Technological Applications of Natural Colorants in Food Systems: a Review
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Protective Effect of Crocin Against Blue Light– and White Light–Mediated Photoreceptor Cell Death in Bovine and Primate Retinal Primary Cell Culture
Protective Effect of Crocin against Blue Light– and White Light–Mediated Photoreceptor Cell Death in Bovine and Primate Retinal Primary Cell Culture Aicha Laabich, Ganesh P. Vissvesvaran, Kuo L. Lieu, Kyoko Murata, Tim E. McGinn, Corinne C. Manmoto, John R. Sinclair, Ibrahim Karliga, David W. Leung, Ahmad Fawzi, and Ryo Kubota PURPOSE. The present study was performed to investigate the major blue light–absorbing fluorophores of lipofuscin in the effect of crocin on blue light– and white light–induced rod and RPE believed to be associated with AMD pathogenesis.7 Several cone death in primary retinal cell cultures. epidemiologic studies suggest that long-term history of expo- 8 METHODS. Primary retinal cell cultures were prepared from sure to light may have some impact on the incidence of AMD. Exposure to intense light causes photoreceptor death. Light- primate and bovine retinas. Fifteen-day-old cultures were ex- 9 posed to blue actinic light or to white fluorescent light for 24 induced photoreceptor death is mediated by rhodopsin, and the extent of its bleaching and its regeneration and visual hours. Cultures were treated by the addition of different con- 10,11 centrations of crocin for 24 hours before light exposure or for transduction proteins determine the degree of damage. Blue light– and white light–induced damage of retinal cells 8 hours after light exposure. Cultures kept in the dark were 12,13 used as controls. Green nucleic acid stain assay was used to have been widely used as in vivo models. Although the abnormality of the retinal pigment epithelium is thought to evaluate cell death. -
The New York Botanical Garden
JOURNAL OF The New York Botanical Garden VOL. XII October, 1911. No. \A2. REPORT ON A VISIT TO THE ROYAL GARDENS, KEW, ENGLAND, AND TO THE BRITISH MUSEUM OF NATURAL HISTORY. To THE SCIENTIFIC DIRECTORS, Gentlemen: Pursuant to your permission I sailed from New- York, August 9, on the Cunard steamship "Lusitania," accom panied by Mrs. Britton, arriving at Fishguard, Wales, August 14, and proceeded to the Royal Gardens at Kew, Surrey, England, for the purposes: (1) of studying the living plant collections in the grounds and greenhouses with reference to comparison with our own and in particular those of cactuses; (2) for the com parison in the Kew Herbarium, and in that of the British Museum of Natural History, of over nine hundred specimens of Cuban plants of our recent collecting, which I took with me for that purpose, together with a considerable number from Jamaica; be sides (3) for information concerning a number of questions which have arisen during the course of our work, only to be obtained by reference to older collections. An exceptionally severe and prolonged drought had turned usually moist and green southern England to grey and brown, so that much of its normal beauty was absent; fields and lawns in particular were affected, the latter so much so in many places as to make us wonder if they could ever be brought back to their usual velvet-like condition without ploughing and resowing. Gardens also, naturally, had suffered severely; shrubs showed leaves and fruits dried up long before their time for falling; trees 215 216 were losing their leaves a month or more before they ordinarily would and herbaceous plants were flowering much less freely than is usual. -
What Pigments Are in Plants?
