with that dalteparin distributes only in the plasma vol- the UFH group and there was a greater incidence ume, so that dosing should not be weight based in of minor bleeding in the UFH group mainly relat- obesity [19]. However, in the FRISC trial where ed to bruising at injection sights. A meta-analysis the higher dose of dalteparin was used (150 Xa of all studies comparing the use of the LMWH units per kg Q12H) the occurrence of bleeding with UFH has concluded that the two approaches and the median anti-factor Xa levels did not differ are of equal efficacy in patients undergoing ab- in patients with a high body weight or BMI (body dominal, gynaecologic and urologic surgery but mass index) [20]. However, the bleeding rates de- there is less bleeding with LMWH [28]. creased when the dose of dalteparin was reduced Patients operated on for malignant conditions to 120 Xa units/kg q 12h. Similarly, one study in- have been shown to have a higher incidence of ve- dicated that the volume of distribution and clear- nous thromboembolism when compared with pa- ance of dalteparin did not differ significantly from tients operated on for non-malignant conditions. these values in patients of normal weight, suggest- Bergqvist et al. compared the use of dalteparin ing that doses of dalteparin in obese patients 5,000 Xa units daily with UFH 5,000 units twice April 30, 2004 EUROPEAN JOURNAL OF MEDICAL RESEARCH 217 daily in 1,040 patients undergoing abdominal sur- 2,500 units was given two hours before surgery gery of whom 637 patients had malignant disease and a second dose of 2,500 units was given on the [29].
Recommended publications
  • Thromboprophylaxis for Venous Thromboembolism UHL Guideline
    Guidelines for Pharmacological and Mechanical Thromboprophylaxis for venous thromboembolism. Approved By: Policy and Guideline Committee Date Approved: 12 February 2016 Trust Reference: B9/2016 Version: V4 – 16 August 2019 Policy and Guideline Committee Supersedes: V3 February 2016 Author / Originator(s): Simon Rudge, Venous Thrombosis Nurse Name of Responsible Thrombosis Prevention Committee Committee/Individual: Review Date: August 2022 CONTENTS Section Page 1. Introduction 3 2. Policy Scope 5 VTE Risk Assessment and Pharmacological and Mechanical venous 3. 6 thromboprophylaxis 4. Patient information 8 5. Mechanical thromboprophylaxis. Application and management guide 9 6. Nursing care 12 7. References 12 8. Legal Liability Guideline Statement 12 Appendix 1 Derogation from NICE NG89: VTE risk assessment of 16 & 17yr olds 13 Appendix 2a/2a1/2b/2c VTE risk assessment tools 14-18 Appendix 3 NICE CG92 algorithm for VTE thromboprophylaxis in medical patients 19 Appendix 4 Consensus of risk factors for VTE in surgical patients 20 Appendix 5 UHL and East Midlands approved List of cohort Day Case procedures 21 Appendix 6 Thromboprophylaxis administration guide: Dalteparin 22 Appendix 7 Derogation from NICE NG89: minimum of 7 days low molecular weight 23 heparin for acutely unwell medical patients Appendix 8 Indications for mechanical thromboprophylaxis algorithm 24 Appendix 8a Indications for mechanical thromboprophylaxis with intermittent 25 pneumatic compression devices algorithm Appendix 9 Quick reference guide of NICE NG89 26 Summary of key changes: Addition of procedure specific recommendations from NG89. Inclusion of discharge recommendations. Inclusion of statement regarding medicines of animal origin. Inclusion of training requirements Inclusion of statements of derogation from NG89 Addition of quick reference guide of NG89.
