Investigating the Effect of Scyllo-Inositol Treatment on the Brain in a Mouse Model of Alzheimer’S Disease

Total Page:16

File Type:pdf, Size:1020Kb

Investigating the Effect of Scyllo-Inositol Treatment on the Brain in a Mouse Model of Alzheimer’S Disease Investigating the Effect of scyllo-Inositol Treatment on the Brain in a Mouse Model of Alzheimer’s Disease by Qingda Hu A thesis submitted in conformity with the requirements for the degree of Master’s of Science Department of Laboratory Medicine and Pathobiology University of Toronto ©Copyright by Qingda Hu 2016 Investigating the Effect of scyllo-Inositol Treatment on the Brain in a Mouse Model of Alzheimer’s Disease Qingda Hu Master’s of Science Department of Laboratory Medicine and Pathobiology University of Toronto 2016 Abstract scyllo-Inositol is a potential therapeutic for the treatment of agitation and aggression in patients with Alzheimer’s disease. scyllo-Inositol reduces aggregation of beta-amyloid peptide, reduces amyloid plaques, and reduces myo-inositol concentration in the brain. The change in gene expression in the brain of TgCRND8 mice after scyllo-inositol treatment has not been previously investigated. I hypothesized that scyllo-inositol treatment would cause changes in expression of genes involved in neurodegenerative diseases and neuropsychiatric disorders. Affymetrix gene expression microarrays were used to analyze changes in the hippocampus and cerebral cortex of TgCRND8 mice as well as in non-transgenic littermates after 30 days of scyllo-inositol treatment. Analysis of the data with the Database for Annotation, Visualization and Integrated Discovery and Ingenuity Pathways Analysis program showed gene expression changes in synaptic function, calcium, dopamine receptor, glutamate receptor, and myo-inositol signalling pathways. In light of these results, I concluded that my hypothesis was correct. ii Acknowledgments I would like to thank Dr. JoAnne McLaurin for her guidance and support throughout my Master’s degree. This project would not have been possible without the assistance of Mary Brown. I would also like to thank all the other members of the McLaurin laboratory for their feedback and discussion. I would like to thank the members of my graduate advisory committee, Dr. Isabelle Aubert and Dr. Krista Lanctôt, for their assistance and feedback. iii Table of Contents Acknowledgments.......................................................................................................................... iii Table of Contents ........................................................................................................................... iv List of Tables ................................................................................................................................. vi List of Figures ............................................................................................................................... vii List of Abbreviations ..................................................................................................................... ix Chapter 1 Introduction .....................................................................................................................1 1.1 Alzheimer’s disease .............................................................................................................1 1.2 Neuropsychiatric symptoms - Agitation and aggression .....................................................3 1.3 scyllo-Inositol .......................................................................................................................6 Chapter 2 Rationale, Objectives, and Hypothesis ..........................................................................11 2.1 Rationale ............................................................................................................................11 2.2 Hypothesis..........................................................................................................................11 2.3 Specific aims ......................................................................................................................12 Chapter 3 Materials and Methods ..................................................................................................13 3.1 Animals ..............................................................................................................................13 3.2 RNA isolation ....................................................................................................................13 3.3 Affymetrix microarray .......................................................................................................14 3.4 Functional clustering and pathway analysis ......................................................................15 3.5 RT-qPCR............................................................................................................................16 3.6 Primer design .....................................................................................................................17 3.7 Analysis of qPCR data .......................................................................................................21 Chapter 4 Results ...........................................................................................................................23 4.1 Effect of scyllo-inositol treatment in TgCRND8 mouse model of Alzheimer’s disease ...23 iv 4.1.1 Hippocampal microarray comparison between scyllo-inositol treated and untreated 100 day old TgCRND8 mice .................................................................25 4.1.2 Cortical microarray comparison between scyllo-inositol treated and untreated 100 day old TgCRND8 mice .................................................................................39 4.1.3 Primer design, quality control, and choosing internal control for qPCR ...............45 4.1.4 qPCR comparison between scyllo-inositol treated and untreated 100 day old TgCRND8 mice .....................................................................................................52 4.1.5 qPCR comparison between scyllo-inositol treated and untreated 150 day old TgCRND8 mice .....................................................................................................55 4.1.6 Hippocampal microarray comparison between scyllo-inositol treated and untreated 200 day old TgCRND8 mice .................................................................60 4.1.7 Cortical microarray comparison between scyllo-inositol treated and untreated 200 day old TgCRND8 mice .................................................................................69 4.2 Investigating the Aβ dependent and Aβ independent effects of scyllo-inositol treatment ............................................................................................................................71 4.2.1 Hippocampal microarray comparison between 200 day old TgCRND8 mice and non-transgenic littermates ...............................................................................72 4.2.2 Cortical microarray comparison between 200 day old TgCRND8 mice and non-transgenic littermates ......................................................................................80 4.2.3 Hippocampal microarray comparison between scyllo-inositol treated and untreated 200 day old non-transgenic littermates ..................................................89 4.2.4 Cortical microarray comparison between scyllo-inositol treated and untreated 200 day old non-transgenic littermates ..................................................................95 Chapter 5 Discussion ...................................................................................................................101 Chapter 6 Conclusion and future directions.................................................................................106 6.1 Conclusion .......................................................................................................................106 6.2 Future directions ..............................................................................................................106 References or Bibliography .........................................................................................................108 v List of Tables Table 3.1 The default run method for standard comparative Ct using SYBR Green 17 detection with a melt curve Table 3.2 List of all the primers that were used in this thesis 18 Table 4.1 List of top enriched clusters identified by DAVID in the comparison of 30 hippocampal samples from 100 day old TgCRND8 mice treated and untreated with scyllo-inositol Table 4.2 Top upstream regulators identified in the IPA core analysis for hippocampal 39 comparison of treated and untreated 100 day old TgCRND8 mice Table 4.3 List of top enriched clusters identified by DAVID in the cortical comparison 42 of treated and untreated 100 day old TgCRND8 samples Table 4.4 Top upstream regulators identified in the IPA core analysis for cortical 44 comparison of treated and untreated 100 day old TgCRND8 mice. Table 4.5 The efficiency and melt curve peak temperature for all of the primers used 49 Table 4.6 Sample average Ct values from rt-qPCR of all 8 control genes of 10 samples 51 Table 4.7 Analysis by BestKeeper of the data from Table 4.6 51 Table 4.8 Clustering of annotation from DAVID of hippocampal comparison of 66 treated and untreated 200 day old TgCRND8 Table 4.9 The 19 probe sets and extra information for the cortical comparison of 200 70 day TgCRND8 mice Table 4.10 List of top enriched clusters identified by DAVID in the hippocampal 76 comparison of 200 day old TgCRND8 mice and non-transgenic littermates Table 4.11 List of top enriched clusters identified by DAVID for
Recommended publications
  • Prion Fragment Peptides Are Digested with Membrane Type Matrix Metalloproteinases and Acquire Enzyme Resistance Through Cu2+-Binding
    Biomolecules 2014, 4, 510-526; doi:10.3390/biom4020510 OPEN ACCESS biomolecules ISSN 2218-273X www.mdpi.com/journal/biomolecules/ Article Prion Fragment Peptides Are Digested with Membrane Type Matrix Metalloproteinases and Acquire Enzyme Resistance through Cu2+-Binding Aya Kojima 1,2, Motomi Konishi 1 and Toshifumi Akizawa 1,* 1 Analytical Chemistry, Pharmaceutical Science, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan; E-Mails: [email protected] (A.K.); [email protected] (M.K.) 2 Division of Cellular and Molecular Biology, Department of Cancer Biology, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 180-8639, Japan * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel./Fax: +81-72-866-3129. Received: 31 January 2014; in revised form: 2 April 2014 / Accepted: 11 April 2014 / Published: 8 May 2014 Abstract: Prions are the cause of neurodegenerative disease in humans and other mammals. The structural conversion of the prion protein (PrP) from a normal cellular protein (PrPC) to a protease-resistant isoform (PrPSc) is thought to relate to Cu2+ binding to histidine residues. In this study, we focused on the membrane-type matrix metalloproteinases (MT-MMPs) such as MT1-MMP and MT3-MMP, which are expressed in the brain as PrPC-degrading proteases. We synthesized 21 prion fragment peptides. Each purified peptide was individually incubated with recombinant MT1-MMP or MT3-MMP in the presence or absence of Cu2+ and the cleavage sites determined by LC-ESI-MS analysis. Recombinant MMP-7 and human serum (HS) were also tested as control.