BUILD YOUR FUTURE! ANYANG BEST COMPLETE MACHINERY ENGINEERING CO.,LTD WHAT PIGMENTS ARE IN PLANTS? Pigments Pigments are chemical compounds responsible for color in a range of living substances and in the inorganic world. Pigments absorb some of the light they receive, and so reflect only certain wavelengths of visible light. This makes them appear "colorful.” Cave paintings by early man show the early use of pigments, in a limited range from straw color to reddish brown and black. These colors occurred naturally in charcoals, and in mineral oxides such as chalk and ochre. The WebExhibit on Pigments has more information on these early painting palettes. Many early artists used natural pigments, but nowadays they have been replaced by cheaper and less toxic synthetic pigments. Biological Pigments Pigments are responsible for many of the beautiful colors we see in the plant world. Dyes have often been made from both animal sources and plant extracts . Some of the pigments found in animals have also recently been found in plants. Website: www.bestextractionmachine.com Email: [email protected] Tel: +86 372 5965148 Fax: +86 372 5951936 Mobile: ++86 8937276399 BUILD YOUR FUTURE! ANYANG BEST COMPLETE MACHINERY ENGINEERING CO.,LTD Major Plant Pigments White Bird Of Paradise Tree Bilirubin is responsible for the yellow color seen in jaundice sufferers and bruises, and is created when hemoglobin (the pigment that makes blood red) is broken down. Recently this pigment has also been found in plants, specifically in the orange fuzz on seeds of the white Bird of Paradise tree. The bilirubin in plants doesn’t come from breaking down hemoglobin. -
Changes in Physical Properties and Chemical Composition
Health Benefits and Bioactive Components of the Fruits from Opuntia ficus-indica [L.] Mill.♦ Maria A. Livrea* and Luisa Tesoriere Dipartimento Farmacochimico Tossicologico e Biologico, Università di Palermo Via Michele Cipolla 74, 90128 Palermo. Italy *corresponding author [email protected] ABSTRACT The health-promoting properties of edible fruits from Opuntia ficus-indica have been the object of recent interest. Scientific evidence has been provided about benefits from the consumption of the fruits in humans, with special attention to the non-nutritive components as potentially active antioxidant phytochemicals. Information about bioavailability and bioactivity of betalains, mode of action as antioxidants in cells, and other biological models are now available. The use of cactus pear components as nutraceuticals and functional food is discussed. Keywords: Opuntia ficus-indica, edible cactus, betanin, indicaxanthin, betalains, health benefits, in vivo, in vitro, natural oxidants, free-radical scavengers 1. INTRODUCTION An equilibrated life-style, a balanced diet, no smoking, and moderate physical activity are fundamental for maintaining a healthy status. Importantly, epidemiological evidence has been provided that various age-related pathologies, including cardiovascular diseases, cancer and neurodegenerative disorders have a minor incidence among people usually consuming a traditional Mediterranean-style diet, rich in fruit and vegetables (Ames et al., 1993; Lampe, 1999; Lee et al., 2004; Rice-Evans and Miller, 1985). Since these diseases -
Regulatory Information Sheet
Regulatory Information Sheet List of Permanently Listed Color Additives Subject to U.S. Certification* Color 21 CFR References CAS Color Common Name Index Medical Number Food Drug Cosmetic Number Devices D&C Black No. 2 Carbon Black 77266 1333-86-4 -- -- 74.2052 -- D&C Black No. 3 Bone Black 77267 8021-99-6 -- -- 74.2053 -- FD&C Blue No. 1 Brilliant Blue FCF 42090 2650-18-2 74.101 74.1101 74.2101 -- FD&C Blue No. 2 Indigotine 73015 860-22-0 74.102 74.1102 -- 74.3102 D&C Blue No. 4 Alphazurine FG 42090 6371-85-3 -- 74.1104 74.2104 -- D&C Blue No. 6 Indigo 73000 482-89-3 -- -- -- 74.3106 D&C Blue No. 9 Indanthrene Blue 69825 130-20-1 -- 74.1109 -- -- D&C Brown No. 1 Resorcin Brown 20170 1320-07-6 -- -- 74.2151 -- FD&C Green No. 3 Fast Green FCF 42053 2353-45-9 74.203 74.1203 74.2203 -- D&C Green No. 5 Alizarin Cyanine Green F 61570 4403-90-1 -- 74.1205 74.2205 -- D&C Green No. 6 Quinizarine Green SS 61565 128-80-3 -- 74.1206 74.2206 74.3206 D&C Green No. 8 Pyranine Concentrated 59040 6358-69-6 -- 74.1208 74.2208 -- Orange B -- 19235 -- 74.250 -- -- -- D&C Orange No. 4 Orange II 15510 633-96-5 -- 74.1254 74.2254 -- D&C Orange No. 5 Dibromofluorescein 45370:1 596-03-2 -- 74.1255 74.2255 -- D&C Orange No. 10 Diiodofluorescein 45425:1 3329-19-9 -- 74.1260 74.2260 -- D&C Orange No. -
