Medicinal Plant Research Volume 9 Number 13, 3 April, 2015 ISSN 2009-9723
Total Page:16
File Type:pdf, Size:1020Kb
Journal of Medicinal Plant Research Volume 9 Number 13, 3 April, 2015 ISSN 2009-9723 ABOUT JMPR The Journal of Medicinal Plant Research is published weekly (one volume per year) by Academic Journals. The Journal of Medicinal Plants Research (JMPR) is an open access journal that provides rapid publication (weekly) of articles in all areas of Medicinal Plants research, Ethnopharmacology, Fitoterapia, Phytomedicine etc. The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published shortly after acceptance. All articles published in JMPR are peerreviewed. Electronic submission of manuscripts is strongly encouraged, provided that the text, tables, and figures are included in a single Microsoft Word file (preferably in Arial font). Submission of Manuscript Submit manuscripts as e-mail attachment to the Editorial Office at: [email protected]. A manuscript number will be mailed to the corresponding author shortly after submission. The Journal of Medicinal Plant Research will only accept manuscripts submitted as e-mail attachments. Please read the Instructions for Authors before submitting your manuscript. The manuscript files should be given the last name of the first author. Editors Prof. Akah Peter Achunike Prof. Parveen Bansal Editor-in-chief Department of Biochemistry Department of Pharmacology & Toxicology Postgraduate Institute of Medical Education and University of Nigeria, Nsukka Research Nigeria Chandigarh India. Associate Editors Dr. Ravichandran Veerasamy AIMST University Dr. Ugur Cakilcioglu Faculty of Pharmacy, AIMST University, Semeling - Elazıg Directorate of National Education 08100, Turkey. Kedah, Malaysia. Dr. Jianxin Chen Dr. Sayeed Ahmad Information Center, Herbal Medicine Laboratory, Department of Beijing University of Chinese Medicine, Pharmacognosy and Phytochemistry, Beijing, China Faculty of Pharmacy, Jamia Hamdard (Hamdard 100029, University), Hamdard Nagar, New Delhi, 110062, China. India. Dr. Hassan Sher Dr. Cheng Tan Department of Botany and Microbiology, Department of Dermatology, first Affiliated Hospital College of Science, of Nanjing Univeristy of King Saud University, Riyadh Traditional Chinese Medicine. Kingdom of Saudi Arabia. 155 Hanzhong Road, Nanjing, Jiangsu Province, China. 210029 Dr. Jin Tao Professor and Dong-Wu Scholar, Dr. Naseem Ahmad Department of Neurobiology, Young Scientist (DST, FAST TRACK Scheme) Medical College of Soochow University, Plant Biotechnology Laboratory 199 Ren-Ai Road, Dushu Lake Campus, Department of Botany Suzhou Industrial Park, Aligarh Muslim University Suzhou 215123, Aligarh- 202 002,(UP) P.R.China. India. Dr. Pongsak Rattanachaikunsopon Dr. Isiaka A. Ogunwande Department of Biological Science, Dept. Of Chemistry, Faculty of Science, Lagos State University, Ojo, Lagos, Ubon Ratchathani University, Nigeria. Ubon Ratchathani 34190, Thailand. Editorial Board Prof Hatil Hashim EL-Kamali Dr. Arash Kheradmand Omdurman Islamic University, Botany Department, Lorestan University, Sudan. Iran. Prof. Dr. Muradiye Nacak Prof Dr Cemşit Karakurt Department of Pharmacology, Faculty of Medicine, Pediatrics and Pediatric Cardiology Gaziantep University, Inonu University Faculty of Medicine, Turkey. Turkey. Dr. Sadiq Azam Samuel Adelani Babarinde Department of Biotechnology, Department of Crop and Environmental Protection, Abdul Wali Khan University Mardan, Ladoke Akintola University of Technology, Pakistan. Ogbomoso Nigeria. Kongyun Wu Department of Biology and Environment Engineering, Dr.Wafaa Ibrahim Rasheed Guiyang College, Professor of Medical Biochemistry National Research Center China. Cairo Egypt. Prof Swati Sen Mandi Division of plant Biology, Bose Institute India. Dr. Ujjwal Kumar De Indian Vetreinary Research Institute, Izatnagar, Bareilly, UP-243122 Veterinary Medicine, India. Journal of Medicinal Plants Research Table of Contents: Volume 9 Number 13, 3 April, 2015 ARTICLES Research Articles Morelloflavone and its semisynthetic derivatives as potential novel inhibitors of cysteine and serine proteases 426 Vanessa Silva Gontijo, Jaqueline Pereira Januário, Wagner Alves de Souza Júdice, Alyne Alexandrino Antunes, Ingridy Ribeiro Cabral, Diego Magno Assis, Maria Aparecida Juliano, Ihosvany Camps, Marcos José Marques, Claudio Viegas Junior and Marcelo Henrique dos Santos One-pot synthesis of potential antioxidant agents, 3-carboxylate coumarin derivatives 434 Lijuan Han, Bing Huang, Zhiwei Xiong and Chunyan Yan Antioxidant and cytotoxic activity of black and green tea from Vaccinium meridionale Swartz leaves 445 Isabel Cristina Zapata-Vahos, Verónica Villacorta, María Elena Maldonado, Dagoberto Castro-Restrepo and Benjamín Rojano Antioxidant capacity of