    [Show full text]
  • ADAM10 Site-Dependent Biology: Keeping Control of a Pervasive Protease
    International Journal of Molecular Sciences Review ADAM10 Site-Dependent Biology: Keeping Control of a Pervasive Protease Francesca Tosetti 1,* , Massimo Alessio 2, Alessandro Poggi 1,† and Maria Raffaella Zocchi 3,† 1 Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico S. Martino Largo R. Benzi 10, 16132 Genoa, Italy; [email protected] 2 Proteome Biochemistry, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; [email protected] 3 Division of Immunology, Transplants and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; [email protected] * Correspondence: [email protected] † These authors contributed equally to this work as last author. Abstract: Enzymes, once considered static molecular machines acting in defined spatial patterns and sites of action, move to different intra- and extracellular locations, changing their function. This topological regulation revealed a close cross-talk between proteases and signaling events involving post-translational modifications, membrane tyrosine kinase receptors and G-protein coupled recep- tors, motor proteins shuttling cargos in intracellular vesicles, and small-molecule messengers. Here, we highlight recent advances in our knowledge of regulation and function of A Disintegrin And Metalloproteinase (ADAM) endopeptidases at specific subcellular sites, or in multimolecular com- plexes, with a special focus on ADAM10, and tumor necrosis factor-α convertase (TACE/ADAM17), since these two enzymes belong to the same family, share selected substrates and bioactivity. We will discuss some examples of ADAM10 activity modulated by changing partners and subcellular compartmentalization, with the underlying hypothesis that restraining protease activity by spatial Citation: Tosetti, F.; Alessio, M.; segregation is a complex and powerful regulatory tool.
    [Show full text]
  • Α-Secretase Nonsense Mutation (ADAM10 Tyr167*) in Familial
    Agüero et al. Alzheimer's Research & Therapy (2020) 12:139 https://doi.org/10.1186/s13195-020-00708-0 RESEARCH Open Access α-Secretase nonsense mutation (ADAM10 Tyr167*) in familial Alzheimer’s disease Pablo Agüero1, María José Sainz1, María-Salud García-Ayllón2,3,4, Javier Sáez-Valero2,3, Raquel Téllez5, Rosa Guerrero-López6, Julián Pérez-Pérez7, Adriano Jiménez-Escrig8 and Estrella Gómez-Tortosa1* Abstract Background: The disintegrin metalloproteinase 10 (ADAM10) is the main α-secretase acting in the non- amyloidogenic processing of APP. Some ADAM10 gene variants have been associated with higher susceptibility to develop late-onset AD, though clear clinical-genetic correlates remain elusive. Methods: Clinical-genetic and biomarker study of a first family with early- and late-onset AD associated with a nonsense ADAM10 mutation (p.Tyr167*). CSF analysis included AD core biomarkers, as well as Western blot of ADAM10 species and sAPPα and sAPPβ peptides. We evaluate variant’s pathogenicity, pattern of segregation, and further screened for the p.Tyr167* mutation in 197 familial AD cases from the same cohort, 200 controls from the same background, and 274 AD cases from an independent Spanish cohort. Results: The mutation was absent from public databases and segregated with the disease. CSF Aβ42, total tau, and phosphorylated tau of affected siblings were consistent with AD. The predicted haploinsufficiency effect of the nonsense mutation was supported by (a) ADAM10 isoforms in CSF decreased around 50% and (b) 70% reduction of CSF sAPPα peptide, both compared to controls, while sAPPβ levels remained unchanged. Interestingly, sporadic AD cases had a similar decrease in CSF ADAM10 levels to that of mutants, though their sAPPα and sAPPβ levels resembled those of controls.