    [Show full text]
  • Hemosil ® Liquid Anti-Xa
    H E M O S I L® LIQUID ANTI-XA Measuring heparin and apixaban: Simple, fast, 24/7 • Liquid formulation, ready-to-use • One-stage, chromogenic anti-Xa assay • Universal calibration for unfractionated heparin (UFH) and low molecular weight heparin (LMWH) • Drug specific calibrators and controls for measurement of apixaban Measuring heparin and apixaban Unfractionated and low molecular weight heparin Heparin is a highly sulfated polysaccharide Laboratory monitoring is extremely important to characterized by a wide molecular weight range and assess the appropriate level of anticoagulation in potent anticoagulant activity. It exists either as UFH patients receiving UFH. Anti-Xa is recommended for or as depolymerized LMWH. UFH and LMWH have measuring both UFH and LMWH. a rapid anticoagulant effect and are used in the prevention and treatment of venous thrombosis and Anti-Xa testing for measuring UFH helps improve acute coronary syndrome. quality of care and patient experience while reducing costs, when compared with APTT testing.1 UFH and LMWH anticoagulant activity occurs when The advantages include: a complex with antithrombin (AT) is formed, • Higher precision potentiating its anticoagulant activity up to • Lower levels of discordant results1,2,4 1,000-fold, which inactivates both thrombin (FIIa) • Faster time to achieve therapeutic levels1,3,4 and Factor Xa (FXa). UFH acts through both FIIa 1,3,4,5 and FXa inhibition, while LMWH is a more efficient • Fewer tests and dosage changes catalyst for FXa inhibition. Direct Xa inhibitors Anticoagulation for patients with venous DOACs do not require routine monitoring. However, thromboembolism (VTE) previously included there are specific instances when an understanding heparin, heparin derivatives and/or oral vitamin K of the DOAC concentration in a patient sample may antagonists.
    [Show full text]
  • The Management of Anticoagulants Using the Chart: – Low Molecular Weight Heparins (I.E
    WA Adult Anticoagulation Medication Chart Overview This presentation will provide an overview of: • The layout of the WA Anticoagulation Medication Chart (WA AMC) • The management of anticoagulants using the chart: – Low Molecular Weight Heparins (i.e. enoxaparin) – Unfractionated heparin (UFH) – Warfarin – Direct oral anticoagulants (DOACs) Anticoagulants – High Risk Medications • Anticoagulants are consistently identified as causing preventable harm to patients. • Top 20 medications involved in medication errors (July 2016 - June 2017) 1. Paracetamol 11. Buprenorphine 2. Enoxaparin 12. Targin (Oxycodone / naloxone) 3. Novorapid Insulin 13. Warfarin 4. Tramadol 14. Diazepam 5. Heparin 15. Tapentadol 6. Fentanyl 16. Metformin 7. Piperacillin & Tazobactam 17. Clonazepam 8. Oxycodone 18. Frusemide 9. Lantus Insulin 19. Hydromorphone 10. Vancomycin 20. Quetiapine • When used in error or omitted, they can cause life-threatening or fatal bleeding or thrombosis. Those most commonly prescribed anticoagulants are: –unfractionated heparin –low-molecular weight heparin (LMWH) • enoxaparin sodium (Clexane®) • dalteparin sodium (Fragmin®) and – warfarin. Direct oral anticoagulants are also available and are being prescribed more frequently: –dabigatran (Pradaxa®) –rivaroxaban (Xarelto®) –apixaban (Eliquis®). Factors that increase the potential for error and harm include: • Low margin for error – over-dose → bleeding – under-dose or omission → thrombosis • Wide variation in individual patient response – multiple indications – wide range and complexity of dosage – frequent dose adjustment/monitoring – interaction with other medicines, herbals, over-the-counter products, food and alcohol. Benefits of the WA Anticoagulant Medication Chart • Provides one chart for all anticoagulant prescriptions to reduce the risk of duplicate prescribing. • Point of care guidelines for initiation, monitoring and reversal of anticoagulants. • Enables the effective achievement of therapeutic levels.
