Scientific Background: the Brain's Navigational Place and Grid Cell

Total Page:16

File Type:pdf, Size:1020Kb

Scientific Background: the Brain's Navigational Place and Grid Cell Scientific Background The Brain’s Navigational Place and Grid Cell System The 2014 Nobel Prize in Physiology or Introduction Medicine is awarded to Dr. John M. O’Keefe, The sense of place and the ability to navigate Dr. May-Britt Moser and Dr. Edvard I. are some of the most fundamental brain Moser for their discoveries of nerve cells in functions. The sense of place gives a the brain that enable a sense of place and perception of the position of the body in the navigation. These discoveries are ground environment and in relation to surrounding breaking and provide insights into how objects. During navigation, it is interlinked mental functions are represented in the with a sense of distance and direction that is brain and how the brain can compute based on the integration of motion and complex cognitive functions and behaviour. knowledge of previous positions. We An internal map of the environment and a depend on these spatial functions for sense of place are needed for recognizing recognizing and remembering the and remembering our environment and for environment to find our way. navigation. This navigational ability, which requires integration of multi-modal sensory information, movement execution and Questions about these fundamental brain functions have engaged philosophers and memory capacities, is one of the most th complex of brain functions. The work of the scientists for a long time. During the 18 2014 Laureates has radically altered our century the German philosopher Immanuel understanding of these functions. John Kant (1724-1804) argued that some mental O’Keefe discovered place cells in the abilities exist independent of experience. He hippocampus that signal position and considered perception of place as one of provide the brain with spatial memory these innate abilities through which the capacity. May-Britt Moser and Edvard I. external world had to be organized and Moser discovered in the medial entorhinal perceived. cortex, a region of the brain next to hippocampus, grid cells that provide the A concept of a map-like representation of brain with an internal coordinate system place in the brain was advocated for by the essential for navigation. Together, the American experimental psychologist Edward hippocampal place cells and the entorhinal Tolman, who studied how animals learn to grid cells form interconnected nerve cell navigate (Tolman, 1948). He proposed that networks that are critical for the animals could experience relationships computation of spatial maps and between places and events and that the navigational tasks. The work by John exploration of the environment gradually O’Keefe, May-Britt Moser and Edvard Moser resulted in the formation of a cognitive map has dramatically changed our that enabled animals to navigate and find understanding of how fundamental the optimal path through the environment. cognitive functions are performed by neural In this view, cognitive maps represent the circuits in the brain and shed new light onto environment as a gestalt that allows the how spatial memory might be created. subject to experience the room and navigate. Tolman’s theory opposed the prevailing view The firing pattern of these cells was among behaviourists that complex completely unexpected. Place cells were behaviours are achieved by chains of active in a way that had not been seen for sensory-motor response relationships. But it any cells in the brain before. Individual place did not address where in the brain these cells were only active when the animal was functions may be localized and how the in a particular place in the environment, brain computes such complex behaviours. namely their place field. By systematically The advent of techniques to record from changing the environment and testing cells in the brain of animals that were freely different theoretical possibilities for the moving in the environment, using chronically creation of the place fields O’Keefe showed implanted micro wires (Sturmwasser, 1958), that place cell firing did not merely reflect made it possible to approach these activity in sensory neurons, but that it questions. represented a complex gestalt of the environment. Finding the place cells John O’Keefe had a background in Different place cells could be active in physiological psychology, working with different places and the combination of Ronald Melzack at McGill University before activity in many place cells created an he moved to the laboratory of the pain internal neural map representing a particular researcher Patrick Wall at University College environment (O'Keefe, 1976; O'Keefe and in London, where he started his work on Conway, 1978). O’Keefe concluded together behaving animals in the late 1960s. There he with Nadel that place cells provide the brain discovered the place cells, when recording with a spatial reference map system, or a from neurons in the dorsal partition of sense of place (O'Keefe and Nadel, 1978). He hippocampus, called CA1, together with showed that the hippocampus can contain Dostrovsky, in rats moving freely in a multiple maps represented by combinations bounded area (O'Keefe and Dostrovsky, of activity in different place cells that were 1971) (Figure 1). active at different times in different environments. A specific serial combination of active place cells may therefore represent a unique environment, while other combinations represent other environments. Through O’Keefe’s discoveries, the cognitive map theory had found its representation in the brain. A prerequisite for O’Keefe’s experiments was the development of appropriate recording techniques to be used in freely Figure 1. Place cells. To the right is a schematic of the moving animals. Although O’Keefe was an rat. The hippocampus, where the place cells are located is highlighted. The grey square depicts the early user of these techniques, he was