    [Show full text]
  • The Disintegrin/Metalloproteinase ADAM10 Is Essential for the Establishment of the Brain Cortex
    The Journal of Neuroscience, April 7, 2010 • 30(14):4833–4844 • 4833 Development/Plasticity/Repair The Disintegrin/Metalloproteinase ADAM10 Is Essential for the Establishment of the Brain Cortex Ellen Jorissen,1,2* Johannes Prox,3* Christian Bernreuther,4 Silvio Weber,3 Ralf Schwanbeck,3 Lutgarde Serneels,1,2 An Snellinx,1,2 Katleen Craessaerts,1,2 Amantha Thathiah,1,2 Ina Tesseur,1,2 Udo Bartsch,5 Gisela Weskamp,6 Carl P. Blobel,6 Markus Glatzel,4 Bart De Strooper,1,2 and Paul Saftig3 1Center for Human Genetics, Katholieke Universiteit Leuven and 2Department for Developmental and Molecular Genetics, Vlaams Instituut voor Biotechnologie (VIB), 3000 Leuven, Belgium, 3Institut fu¨r Biochemie, Christian-Albrechts-Universita¨t zu Kiel, D-24098 Kiel, Germany, 4Institute of Neuropathology, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany, 5Department of Ophthalmology, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany, and 6Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, and Departments of Medicine and of Physiology, Systems Biology and Biophysics, Weill Medical College of Cornell University, New York, New York 10021 The metalloproteinase and major amyloid precursor protein (APP) ␣-secretase candidate ADAM10 is responsible for the shedding of ,proteins important for brain development, such as cadherins, ephrins, and Notch receptors. Adam10 ؊/؊ mice die at embryonic day 9.5 due to major defects in development of somites and vasculogenesis. To investigate the function of ADAM10 in brain, we generated Adam10conditionalknock-out(cKO)miceusingaNestin-Crepromotor,limitingADAM10inactivationtoneuralprogenitorcells(NPCs) and NPC-derived neurons and glial cells. The cKO mice die perinatally with a disrupted neocortex and a severely reduced ganglionic eminence, due to precocious neuronal differentiation resulting in an early depletion of progenitor cells.
    [Show full text]
  • Strategies to Target ADAM17 in Disease: from Its Discovery to the Irhom Revolution
    molecules Review Strategies to Target ADAM17 in Disease: From Its Discovery to the iRhom Revolution Matteo Calligaris 1,2,†, Doretta Cuffaro 2,†, Simone Bonelli 1, Donatella Pia Spanò 3, Armando Rossello 2, Elisa Nuti 2,* and Simone Dario Scilabra 1,* 1 Proteomics Group of Fondazione Ri.MED, Research Department IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Via E. Tricomi 5, 90145 Palermo, Italy; [email protected] (M.C.); [email protected] (S.B.) 2 Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; [email protected] (D.C.); [email protected] (A.R.) 3 Università degli Studi di Palermo, STEBICEF (Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche), Viale delle Scienze Ed. 16, 90128 Palermo, Italy; [email protected] * Correspondence: [email protected] (E.N.); [email protected] (S.D.S.) † These authors contributed equally to this work. Abstract: For decades, disintegrin and metalloproteinase 17 (ADAM17) has been the object of deep investigation. Since its discovery as the tumor necrosis factor convertase, it has been considered a major drug target, especially in the context of inflammatory diseases and cancer. Nevertheless, the development of drugs targeting ADAM17 has been harder than expected. This has generally been due to its multifunctionality, with over 80 different transmembrane proteins other than tumor necrosis factor α (TNF) being released by ADAM17, and its structural similarity to other metalloproteinases. This review provides an overview of the different roles of ADAM17 in disease and the effects of its ablation in a number of in vivo models of pathological conditions.