Recent Advances on Nanoparticle Based Strategies for Improving Carotenoid Stability and Biological Activity
antioxidants Review Recent Advances on Nanoparticle Based Strategies for Improving Carotenoid Stability and Biological Activity Kandi Sridhar , Baskaran Stephen Inbaraj and Bing-Huei Chen * Department of Food Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan; [email protected] (K.S.); [email protected] or [email protected] (B.S.I.) * Correspondence: [email protected]; Tel.: +886-2-2905-3626 Abstract: Carotenoids are natural pigments widely used in food industries due to their health- promoting properties. However, the presence of long-chain conjugated double bonds are responsible for chemical instability, poor water solubility, low bioavailability and high susceptibility to oxidation. The application of a nanoencapsulation technique has thus become a vital means to enhance stability of carotenoids under physiological conditions due to their small particle size, high aqueous solubility and improved bioavailability. This review intends to overview the advances in preparation, charac- terization, biocompatibility and application of nanocarotenoids reported in research/review papers published in peer-reviewed journals over the last five years. More specifically, nanocarotenoids were prepared from both carotenoid extracts and standards by employing various preparation techniques to yield different nanostructures including nanoemulsions, nanoliposomes, polymeric/biopolymeric nanoparticles, solid lipid nanoparticles, nanostructured lipid nanoparticles, supercritical fluid-based nanoparticles and metal/metal oxide nanoparticles. Stability studies involved evaluation of physical stability and/or chemical stability under different storage conditions and heating temperatures for Citation: Sridhar, K.; Inbaraj, B.S.; varied lengths of time, while the release behavior and bioaccessibility were determined by various Chen, B.-H. Recent Advances on in vitro digestion and absorption models as well as bioavailability through elucidating pharma- Nanoparticle Based Strategies for cokinetics in an animal model. -
Application A603 Supporting Document 3 FOOD TECHNOLOGY
Application A603 Supporting Document 3 FOOD TECHNOLOGY REPORT Summary The Applicant, Golding Handcrafts, claims that there is a technical need to extend the use of the red food colouring erythrosine in Australia and New Zealand from preserved cherries to food colouring preparations used to colour icing and other cake decorations for the technological purpose of achieving colour enhancement. This has been substantiated with claims that food colourings preparations containing erythrosine possess superior colouring characteristics to alternative red food colourings including colour strength, longevity, lack of bleeding and quality of the finished product. Consequently this allow for a greater range of colouring effects to be achieved including wider ranges of pinks, lavenders, violets, royal blue and true black. The Applicant notes that commercial products are currently available for this purpose in the United States of America (USA) and seeks to import and sell these colourings preparations for cake icing and related products for use in Australia and New Zealand. The merit of using erythrosine is strongly supported by some companies, in particular, AmericolorTM Corporation and CK Products, two of the largest companies who use erythrosine in products for cake decorating purposes. They have advised the Applicant that the purpose of adding erythrosine to food is to achieve a precise visual effect and unique shades which are unattainable by using any other food colours. The colour hue and intensity is directly affected by the amounts of erythrosine added and the proposed amounts are consistent in achieving the intended result – to colour the food. Colour combinations are individually weighed and added to the mix for each single recipe so that a consistent final effect is obtained. -
Artificial Food Colours and Children Why We Want to Limit and Label Foods Containing the ‘Southampton Six’ Food Colours on the UK Market Post-Brexit