not open field the rat is moving over. Place cells fire when the first to record from hippocampal or the animal reaches a particular location in the other nerve cells in intact animals (see environment. The dots indicate the rat’s location in O’Keefe and Nadel 1978). However, the arena when the place cell is active. Different place researchers mostly used restricted cells in the hippocampus fire at different places in the arena. behavioural task or strict stimulus-response protocols. In contrast, O’Keefe recorded the 2 cellular activity during natural behaviour, May-Britt Moser and Edvard Moser, who which allowed him to observe the unique were studying the hippocampus, both during place fields and relate the neural activity in their PhD work in Per Andersen’s laboratory the place cells to represent the sense of in Oslo and afterwards both as visiting place. scientists in Richard Morris’ laboratory in Edinburgh and John O’Keefe’s laboratory in In subsequent experiments, O’Keefe showed London, asked whether the place cell firing that the place cells might have memory can be generated from activity outside functions (O'Keefe and Conway, 1978; hippocampus. The major input to the O'Keefe and Speakman, 1987). The hippocampus comes from a structure on the simultaneous rearrangement in many place dorsal edge of the rat’s brain, the entorhinal cells in different environments was called cortex. A large part of the output from the remapping and O’Keefe showed that entorhinal cortex projects to the dentate remapping is learned, and once it is gurus in hippocampus, which in turn connect established, it can be stable over time (Lever to the region in the hippocampus called CA3, et al., 2002). The place cells may therefore and further to CA1 in the dorsal provide a cellular substrate for memory hippocampus. Interestingly, this is the same processes, where a memory of an the part of the brain in which John O’Keefe environment can be stored as specific first found the place cells. In 2002, the combinations of place cells. Mosers found that disconnecting projections from the entorhinal cortex through CA3 did At first, the proposition that the not abolish the CA1 place fields (Brun et al., hippocampus was involved in spatial 2002). These findings, and the knowledge navigation was met with some scepticism. that medial entorhinal cortex is also directly However, it was later appreciated that the and reciprocally connected to the CA1 discovery of place cells, the meticulous region, prompted May-Britt Moser and demonstration that these cells represent a Edvard Moser to look in the medial mental map far from primary sensory input, entorhinal cortex for place coding cells. In a and the proposal that hippocampus contains first study they established, similar to what an inner map that can store information others had shown, that the medial about the environment, were seminal. entorhinal cortex contained cells that shared O’Keefe’s discovery sparked a large number characteristics with the place cells in of experimental and theoretical studies on hippocampus (Fyhn et al., 2004). However, how place cells are engaged in generating in a later study using larger encounters for spatial information and in spatial memory the animals to move in, they discovered a processes. The general notion from these novel cell type, the grid cells, that had studies is that the key function of the place unusual properties, (Hafting et al., 2005). cells are to create a map of the environment, although they may also be involved in The grid cells showed an astonishing firing measuring distance under some pattern. They were active in multiple places circumstances (Ravassard et al., 2013). in the open box that together formed nodes of an extended hexagonal grid (Figure 2), From hippocampus to grid cells in the similar to the hexagonal arrangements of entorhinal cortex holes in a beehive. Through the 1980s and 1990s the prevailing Grid cells in the same area of the medial theory was that the formation of place fields enthorinal cortex fire with the same spacing originated within the hippocampus itself.
Recommended publications
  • Grid Cells Are Ubiquitous in Neural Networks
    Grid Cells Are Ubiquitous in Neural Networks Songlin Li1†, Yangdong Deng2*†, Zhihua Wang1 1 Department of Microelectronics and Nanoelectronics, Tsinghua University 2 School of Software, Tsinghua University * Corresponding author: Email [email protected] † The two authors contributed equally to this work. Abstract: Grid cells are believed to play an important role in both spatial and non-spatial cognition tasks. A recent study observed the emergence of grid cells in an LSTM for path integration. The connection between biological and artificial neural networks underlying the seemingly similarity, as well as the application domain of grid cells in deep neural networks (DNNs), expect further exploration. This work demonstrated that grid cells could be replicated in either pure vision based or vision guided path integration DNNs for navigation under a proper setting of training parameters. We also show that grid-like behaviors arise in feedforward DNNs for non-spatial tasks. Our findings support that the grid coding is an effective representation for both biological and artificial networks. Introduction: It has been long hypothesized that animals use a “cognitive map”1, namely, an internal knowledge representation to support intelligent behaviors. This proposal was later proved by neuroscience experiments on both spatial2,3 and non-spatial4,5 cognition tasks. Grid cells, which exhibit a spatial periodic firing pattern and thus constitute the hexagonal spatial representation as Fyhn et al has observed2, were discovered in the medial entorhinal cortex (MEC) of rodents2,3. Subsequent studies proposed models to characterize the behavior of grid cells in terms of spike-timing correlations6-8. The discovery of grid cells as well as the fact that different grid cells forms a multi-scale representation inspired the theory of vector-based navigation9.