    [Show full text]
  • Proteolytic Cleavage—Mechanisms, Function
    Review Cite This: Chem. Rev. 2018, 118, 1137−1168 pubs.acs.org/CR Proteolytic CleavageMechanisms, Function, and “Omic” Approaches for a Near-Ubiquitous Posttranslational Modification Theo Klein,†,⊥ Ulrich Eckhard,†,§ Antoine Dufour,†,¶ Nestor Solis,† and Christopher M. Overall*,†,‡ † ‡ Life Sciences Institute, Department of Oral Biological and Medical Sciences, and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada ABSTRACT: Proteases enzymatically hydrolyze peptide bonds in substrate proteins, resulting in a widespread, irreversible posttranslational modification of the protein’s structure and biological function. Often regarded as a mere degradative mechanism in destruction of proteins or turnover in maintaining physiological homeostasis, recent research in the field of degradomics has led to the recognition of two main yet unexpected concepts. First, that targeted, limited proteolytic cleavage events by a wide repertoire of proteases are pivotal regulators of most, if not all, physiological and pathological processes. Second, an unexpected in vivo abundance of stable cleaved proteins revealed pervasive, functionally relevant protein processing in normal and diseased tissuefrom 40 to 70% of proteins also occur in vivo as distinct stable proteoforms with undocumented N- or C- termini, meaning these proteoforms are stable functional cleavage products, most with unknown functional implications. In this Review, we discuss the structural biology aspects and mechanisms
    [Show full text]
  • The Amyloid-β Pathway in Alzheimer’S Disease
    Molecular Psychiatry www.nature.com/mp REVIEW ARTICLE OPEN The Amyloid-β Pathway in Alzheimer’s Disease ✉ Harald Hampel 1 , John Hardy2, Kaj Blennow3,4, Christopher Chen 5, George Perry 6, Seung Hyun Kim7, 8,9 10 11 12 13 1 14,15 Victor L. Villemagne , Paul Aisen , Michele✉ Vendruscolo , Takeshi Iwatsubo , Colin L. Masters , Min Cho , Lars Lannfelt , Jeffrey L. Cummings16 and Andrea Vergallo 1 © The Author(s) 2021 Breakthroughs in molecular medicine have positioned the amyloid-β (Aβ) pathway at the center of Alzheimer’s disease (AD) pathophysiology. While the detailed molecular mechanisms of the pathway and the spatial-temporal dynamics leading to synaptic failure, neurodegeneration, and clinical onset are still under intense investigation, the established biochemical alterations of the Aβ cycle remain the core biological hallmark of AD and are promising targets for the development of disease-modifying therapies. Here, we systematically review and update the vast state-of-the-art literature of Aβ science with evidence from basic research studies to human genetic and multi-modal biomarker investigations, which supports a crucial role of Aβ pathway dyshomeostasis in AD pathophysiological dynamics. We discuss the evidence highlighting a differentiated interaction of distinct Aβ species with other AD-related biological mechanisms, such as tau-mediated, neuroimmune and inflammatory changes, as well as a neurochemical imbalance. Through the lens of the latest development of multimodal in vivo biomarkers of AD, this cross- disciplinary review examines the compelling hypothesis- and data-driven rationale for Aβ-targeting therapeutic strategies in development for the early treatment of AD. Molecular Psychiatry; https://doi.org/10.1038/s41380-021-01249-0 INTRODUCTION neuronal loss and ultimately clinical manifestations by up to 20–30 Alzheimer’s disease (AD) is the primary cause of dementia, years [6].