    [Show full text]
  • Dalteparin Sodium Injection) in Children with Venous Thromboembolism with Or Without Malignancies
    FRAG-A001-201 (A6301094) Final Protocol Amendment 9, 18 October 2016 CLINICAL STUDY PROTOCOL A THREE MONTH PROSPECTIVE OPEN LABEL STUDY OF THERAPY WITH FRAGMIN® (DALTEPARIN SODIUM INJECTION) IN CHILDREN WITH VENOUS THROMBOEMBOLISM WITH OR WITHOUT MALIGNANCIES Compound: PN180524 Compound Name : Dalteparin Sodium Injection (Fragmin®) United States (US) Investigational New IND 79,617 Drug (IND) Number: European Clinical Trials Database 2016-000394-21 (EudraCT) #: Protocol Number: FRAG-A001-201 (A6301094) Phase: II Version #: Amendment 9 – 18 October 2016 Pfizer Inc 235 East 42nd Street New York, NY 10017 - Do Not Distribute Page 1 FRAG-A001-201 (A6301094) Final Protocol Amendment 9, 18 October 2016 Document History This amendment incorporates all revisions to date, including amendments made at the request of country health authorities, institutional review boards/ethics committees (IRBs/ECs), etc. Document Date Summary of Changes and Rationale Original Protocol June 23, 2008 Legacy Eisai Inc Protocol Protocol Amendment 1 September 04, 2008 Legacy Eisai Inc Protocol Correction to Amendment 1 January 05, 2009 Legacy Eisai Inc Protocol Protocol Amendment 2 February 20, 2009 Legacy Eisai Inc Protocol Protocol Amendment 3 September 15, 2010 Legacy Eisai Inc Protocol Protocol Amendment 4 September 01, 2011 Legacy Eisai Inc Protocol Protocol Amendment 5 April 21, 2015 Administrative changes per transition of study to Pfizer Inc from Eisai; Updating of Safety Section per Pfizer safety reporting processes and procedures, and other relevant sections per Pfizer Inc processes and procedures. Protocol Amendment 6 09 September 2015 This version was never finalized or submitted and was replaced by Amendment 7. Protocol Amendment 7 18 November 2015 Includes protocol modifications endorsed by FDA in a Type C Meeting conducted on 05 November 2015, including updating age cohort groups, inclusion of all patients with VTE and removal of the central imaging reader and Adjudication Committee.
    [Show full text]
  • Perioperative Management of Patients Treated with Antithrombotics in Oral Surgery
    SFCO/Perioperative management of patients treated with antithrombotic agents in oral surgery/Rationale/July 2015 SOCIÉTÉ FRANÇAISE DE CHIRURGIE ORALE [FRENCH SOCIETY OF ORAL SURGERY] IN COLLABORATION WITH THE SOCIÉTÉ FRANÇAISE DE CARDIOLOGIE [FRENCH SOCIETY OF CARDIOLOGY] AND THE PERIOPERATIVE HEMOSTASIS INTEREST GROUP Space Perioperative management of patients treated with antithrombotics in oral surgery. RATIONALE July 2015 P a g e 1 | 107 SFCO/Perioperative management of patients treated with antithrombotic agents in oral surgery/Rationale/July 2015 Abbreviations ACS Acute coronary syndrome(s) ADP Adenosine diphosphate Afib Atrial Fibrillation AHT Arterial hypertension Anaes Agence nationale d’accréditation et d’évaluation en santé [National Agency for Accreditation and Health Care Evaluation] APA Antiplatelet agent(s) aPTT Activated partial thromboplastin time ASA Aspirin BDMP Blood derived medicinal products BMI Body mass index BT Bleeding Time cAMP Cyclic adenosine monophosphate COX-1 Cyclooxygenase 1 CVA Cerebral vascular accident DIC Disseminated intravascular coagulation DOA Direct oral anticoagulant(s) DVT Deep vein thrombosis GEHT Study Group on Hemostasis and Thrombosis (groupe d’étude sur l’hémostase et la thrombose) GIHP Hemostasis and Thrombosis Interest Group (groupe d’intérêt sur l’hémostase et la thrombose) HAS Haute autorité de santé [French Authority for Health] HIT Heparin-induced thrombocytopenia IANB Inferior alveolar nerve block INR International normalized ratio IV Intravenous LMWH Low-molecular-weight heparin(s)