Artificial food colours and children Why we want to limit and label foods containing the ‘Southampton Six’ food colours on the UK market post-Brexit November 2020 FIRST STEPS NUTRITIONArtificial food coloursTRUST and children: page Artificial food colours and children: Why we want to limit and label foods containing the‘Southampton Six’ food colours on the UK market post-Brexit November 2020 Published by First Steps Nutrition Trust. A PDF of this resource is available on the First Steps Nutrition Trust website. www.firststepsnutrition.org The text of this resource, can be reproduced in other materials provided that the materials promote public health and make no profit, and an acknowledgement is made to First Steps Nutrition Trust. This resource is provided for information only and individual advice on diet and health should always be sought from appropriate health professionals. First Steps Nutrition Trust Studio 3.04 The Food Exchange New Covent Garden Market London SW8 5EL Registered charity number: 1146408 First Steps Nutrition Trust is a charity which provides evidence-based and independent information and support for good nutrition from pre-conception to five years of age. For more information, see our website: www.firststepsnutrition.org Acknowledgements This report was written by Rachael Wall and Dr Helen Crawley. We would like to thank Annie Seeley, Sarah Weston, Erik Millstone and Anna Rosier for their help and support with this report. Artificial food colours and children: page 1 Contents Page Executive summary 3 Recommendations -
Global Regulations of Food Colors Each Region Has Its Own Definitions of What Constitutes a Color Additive, with Related Use Requirements and Restrictions
Global Regulations of Food Colors Each region has its own definitions of what constitutes a color additive, with related use requirements and restrictions. Sue Ann McAvoy Sensient Colors LLC t is said, we eat with our eyes . Since antiq - food colors was soon recognized as a threat Iuity, humans have used the color of a to public health. Of concern was that some food to discern its quality. Color provides of the substances were known to be poi - a way to judge ripeness, perceive flavor and sonous and were often incorporated to hide assess quality of food. poor quality, add bulk to foods and to pass Ancient civilizations introduced color off imitation foods as real. into their foods. The ancient Egyptians col - On February 1, 1899, the executive com - ored their food yellow with saffron, and the mittee of the National Confectioners’ Asso - ancient Mayans used annatto to color their ciation published an official circular which Sue Ann McAvoy is food orange-red. Wealthy Romans ate bread was “to throw light upon the vexed question global regulatory scien - that had been whitened by adding alum to of what colors may be safely used in confec - tist for Sensient Food the flour. Color could be used to enhance tionery” as “there may at times be a doubt in Colors LLC. She has worked at Sensient the mind of the honest confectioner as to the physical appearance of the product. since 1979. However, if it made the food appear to be which colors, flavors, or ingredients he may of better quality than it was, that was con - safely use and which he may reject.” This list sidered a deceitful practice. -
Novel Carotenoid Cleavage Dioxygenase Catalyzes the First Dedicated Step in Saffron Crocin Biosynthesis
Novel carotenoid cleavage dioxygenase catalyzes the first dedicated step in saffron crocin biosynthesis Sarah Frusciantea,b, Gianfranco Direttoa, Mark Brunoc, Paola Ferrantea, Marco Pietrellaa, Alfonso Prado-Cabrerod, Angela Rubio-Moragae, Peter Beyerc, Lourdes Gomez-Gomeze, Salim Al-Babilic,d, and Giovanni Giulianoa,1 aItalian National Agency for New Technologies, Energy, and Sustainable Development, Casaccia Research Centre, 00123 Rome, Italy; bSapienza, University of Rome, 00185 Rome, Italy; cFaculty of Biology, University of Freiburg, D-79104 Freiburg, Germany; dCenter for Desert Agriculture, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; and eInstituto Botánico, Facultad de Farmacia, Universidad de Castilla–La Mancha, 02071 Albacete, Spain Edited by Rodney B. Croteau, Washington State University, Pullman, WA, and approved July 3, 2014 (received for review March 16, 2014) Crocus sativus stigmas are the source of the saffron spice and responsible for the synthesis of crocins have been characterized accumulate the apocarotenoids crocetin, crocins, picrocrocin, and in saffron and in Gardenia (5, 6). safranal, responsible for its color, taste, and aroma. Through deep Plant CCDs can be classified in five subfamilies according to transcriptome sequencing, we identified a novel dioxygenase, ca- the cleavage position and/or their substrate preference: CCD1, rotenoid cleavage dioxygenase 2 (CCD2), expressed early during CCD4, CCD7, CCD8, and nine-cis-epoxy-carotenoid dioxygen- stigma development and closely related to, but distinct from, the ases (NCEDs) (7–9). NCEDs solely cleave the 11,12 double CCD1 dioxygenase family. CCD2 is the only identified member of bond of 9-cis-epoxycarotenoids to produce the ABA precursor a novel CCD clade, presents the structural features of a bona fide xanthoxin. -