    [Show full text]
  • Beta-Secretase Transgenic Mice
    BETA-SECRETASE TRANSGENIC MICE: EFFECTS OF BACE1 AND BACE2 ON ALZHEIMER’S DISEASE PATHOGENESIS by MATTHEW J. CHIOCCO Submitted in partial fulfillment of the requirements For the degree of Doctor of Philosophy Dissertation Advisor: Dr. Bruce T. Lamb Department of Genetics CASE WESTERN RESERVE UNIVERSITY May, 2005 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the dissertation of ______________________________________________________ candidate for the Ph.D. degree *. (signed)_______________________________________________ (chair of the committee) ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ (date) _______________________ *We also certify that written approval has been obtained for any proprietary material contained therein. Table of Contents Chapter 1: Introduction and Research Aims .............................................................10 Clinical Presentation of AD.......................................................................................10 AD Epidemiology......................................................................................................16 APP Processing and AD Genetics..............................................................................22 Amyloid Cascade Hypothesis ....................................................................................27 APP Secretases..........................................................................................................32
    [Show full text]
  • A Disintegrin and Metalloprotease
    Review A Disintegrin and Metalloprotease (ADAM): Historical Overview of Their Functions Nives Giebeler and Paola Zigrino * Department of Dermatology and Venerology, University of Cologne, Cologne 50937, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-221-478-97443 Academic Editors: Jay Fox and José María Gutiérrez Received: 14 March 2016; Accepted: 19 April 2016; Published: 23 April 2016 Abstract: Since the discovery of the first disintegrin protein from snake venom and the following identification of a mammalian membrane-anchored metalloprotease-disintegrin implicated in fertilization, almost three decades of studies have identified additional members of these families and several biochemical mechanisms regulating their expression and activity in the cell. Most importantly, new in vivo functions have been recognized for these proteins including cell partitioning during development, modulation of inflammatory reactions, and development of cancers. In this review, we will overview the a disintegrin and metalloprotease (ADAM) family of proteases highlighting some of the major research achievements in the analysis of ADAMs’ function that have underscored the importance of these proteins in physiological and pathological processes over the years. Keywords: ADAM; disintegrin; SVMP 1. Some Generalities ADAMs (a disintegrin and metalloproteinases), originally also known as MDC proteins (metalloproteinase/disintegrin/cysteine-rich), belong to the Metzincins superfamily of metalloproteases. The timeline of key events in ADAM research is shown in Figure1. Figure 1. Timeline of key events in ADAMs research. The dates correspond to the publication year of the first article related to the event. Toxins 2016, 8, 122; doi:10.3390/toxins8040122 www.mdpi.com/journal/toxins Toxins 2016, 8, 122 2 of 14 Together with snake venom metalloproteases (SVMPs), ADAM and ADAMTS (a disintegrin and metalloproteinases with thrombospondin motif) proteins form the M12 (MEROP database; https://merops.sanger.ac.uk/) Adamalysin subfamily of metallopeptidases.
    [Show full text]
  • MT5-MMP Controls APP and Β-CTF/C99 Metabolism Through Proteolytic-Dependent and -Independent Mechanisms Relevant for Alzheimer’S Disease
    bioRxiv preprint doi: https://doi.org/10.1101/2020.09.01.258665; this version posted September 1, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. MT5-MMP controls APP and β-CTF/C99 metabolism through proteolytic-dependent and -independent mechanisms relevant for Alzheimer’s disease Laura García-González 1, Jean-Michel Paumier 1,a, Laurence Louis 1, Dominika Pilat 1, Anne Bernard 1, Delphine Stephan 1, Nicolas Jullien 1, Frédéric Checler 2, Emmanuel Nivet 1, Michel 1 1, 1, Khrestchatisky , Kévin Baranger * and Santiago Rivera * + 1. Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France. 2. IPMC, UMR 7275 CNRS-UCA, Labex DistAlz, 06560 Valbonne, France. a. Present address: Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA. * Equally corresponding authors and responsible for the supervision of the study: kevin.baranger@univ- amu.fr and [email protected] Institute of Neuropathophysiology (INP) UMR 7051, CNRS - Aix-Marseille Université Campus Timone 27 Bld Jean Moulin 13005 Marseille France Tel: 33 4 91 69 87 71 Tel: 33 4 91 69 89 64 Fax: 33 4 91 25 89 70 Running title: MT5-MMP controls C99 fate bioRxiv preprint doi: https://doi.org/10.1101/2020.09.01.258665; this version posted September 1, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. ABSTRACT We previously discovered the implication of membrane-type 5-matrix metalloproteinase (MT5-MMP) in Alzheimer’s disease AD pathogenesis.