    [Show full text]
  • Estonian Statistics on Medicines 2016 1/41
    Estonian Statistics on Medicines 2016 ATC code ATC group / Active substance (rout of admin.) Quantity sold Unit DDD Unit DDD/1000/ day A ALIMENTARY TRACT AND METABOLISM 167,8985 A01 STOMATOLOGICAL PREPARATIONS 0,0738 A01A STOMATOLOGICAL PREPARATIONS 0,0738 A01AB Antiinfectives and antiseptics for local oral treatment 0,0738 A01AB09 Miconazole (O) 7088 g 0,2 g 0,0738 A01AB12 Hexetidine (O) 1951200 ml A01AB81 Neomycin+ Benzocaine (dental) 30200 pieces A01AB82 Demeclocycline+ Triamcinolone (dental) 680 g A01AC Corticosteroids for local oral treatment A01AC81 Dexamethasone+ Thymol (dental) 3094 ml A01AD Other agents for local oral treatment A01AD80 Lidocaine+ Cetylpyridinium chloride (gingival) 227150 g A01AD81 Lidocaine+ Cetrimide (O) 30900 g A01AD82 Choline salicylate (O) 864720 pieces A01AD83 Lidocaine+ Chamomille extract (O) 370080 g A01AD90 Lidocaine+ Paraformaldehyde (dental) 405 g A02 DRUGS FOR ACID RELATED DISORDERS 47,1312 A02A ANTACIDS 1,0133 Combinations and complexes of aluminium, calcium and A02AD 1,0133 magnesium compounds A02AD81 Aluminium hydroxide+ Magnesium hydroxide (O) 811120 pieces 10 pieces 0,1689 A02AD81 Aluminium hydroxide+ Magnesium hydroxide (O) 3101974 ml 50 ml 0,1292 A02AD83 Calcium carbonate+ Magnesium carbonate (O) 3434232 pieces 10 pieces 0,7152 DRUGS FOR PEPTIC ULCER AND GASTRO- A02B 46,1179 OESOPHAGEAL REFLUX DISEASE (GORD) A02BA H2-receptor antagonists 2,3855 A02BA02 Ranitidine (O) 340327,5 g 0,3 g 2,3624 A02BA02 Ranitidine (P) 3318,25 g 0,3 g 0,0230 A02BC Proton pump inhibitors 43,7324 A02BC01 Omeprazole
    [Show full text]
  • Antithrombotic Therapy During Pregnancy
    ARC Journal of Pharmaceutical Sciences (AJPS) Volume 1, Issue 2, July – September 2015, PP 16-20 www.arcjournals.org Antithrombotic Therapy During Pregnancy Sihana Ahmeti Lika1*, Bujar H. Durmishi2, Agim Shabani2, Merita Dauti1, Ledjan Malaj3 1 Faculty of Medical Sciences, Department of Pharmacy, State University of Tetova, Ilindeni Str. n.n., 1200 Tetova, R. of Macedonia [email protected] 2 Faculty of Mathematical - Natural Sciencese, Department of Chemistry, State University of Tetova, Ilindeni Str. n.n., 1200 Tetova, R. of Macedonia 3 Faculty of Pharmacy, Medical University of Tirana, of Albania Abstract: Antithrombotic therapy is the main therapy for acute deep vein thrombosis. The objectives of anticoagulant therapy in the initial treatment are to prevent thrombus extension and early and late recurrences of deep vein thrombosis and pulmonary embolism. The main objective of our study is to analyze the usage of low molecular weight heparins in women, during the period of pregnancy. Our study, represents a retrospective study, which was undertaken during 01 July – 31 December 2013, in the Department of Gynecology and Obstetrics, at Clinical Hospital in Tetova. Among of 817 pregnant women, 277 of them received anticoagulant therapy, respectively Low Molecular Weight Heparins. 119 of them were patients with risky pregnancy and 68 were with the diagnosis Hypercoagulable State. Keywords: Antithrombotics, Deep Vein Thrombosis, Pregnancy, Low Molecular Weight Heparins. Abrevations LMWH Low molecular weight heparins VT venous thromboembolism 1. INTRODUCTION There are two main adverse expriences that are associated with thrombophilia and pregnancy. These are VT and pregnancy complications associated with placental infarction, including miscarriage, intrauterine growth restriction, preeclampsia, abruption, and intrauterine death [1].