    [Show full text]
  • Laureadas Com O Nobel Na Fisiologia Ou Medicina (1995-2015)
    No trono da ciência II: laureadas com o Nobel na Fisiologia ou Medicina (1995-2015) On the Throne of Science II: Nobel Laureates in Physiology or Medicine (1995-2015) LUZINETE SIMÕES MINELLA Universidade Federal de Santa Catarina | UFSC RESUMO O artigo dá continuidade a uma pesquisa mais ampla sobre as trajetórias das doze cientistas que receberam o Nobel na Fisiologia ou Medicina entre 1947 e 2015. Na fase anterior foram analisadas as trajetó- rias das cinco pioneiras, laureadas entre 1947 e 1988 e nesta segunda etapa, são abordadas suas sucessoras, as sete premiadas entre 1995 e 2015. A análise das suas autobiografias, discursos e palestras disponíveis no site do prêmio, além de outras fontes, se fundamenta numa perspectiva balizada pela crítica feminista à ciência bem como pelos avanços dos estudos do campo de gênero e ciências e da história da ciência. O artigo tenta identificar semelhanças e diferenças entre as pioneiras e as sucessoras na tentativa de contribuir para o debate sobre as especificidades da feminização das carreiras científicas. 85 Palavras-chave Gênero e Ciências – Nobel – Fisiologia ou Medicina. ABSTRACT The article gives continuity to a broader research on the trajectories of the twelve scientists who received the Nobel Prize in Physiology or Medicine between 1947 and 2015. In the previous phase, the trajectories of the five pioneers awarded between 1947 and 1988 were analyzed, and, in this second phase, their successors, the seven awarded between 1995 and 2015, were approached. The analysis of their autobiographies, speeches and lectures available on the award site, in addition to other sources, is based on a feminist critique of science as well as advances of the studies in the field of gender and science and the history of science.
    [Show full text]
  • Cognitive Map Formation Through Sequence Encoding by Theta Phase Precession
    LETTER Communicated by A. David Redish Cognitive Map Formation Through Sequence Encoding by Theta Phase Precession Hiroaki Wagatsuma [email protected] Laboratory for Dynamics of Emergent Intelligence, RIKEN BSI, Wako-shi, Saitama 351-0198, Japan Yoko Yamaguchi [email protected] Laboratory for Dynamics of Emergent Intelligence, RIKEN BSI, Wako-shi, Saitama 351- 0198, Japan; College of Science and Engineering, Tokyo Denki University, Hatoyama, Saitama 350-0394, Japan; and CREST, Japan Science and Technology Corporation The rodent hippocampus has been thought to represent the spatial en- vironment as a cognitive map. The associative connections in the hip- pocampus imply that a neural entity represents the map as a geometrical network of hippocampal cells in terms of a chart. According to recent experimental observations, the cells fire successively relative to the theta oscillation of the local field potential, called theta phase precession, when the animal is running. This observation suggests the learning of temporal sequences with asymmetric connections in the hippocampus, but it also gives rather inconsistent implications on the formation of the chart that should consist of symmetric connections for space coding. In this study, we hypothesize that the chart is generated with theta phase coding through the integration of asymmetric connections. Our computer experiments use a hippocampal network model to demonstrate that a geometrical network is formed through running experiences in a few minutes. Asymmetric connections are found to remain and dis- tribute heterogeneously in the network. The obtained network exhibits the spatial localization of activities at each instance as the chart does and their propagation that represents behavioral motions with multidirec- tional properties.