    [Show full text]
  • Tumor Necrosis Factor Α Induces a Metalloprotease-Disintegrin, ADAM8
    The Journal of Neuroscience, November 1, 2000, 20(21):7964–7971 Tumor Necrosis Factor ␣ Induces a Metalloprotease-Disintegrin, ADAM8 (CD 156): Implications for Neuron–Glia Interactions during Neurodegeneration Uwe Schlomann,1 Silvia Rathke-Hartlieb,1 Shunsuke Yamamoto,2 Harald Jockusch,1 and Jo¨ rg W. Bartsch1 1Developmental Biology and Molecular Pathology, University of Bielefeld, 33615 Bielefeld, Germany, and 2Department of Pathology, Oita Medical University, Hasama-machi, Oita 879–55, Japan ADAM proteases, defined by extracellular disintegrin and metal- wild-type and WR mice, in primary cerebellar neurons, and in loprotease domains, are involved in protein processing and cell– mouse motoneuron-like NSC19 cells, ADAM8 expression was cell interactions. Using wobbler (WR) mutant mice, we investi- induced up to 15-fold by mouse TNF-␣, in a dose-dependent gated the role of ADAMs in neurodegeneration and reactive glia manner. In both cell types, ADAM8 was also induced by human activation in the CNS. We found that ADAM8 (CD 156), a sus- TNF-␣, indicating that TNF receptor type I (p55) is involved. pected leukocyte adhesion molecule, is expressed in the CNS Induction of ADAM8 mRNA was suppressed by treatment with and highly induced in affected CNS areas of WR mice, in brain- an interferon-regulating factor 1 (IRF-1) antisense oligonucleo- stem and spinal cord. ADAM8 mRNA and protein are found at tide. We conclude that IRF-1-mediated induction of ADAM8 by low levels throughout the normal mouse CNS, in neurons and TNF-␣ is a signaling pathway relevant for neurodegenerative oligodendrocytes. In the WR CNS regions in which neurodegen- disorders with glia activation, proposing a role for ADAM8 in cell eration occurs, ADAM8 is induced in neurons, reactive astro- adhesion during neurodegeneration.
    [Show full text]
  • Emerging Alternative Proteinases in APP Metabolism And
    Emerging Alternative Proteinases in APP Metabolism and Alzheimer’s Disease Pathogenesis: A Focus on MT1-MMP and MT5-MMP Laura García-González, Dominika Pilat, Kévin Baranger, Santiago Rivera To cite this version: Laura García-González, Dominika Pilat, Kévin Baranger, Santiago Rivera. Emerging Alternative Proteinases in APP Metabolism and Alzheimer’s Disease Pathogenesis: A Focus on MT1-MMP and MT5-MMP. Frontiers in Aging Neuroscience, Frontiers, 2019, 11, 10.3389/fnagi.2019.00244. hal- 02387973 HAL Id: hal-02387973 https://hal-amu.archives-ouvertes.fr/hal-02387973 Submitted on 10 Apr 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License fnagi-11-00244 September 23, 2019 Time: 15:55 # 1 REVIEW published: 24 September 2019 doi: 10.3389/fnagi.2019.00244 Emerging Alternative Proteinases in APP Metabolism and Alzheimer’s Disease Pathogenesis: A Focus on MT1-MMP and MT5-MMP Laura García-González, Dominika Pilat, Kévin Baranger* and Santiago Rivera* Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France Processing of amyloid beta precursor protein (APP) into amyloid-beta peptide (Ab) by b-secretase and g-secretase complex is at the heart of the pathogenesis of Alzheimer’s disease (AD).
    [Show full text]