    [Show full text]
  • Fragmin Injection (Dalteparin Sodium)
    AUSTRALIAN PRODUCT INFORMATION - FRAGMIN® INJECTION (DALTEPARIN SODIUM) 1. NAME OF THE MEDICINE Dalteparin sodium. 2. QUALITATIVE AND QUANTITATIVE COMPOSITION 2,500 IU (anti-Xa) dalteparin sodium/0.2 mL injection syringe 5,000 IU (anti Xa) dalteparin sodium/0.2 mL injection syringe 7,500 IU (anti-Xa) dalteparin sodium/0.75 mL injection syringe 10,000 IU (anti-Xa) dalteparin sodium/1 mL injection syringe 12,500 IU (anti-Xa) dalteparin sodium/0.5mL injection syringe 15,000 IU (anti-Xa) dalteparin sodium/0.6mL injection syringe 18,000 IU (anti-Xa) dalteparin sodium/0.72mL injection syringe The 10000 IU (anti-Xa)/1 mL syringe, 7500 IU (anti-Xa)/0.75 mL syringe, 5000 IU (anti Xa)/0.2 mL syringe and 2500 IU (anti-Xa)/0.2 mL syringe have the following anti-IIa factor potencies 3900, 2940, 1960 and 980 respectively. The 0.5, 0.6 and 0.72 mL single dose syringe presentations have the same anti-IIa factor potency per mL as the 5000 IU (anti-Xa)/0.2 mL single dose syringe, corresponding to 4900, 5880 and 7060 IU anti-IIa respectively per syringe. For the full list of excipients, see Section 6.1 List of Excipients. 3. PHARMACEUTICAL FORM Solution for injection A clear colourless or straw-coloured solution. Version: pfpfragi10420 Supersedes: pfpfragi11219 Page 1 of 21 4. CLINICAL PARTICULARS 4.1 Therapeutic Indications Prophylaxis against thrombotic complications during haemodialysis and treatment of acute deep vein thrombosis (DVT). Extended treatment of symptomatic venous thromboembolism (VTE) (proximal deep vein thrombosis and/or pulmonary embolism) to reduce the recurrence of VTE in patients with solid tumour cancers.
    [Show full text]
  • Low-Molecular-Weight Heparins in the Treatment of Acute Coronary Syndromes
    REVIEW ARTICLE Low-Molecular-Weight Heparins in the Treatment of Acute Coronary Syndromes Alexander G. G. Turpie, MD; Elliott M. Antman, MD latelet aggregation and activation of coagulation are key events in the development of acute coronary syndromes. Patients with an acute coronary syndrome are at high risk of death or myocardial infarction, and hence there is a strong rationale for the use of antithrombotic agents. Heparin has been shown to reduce the risk of death or myocar- Pdial infarction in aspirin-treated patients with acute coronary syndromes, but it has a number of limitations, including the need for regular monitoring and the risk of hemorrhage and thrombo- cytopenia. Low-molecular-weight heparins offer a number of practical and clinical advantages over unfractionated heparin, such as higher bioavailability and administration by subcutaneous injec- tion. Several low-molecular-weight heparins are available that differ in their biochemical and phar- macologic properties, and it is not possible to predict their clinical efficacy from their pharmaco- logic profile. The decision regarding the use of a specific low-molecular-weight heparin should be based on the efficacy and safety data available for each product. In clinical trials comparing low- molecular-weight heparin with heparin, only enoxaparin sodium has been shown to reduce the risk of coronary events in patients with non–ST segment elevation acute coronary ischemia. Arch Intern Med. 2001;161:1484-1490 Clinical and pathologic studies have high- gina and non–Q wave MI indicates that the lighted the importance of plaque rupture culprit artery is only partially or intermit- and platelet aggregation in the pathogen- tently occluded or that a rich collateral cir- esis of the acute coronary syndromes (ACS) culation exists.
    [Show full text]
  • Review of Medical Therapies for the Management of Pulmonary Embolism
    medicina Review Review of Medical Therapies for the Management of Pulmonary Embolism Ladan Panahi *, George Udeani * , Michael Horseman, Jaye Weston, Nephy Samuel, Merlyn Joseph , Andrea Mora and Daniela Bazan Department of Pharmacy Practice, Texas A&M Rangel College of Pharmacy, 1010 W Ave B, Kingsville, TX 78363, USA; [email protected] (M.H.); [email protected] (J.W.); [email protected] (N.S.); [email protected] (M.J.); [email protected] (A.M.); [email protected] (D.B.) * Correspondence: [email protected] (L.P.); [email protected] (G.U.) Abstract: Traditionally, the management of patients with pulmonary embolism has been accom- plished with anticoagulant treatment with parenteral heparins and oral vitamin K antagonists. Although the administration of heparins and oral vitamin K antagonists still plays a role in pul- monary embolism management, the use of these therapies are limited due to other options now available. This is due to their toxicity profile, clearance limitations, and many interactions with other medications and nutrients. The emergence of direct oral anticoagulation therapies has led to more options now being available to manage pulmonary embolism in inpatient and outpatient settings conveniently. These oral therapeutic options have opened up opportunities for safe and effective pulmonary embolism management, as more evidence and research is now available about reversal agents and monitoring parameters. The evolution of the pharmacological management of pulmonary embolism has provided us with better understanding regarding the selection of anticoagulants. There is also a better understanding and employment of anticoagulants in pulmonary embolism in special Citation: Panahi, L.; Udeani, G.; populations, such as patients with liver failure, renal failure, malignancy, and COVID-19.