    [Show full text]
  • Marine Vehicles Localization Using Grid Cells for Path Integration
    Marine Vehicles Localization Using Grid Cells for Path Integration Ignacio Carluchoa, Manuel F. Baileya, Mariano De Paulab, Corina Barbalataa [email protected], [email protected], mariano.depaula@fio.unicen.edu.ar, [email protected] a Department of Mechanical Engineering, Louisiana State University, Baton Rouge, USA b INTELYMEC Group, Centro de Investigaciones en F´ısica e Ingenier´ıa del Centro CIFICEN – UNICEN – CICpBA – CONICET, 7400 Olavarr´ıa, Argentina Abstract—Autonomous Underwater Vehicles (AUVs) are plat- forms used for research and exploration of marine environments. However, these types of vehicles face many challenges that hinder their widespread use in the industry. One of the main limitations is obtaining accurate position estimation, due to the lack of GPS signal underwater. This estimation is usually done with Kalman filters. However, new developments in the neuroscience field have shed light on the mechanisms by which mammals are able to obtain a reliable estimation of their current position based on external and internal motion cues. A new type of neuron, called Grid cells, has been shown to be part of path integration system in the brain. In this article, we show how grid cells can be used for obtaining a position estimation of underwater vehicles. The model of grid cells used requires only the linear velocities together with heading orientation and provides a reliable estimation of the vehicle’s position. We provide simulation results for an AUV which show the feasibility of our proposed methodology. Index Terms—Grid cells, Navigation, Neuro inspired agents, Autonomous underwater vehicles Fig. 1. A modified BlueROV2 used for experiments I. INTRODUCTION In recent years, the interest in exploring our oceans has that strongly correlates with the animal position in space [5].
    [Show full text]
  • Position–Theta-Phase Model of Hippocampal Place Cell Activity Applied to Quantification of Running Speed Modulation of Firing Rate
    Position–theta-phase model of hippocampal place cell activity applied to quantification of running speed modulation of firing rate Kathryn McClaina,b,1, David Tingleyb, David J. Heegera,c,1, and György Buzsákia,b,1 aCenter for Neural Science, New York University, New York, NY 10003; bNeuroscience Institute, New York University, New York, NY 10016; and cDepartment of Psychology, New York University, New York, NY 10003 Edited by Terrence J. Sejnowski, Salk Institute for Biological Studies, La Jolla, CA, and approved November 18, 2019 (received for review July 24, 2019) Spiking activity of place cells in the hippocampus encodes the Another challenge in understanding this system is the dynamic animal’s position as it moves through an environment. Within a interaction between the rate code and phase code. As these codes cell’s place field, both the firing rate and the phase of spiking in combine, different formats of information are conveyed simulta- the local theta oscillation contain spatial information. We propose a neously in place cell spiking. The interaction can produce unin- – position theta-phase (PTP) model that captures the simultaneous tuitive, although entirely predictable, results in traditional analyses expression of the firing-rate code and theta-phase code in place cell of place cell activity. These practical challenges have hindered the spiking. This model parametrically characterizes place fields to com- pare across cells, time, and conditions; generates realistic place cell effort to explain variability in hippocampal firing rates. A com- simulation data; and conceptualizes a framework for principled hy- putational tool is needed that accounts for the well-established pothesis testing to identify additional features of place cell activity.
    [Show full text]
  • Beta Oscillations and Hippocampal Place Cell Learning During
    Beta Oscillations and Hippocampal Place Cell Learning during Exploration of Novel Environments Stephen Grossberg1 1Department of Cognitive and Neural Systems Center for Adaptive Systems, and Center of Excellence for Learning in Education, Science and Technology Boston University 677 Beacon St Boston, Massachusetts 02215 [email protected] Telephone: 617-353-7858/7 Fax: 617-353-7755 http://www.cns.bu.edu/~steve July 29, 2008 Revised: November 24, 2008 CAS/CNS-TR-08-003 Hippocampus, in press Running head: Beta Oscillations during Hippocampal Place Cell Learning Corresponding author: Stephen Grossberg, [email protected] Keywords: grid cells, category learning, spatial navigation, adaptive resonance theory, entorhinal cortex 1 Abstract The functional role of synchronous oscillations in various brain processes has attracted a lot of experimental interest. Berke et al. (2008) reported beta oscillations during the learning of hippocampal place cell receptive fields in novel environments. Such place cell selectivity can develop within seconds to minutes, and can remain stable for months. Paradoxically, beta power was very low during the first lap of exploration, grew to full strength as a mouse traversed a lap for the second and third times, and became low again after the first two minutes of exploration. Beta oscillation power also correlated with the rate at which place cells became spatially selective, and not with theta oscillations. These beta oscillation properties are explained by a neural model of how place cell receptive fields may be learned and stably remembered as spatially selective categories due to feedback interactions between entorhinal cortex and hippocampus. This explanation allows the learning of place cell receptive fields to be understood as a variation of category learning processes that take place in many brain systems, and challenges hippocampal models in which beta oscillations and place cell stability cannot be explained.