different African seeds and vegetables and correlation with the contents of ascorbic acid, phenolics and flavonoids 454 Edet E. E., Ofem J. E., Igile G. O., Ofem O. E., Zainab D. B. and Akwaowo G. Effect of Commiphora swynnertonii resin extract on various physiological parameters in chickens 462 Bakari G. G., Max R. A., Mdegela H. R., Pereka A. E., Phiri E. C. J. and Mtambo M. M. A. Vol. 9(13), pp. 426-434, 3 April, 2015 DOI: 10.5897/JMPR2014.5641 Article Number: A42115152263 ISSN 1996-0875 Journal of Medicinal Plants Research Copyright © 2015 Author(s) retain the copyright of this article http://www.academicjournals.org/JMPR Full Length Research Paper Morelloflavone and its semisynthetic derivatives as potential novel inhibitors of cysteine and serine proteases Vanessa Silva Gontijo1, Jaqueline Pereira Januário1, Wagner Alves de Souza Júdice2, Alyne Alexandrino Antunes2, Ingridy Ribeiro Cabral1, Diego Magno Assis3, Maria Aparecida Juliano3, Ihosvany Camps4, Marcos José Marques4, Claudio Viegas Junior1 and Marcelo Henrique dos Santos1* 1Department of Exact Science, Laboratory of Phytochemistry and Medicinal Chemistry, Federal University of Alfenas, MG, Brazil. 2Interdisciplinary Center of Biochemical Investigation, Mogi das Cruzes University, Mogi das Cruzes, SP, Brazil. 3Department of Biophysics, Federal University of São Paulo, SP, Brazil. 4Department of Biological Sciences, Laboratory of Molecular Biology, Federal University of Alfenas, MG, Brazil. Received 9 October, 2014; Accepted 11 March, 2015 This article reports the three biflavonoids isolated from the fruit pericarp of Garcinia brasiliensis Mart. (Clusiaceae): Morelloflavone-4```-glycoside (compound 1), (±)-Fukugiside (compound 2), and Morelloflavone (compound 3). Structural modifications by acylation and alkylation reactions were performed on the natural biflavonoid (±) morelloflavone to obtain three semisynthetic compounds: Morelloflavone-7,4`,7``,3```,4```-penta–O–acetyl (compound 4), Morelloflavone-7,4`,7``,3```,4```-penta-O- methyl (compound 5), and Morelloflavone-7,4`,7``,3```,4```-penta-O-butanoyl (compound 6). The inhibitory effects of these naturally isolated biflavonoid-type compounds and three semisynthetic derivatives on the activity of the cysteine proteases papain and cruzain, and on the serine protease trypsin were investigated. The potential inhibitory IC50 of natural bioflavonoids compounds 1, 2, and 3 were 11.0 ± 3.0, 23.0 ± 4.0, and 10.5 ± 0.3 µM, respectively, for papain; 0.86 ± 0.12, 106 ± 7, and 3.8 ± 0.1, 50 ± 2, 119.5 ± 5, and 9.6 ± 1.0 µM, respectively, for cruzain. On the other hand, the semisynthetic biflavonoids compounds 4, 5, and 6 were more efficient in the inhibition of enzyme activity with IC50 values 0.60 ± 0.02 µM (papain) for biflavonoids compound 4, 1.64 ± 0.11 µM (trypsin) for biflavonoids compound 5, and 8.1 ± 0.6 µM (cruzain) for biflavonoids compound 6. Compound 4 is more active owing to the carbonyl group in the structure; perhaps, this modification could favor a higher nucleophilic attack by serine and cysteine proteases. However, the semisynthetic compound 5 (IC50 = 15.4 ± 0.7 µM for papain), which has no carbonyl group in structure, was less active in the inhibition. Interestingly, structure–activity relationships (SARs) were confirmed by flexible docking simulations. Likewise, the potential usefulness of natural compound 1 as an antioxidant compound was strengthened by our results concerning the antiproteolytic activity. Key words: Garcinia brasiliensis, biflavonoids, proteases, antiproteolytic activity. Gontijo et al. 427 INTRODUCTION The Guttiferae family, also known as Clusiaceae, belongs chain. In this way, the free electron pair of this last to the angiosperm phylogeny group and is characterized imidazolyl nitrogen atom is devoted to accepting the by the conspicuous presence of latex in most of their hydrogen from the serine hydroxyl group, thereby species. This family consists of 47 genera such as enhancing the nucleophilic attack by this serine residue Vismia, Garcinia, Clusia, Cratoxylum, Harungana, on the carbonyl carbon atom of the peptide bond that is Mesua, Hypericum and Kielmeyera, and more than 1000 properly oriented into the enzymatic active site. species that are grouped in six subfamilies widely spread Cruzain is a member of a large family of closely-related all over Brazil (Piccinelli et al., 2005; Derogis et al., isoforms found in the parasite Trypanosoma cruzi. It is 2008). The Garcinia brasiliensis species is native to the involved in intracellular replication and differentiation, and Amazon and is cultivated throughout Brazilian territory is essential at all stages of the parasite’s life cycle where it is known as “bacupari.” It is a tree of medium (Campetella et al., 1992; Lima et al., 1994). Since