    [Show full text]
  • Estonian Statistics on Medicines 2013 1/44
    Estonian Statistics on Medicines 2013 DDD/1000/ ATC code ATC group / INN (rout of admin.) Quantity sold Unit DDD Unit day A ALIMENTARY TRACT AND METABOLISM 146,8152 A01 STOMATOLOGICAL PREPARATIONS 0,0760 A01A STOMATOLOGICAL PREPARATIONS 0,0760 A01AB Antiinfectives and antiseptics for local oral treatment 0,0760 A01AB09 Miconazole(O) 7139,2 g 0,2 g 0,0760 A01AB12 Hexetidine(O) 1541120 ml A01AB81 Neomycin+Benzocaine(C) 23900 pieces A01AC Corticosteroids for local oral treatment A01AC81 Dexamethasone+Thymol(dental) 2639 ml A01AD Other agents for local oral treatment A01AD80 Lidocaine+Cetylpyridinium chloride(gingival) 179340 g A01AD81 Lidocaine+Cetrimide(O) 23565 g A01AD82 Choline salicylate(O) 824240 pieces A01AD83 Lidocaine+Chamomille extract(O) 317140 g A01AD86 Lidocaine+Eugenol(gingival) 1128 g A02 DRUGS FOR ACID RELATED DISORDERS 35,6598 A02A ANTACIDS 0,9596 Combinations and complexes of aluminium, calcium and A02AD 0,9596 magnesium compounds A02AD81 Aluminium hydroxide+Magnesium hydroxide(O) 591680 pieces 10 pieces 0,1261 A02AD81 Aluminium hydroxide+Magnesium hydroxide(O) 1998558 ml 50 ml 0,0852 A02AD82 Aluminium aminoacetate+Magnesium oxide(O) 463540 pieces 10 pieces 0,0988 A02AD83 Calcium carbonate+Magnesium carbonate(O) 3049560 pieces 10 pieces 0,6497 A02AF Antacids with antiflatulents Aluminium hydroxide+Magnesium A02AF80 1000790 ml hydroxide+Simeticone(O) DRUGS FOR PEPTIC ULCER AND GASTRO- A02B 34,7001 OESOPHAGEAL REFLUX DISEASE (GORD) A02BA H2-receptor antagonists 3,5364 A02BA02 Ranitidine(O) 494352,3 g 0,3 g 3,5106 A02BA02 Ranitidine(P)
    [Show full text]
  • Utah Medicaid Pharmacy and Therapeutics Committee Drug
    Utah Medicaid Pharmacy and Therapeutics Committee Drug Class Review Non-Vitamin K Anticoagulants for Venous Thromboembolism and Nonvalvular Atrial Fibrillation Direct Thrombin Inhibitors Dabigatran (Pradaxa, generic) Desirudin (Iprivask) Direct Factor Xa Inhibitors Apixaban (Eliquis) Betrixaban (Bevyxxa) Edoxaban (Savaysa) Fondaparinux (Arixtra) Rivaroxaban (Xarelto) Low Molecular Weight Heparins Dalteparin (Fragmin, generic) Enoxaparin (Lovenox, generic) AHFS Classification: 20:12.04.12 Direct Thrombin Inhibitors, 20:12.04.14 Direct Factor Xa Inhibitors, 20:12.04.16 Heparins Final Report October 2018 Review prepared by: Elena Martinez Alonso, B.Pharm., MSc MTSI, Medical Writer Valerie Gonzales, Pharm.D., Clinical Pharmacist Vicki Frydrych, B.Pharm., Pharm.D., Clinical Pharmacist Lauren Heath, Pharm.D., MS, BCACP, Assistant Professor (Clinical) Michelle Fiander, MA, MLIS, Research Assistant Professor, Evidence Synthesis Librarian Joanne LaFleur, PharmD, MSPH, Associate Professor University of Utah College of Pharmacy University of Utah College of Pharmacy, Drug Regimen Review Center Copyright © 2018 by University of Utah College of Pharmacy Salt Lake City, Utah. All rights reserved Contents Executive Summary ........................................................................................................................ 3 Introduction ..................................................................................................................................... 7 Table 1. FDA-Approved Indications for Non-Vitamin K Anticoagulants
    [Show full text]