    [Show full text]
  • Emergence of Grid-Like Representations by Training
    Published as a conference paper at ICLR 2018 EMERGENCE OF GRID-LIKE REPRESENTATIONS BY TRAINING RECURRENT NEURAL NETWORKS TO PERFORM SPATIAL LOCALIZATION Christopher J. Cueva,∗ Xue-Xin Wei∗ Columbia University New York, NY 10027, USA fccueva,[email protected] ABSTRACT Decades of research on the neural code underlying spatial navigation have re- vealed a diverse set of neural response properties. The Entorhinal Cortex (EC) of the mammalian brain contains a rich set of spatial correlates, including grid cells which encode space using tessellating patterns. However, the mechanisms and functional significance of these spatial representations remain largely mysterious. As a new way to understand these neural representations, we trained recurrent neural networks (RNNs) to perform navigation tasks in 2D arenas based on veloc- ity inputs. Surprisingly, we find that grid-like spatial response patterns emerge in trained networks, along with units that exhibit other spatial correlates, including border cells and band-like cells. All these different functional types of neurons have been observed experimentally. The order of the emergence of grid-like and border cells is also consistent with observations from developmental studies. To- gether, our results suggest that grid cells, border cells and others as observed in EC may be a natural solution for representing space efficiently given the predominant recurrent connections in the neural circuits. 1 INTRODUCTION Understanding the neural code in the brain has long been driven by studying feed-forward
    [Show full text]
  • Models of Grid Cells and Theta Oscillations
    BRIEF COMMUNICATIONS ARISING Models of grid cells and theta oscillations ARISING FROM M. M.Yartsev, M. P. Witter & N. Ulanovsky Nature 479, 103–107 (2011) Grid cells recorded in the medial entorhinal cortex (MEC) of freely and in putative velocity-controlled oscillatory inputs identified as inter- moving rodents show a markedly regular spatial firing pattern whose neurons within the septohippocampal circuit7. underlying mechanism has been the subject of intense interest. Yartsev et al.1 recorded the firing of grid cells from bats trained to Yartsev et al.1 report that the firing of grid cells in crawling bats does crawl within the recording environment, a behaviour that they per- not show theta rhythmicity ‘‘causally disproving a major class of form very slowly (a mean speed of 3.7 cm s21 versus 17.6 cm s21 in computational models’’ of grid cell firing that rely on oscillatory our rat data), often stopping entirely (supplementary figure 11 in interference2–7. However, their data may be consistent with these ref. 1). The authors found grid cells with very low firing rates (a mean models, with the apparent lack of theta rhythmicity reflecting slow peak rate of 0.56 Hz versus 5.14 Hz in our data) and little significant movement speeds and low firing rates. Thus, the conclusion of theta modulation. However, matching movement speed is important Yartsev et al. is not supported by their data. for comparisons involving theta. At low speeds movement-related In oscillatory interference models, path integration is performed by theta rhythmicity is strongly attenuated12 and the need for path velocity-dependent variation in the frequencies of theta-band oscilla- integration is reduced.
    [Show full text]
  • Resonating Neurons Stabilize Heterogeneous Grid-Cell Networks
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.10.419200; this version posted December 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Resonating neurons stabilize heterogeneous grid-cell networks 2 3 Divyansh Mittal and Rishikesh Narayanan* 4 5 Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of 6 Science, Bangalore, India. 7 8 *Corresponding Author 9 10 Rishikesh Narayanan, Ph.D. 11 Molecular Biophysics Unit 12 Indian Institute of Science 13 Bangalore 560 012, India. 14 15 e-mail: [email protected] 16 Phone: +91-80-22933372 17 Fax: +91-80-23600535 18 Number of words: 250 (abstract), 120 (significance statement) 19 20 Abbreviated title: Resonating neurons stabilize heterogeneous networks 21 22 Keywords: grid cells, entorhinal cortex, continuous attractor network, resonance, 23 heterogeneities 24 25 Author contributions 26 D. M. and R. N. designed experiments; D. M. performed experiments and carried out data 27 analysis; D. M. and R. N. co-wrote the paper. 28 29 Competing financial interests 30 The authors declare no conflict of interest. 31 32 Acknowledgments 33 This work was supported by the Wellcome Trust-DBT India Alliance (Senior fellowship to 34 RN; IA/S/16/2/502727), Human Frontier Science Program (HFSP) Organization (RN), the 35 Department of Biotechnology through the DBT-IISc partnership program (RN), the Revati 36 and Satya Nadham Atluri Chair Professorship (RN), and the Ministry of Human Resource 37 Development (RN & DM). The authors thank Dr. Poonam Mishra, Dr.