Natural Colour Book
THE COLOUR BOOK Sensient Food Colors Europe INDEX NATURAL COLOURS AND COLOURING FOODS INDEX 46 Lycopene 4 We Brighten Your World 47 Antho Blends – Pink Shade 6 Naturally Different 48 Red Cabbage 8 The Colour of Innovation 49 Beetroot – with reduced bluish tone 10 Natural Colours, Colouring Foods 50 Beetroot 11 Cardea™, Pure-S™ 51 Black Carrot 12 YELLOW 52 Grape 14 Colourful Impulses 53 Enocianin 15 Carthamus 54 Red Blends 16 Curcumin 56 VIOLET & BLUE 17 Riboflavin 59 Violet Blends 18 Lutein 61 Spirulina 19 Carrot 62 GREEN 20 Natural Carotene 65 Green Blends 22 Beta-Carotene 66 Copper-Chlorophyllin 24 Annatto 67 Copper-Chlorophyll 25 Yellow/ Orange Blends 68 Chlorophyll/-in 26 ORANGE 69 Spinach 29 Natural Carotene 70 BROWN 30 Paprika Extract 73 Burnt Sugar 32 Carrot 74 Apple 33 Apocarotenal 75 Caramel 34 Carminic Acid 76 BLACK & WHITE 35 Beta-Carotene 79 Vegetable Carbon 36 RED 80 Titanium Dioxide 39 Antho Blends – Strawberry Shade 81 Natural White 40 Aronia 41 Elderberry 83 Regulatory Information 42 Black Carrot 84 Disclaimer 43 Hibiscus 85 Contact Address 44 Carmine 3 INDEX NATURAL COLOURS AND COLOURING FOODS WE BRIGHTEN YOUR WORLD Sensient is as colourful as the world around us. Whatever you are looking for, across the whole spectrum of colour use, we can deliver colouring solutions to best meet your needs in your market. Operating in the global market place for over 100 years Sensient both promises and delivers proven international experience, expertise and capabilities in product development, supply chain management, manufacture, quality management and application excellence of innovative colours for food and beverages. -
Regulatory Information Sheet
Regulatory Information Sheet Approved Drug Colourants Listed by the European Union Colour Index Colour E Number Alternate Names Number Allura Red AC (a) E129 16035 FD&C Red #40 Aluminum*** E173 77000 -- Amaranth*** (a) E123 16185 Delisted FD&C Red #2 Annatto*** E160b 75120 Bixin, norbixin Anthocyanins (a) E163 -- -- Beetroot Red E162 -- Betanin Beta APO-8´-Carotenal E160e 40820 -- Brilliant Black BN (a) E151 28440 Black BN Brilliant Blue FCF (a) E133 42090 FD&C Blue #1 Brown HT (a) E155 20285 -- Calcium Carbonate E170 77220 -- Canthaxanthin* E161g 40850 -- Caramel,-Plain E150a -- -- Caramel,-Caustic Sulphite E150b -- -- Caramel,-Ammonia E150c -- -- Caramel, Sulphite Ammonia E150d -- -- Carmine (a) E120 75470 Carminic Acid, Cochineal Carmoisine (a) E122 14720 Azorubine Carotenes E160a 40800 / 75130 -- Chlorophylls/Chlorophyllins E140 75810 / 75815 -- Copper Complexes of E141 75815 -- Chlorophylls/Chlorophyllins(a) Curcumin (a) E100 75300 Turmeric Erythrosine*** (a) E127 45430 FD&C Red #3 Gold*** E175 77480 -- Green S (a) E142 44090 Acid Brilliant Green BS Indigotine (a) E132 73015 FD&C Blue #2, Indigo Carmine 77491 / 77492 / Iron Oxides & Hydroxides E172 Iron Oxide Red, Yellow, Black 77499 Litholrubine BK*** (a) E180 -- -- Lutein E161b -- -- Lycopene*** E160d 75125 -- Paprika Extract E160c -- Capsanthin, Capsorubin Patent Blue V (a) E131 42051 Acid Blue 3 Ponceau 4R (a) E124 16255 Cochineal Red A Page 1 of 2 Document Reference No.: GLO-10107, revision 2 Effective Date: September 2014 Reviewed Date: November 2017 This document is valid at the time of distribution. Distributed 24-Sep-2021 (UTC) E Colour Index Colour Alternate Names Number Number Quinoline Yellow** (a) E104 47005 China Yellow Riboflavins (a) E101 -- -- Silver*** E174 -- -- Sunset Yellow FCF (a) E110 15985 FD&C Yellow #6, Orange Yellow S Tartrazine (a) E102 19140 FD&C Yellow #5 Titanium Dioxide E171 77891 -- Vegetable Carbon E153 77268:1 Carbo Medicinalis Vegetalis The above list is derived from Part B, List of All Additives, from Annex II to Regulation (EC) No 1333/2008 on food additives.