    [Show full text]
  • Is Neuroscience a Bigger Threat Than Artifical Intelligence
    Is Neuroscience a Bigger Threat than Artificial Intelligence? IBM’s Jeopardy winning computer Watson is a serious threat, not just to the livelihood of medical diagnosticians, but to other professionals who may find themselves going the way of welders. Besides its economic threat, the advance of AI seems to pose a cultural threat: if physical systems can do what we do without thought to give meaning to their achievements, the conscious human mind will be displaced from its unique role in the universe as a creative, responsible, rational agent. But this worry has a more powerful basis in the Nobel Prize winning discoveries of a quartet of neuroscientists—Eric Kandel, John O’Keefe, Edvard, and May-Britt Moser. For between them they have shown that the human brain doesn’t work the way conscious experience suggests at all. Instead it operates to deliver human achievements in the way IBM’s Watson does. Thoughts with meaning have no more role in the human brain than in artificial intelligence. Consciousness tells us that we employ a theory of mind, both to decide on our own actions and to predict and explain the behavior of others. According to this theory there have to be particular belief/desire pairings somewhere in our brains working together to bring about movements of the body, including speech and writing. Which beliefs and desires in particular? Roughly speaking it’s the contents of beliefs and desires—what they are about—that pair them up to drive our actions. The desires represent the ends, the beliefs record the available means to attain them.
    [Show full text]
  • The 2014 Nobel Prize in Physiology Or Medicine John O´Keefe May-Britt
    PRESS RELEASE 2014‐10‐06 The Nobel Assembly at Karolinska Institutet has today decided to award The 2014 Nobel Prize in Physiology or Medicine with one half to John O´Keefe and the other half jointly to May‐Britt Moser and Edvard I. Moser for their discoveries of cells that constitute a positioning system in the brain ____________________________________________________________________________________________________ How do we know where we are? How can we find the way from one place to another? And how can we store this information in such a way that we can immediately find the way the next time we trace the same path? This year´s Nobel Laureates have discovered a positioning system, an “inner GPS” in the brain that makes it possible to orient ourselves in space, demonstrating a cellular basis for higher cognitive function. In 1971, John O´Keefe discovered the first component of this positioning system. He found that a type of nerve cell in an area of the brain called the hippocampus that was always activated when a rat was at a certain place in a room. Other nerve cells were activated when the rat was at other places. O´Keefe concluded that these “place cells” formed a map of the room. More than three decades later, in 2005, May‐Britt and Edvard Moser discovered another key component of the brain’s positioning system. They identified another type of nerve cell, which they called “grid cells”, that generate a coordinate system and allow for precise positioning and pathfinding. Their subsequent research showed how place and grid cells make it possible to determine position and to navigate.
    [Show full text]
  • ERC Press Release O in 2012, Prof
    Press release 6 October 2014 Nobel Prize in Physiology/Medicine to two European Research Council grantees It was announced today by the Nobel Assembly at Karolinska Institutet, Stockholm, that the 2014 Nobel Prize in Physiology/Medicine has been awarded to Professor Edvard I. Moser and Professor May-Britt Moser, both ERC Advanced Grant holders, together with Professor John O´Keefe, "for their discoveries of cells that constitute a positioning system in the brain". On this occasion, European Commission President José Manuel Barroso said: "I warmly congratulate John O´Keefe, May-Britt Moser and Edvard Moser on their achievement. I am particularly proud that both May-Britt and Edvard Moser are holders of European Research Council Advanced Grants. The ERC supports the very best pioneering researchers across Europe, and has made a real impact since its launch in 2007. This is why we decided on a significant boost for the ERC budget in our new research and innovation programme, Horizon 2020." The President of the European Research Council (ERC), Prof. Jean-Pierre-Bourguignon, commented: "On behalf of the ERC, I would like to extend warm congratulations to this year’s three Nobel laureates in Physiology or Medicine. We are very proud that the European Research Council has funded two of the winners - Professors Edvard I. Moser and May-Britt Moser. Their ERC Advanced Grants contributed in a significant way to their ground-breaking research on the navigation system of the brain. Today's news confirms that the ERC invests in the best minds – whether young or senior - to support their most innovative ideas at the cutting edge." This is the third time that a Nobel Prize goes to top researchers funded by the ERC since its launch.
    [Show full text]