Analysis of Changes in Bathymetry of the Palu River Estuary and Its Effect on Flow Characteristics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Training Report on Cultural Heritage Protection
Training Report on Cultural Heritage Protection Training Course for Researchers in Charge of Cultural Heritage Protection in Asia and the Pacific 2011 - Indonesia - 5 July - 4 August, 2011, Nara, Japan Cultural Heritage Protection Cooperation Office, Asia-Pacific Cultural Centre for UNESCO (ACCU) Training Report on Cultural Heritage Protection Training Course for Researchers in Charge of Cultural Heritage Protection in Asia and the Pacific 2011 - Indonesia - 5 July - 4 August, 2011, Nara, Japan Cultural Heritage Protection Cooperation Office, Asia-Pacific Cultural Centre for UNESCO (ACCU) Edited and Published by Cultural Heritage Protection Cooperation Office, Asia-Pacific Cultural Centre for UNESCO (ACCU) 757 Horen-cho, Nara 630-8113 Japan Tel: +81-(0)742-20-5001 Fax: +81-(0)742-20-5701 e-mail: [email protected] URL: http://www.nara.accu.or.jp Printed by Meishinsha Ⓒ Cultural Heritage Protection Cooperation Office, Asia-Pacific Cultural Centre for UNESCO (ACCU) 2012 Practical training of taking rubbing Practical training of drawing Practical training of photography The closing ceremony at the ACCU office Preface The Cultural Heritage Protection Cooperation Office, Asia-Pacific Cultural Centre for UNESCO (ACCU Nara) was established in August 1999 with the purpose of serving as a domestic centre for promoting cooperation in cultural heritage protection in the Asia-Pacific region. Subsequent to its establishment, our office has been implementing a variety of programmes to help promote cultural heritage protection activities, in close cooperation with the Agency for Cultural Affairs, Japan (Bunkacho); National Institutes for Cultural Heritage, National Research Institute for Cultural Properties, Tokyo and Nara; the Nara Prefectural Government; the Nara Municipal Government; universities; and museums. -
Comparative Study of Fish Eel Amino Acid Profile (Anguilla Marmorata (Q.) Gaimard) on Silver Eel Phase from Palu River and Poso Lake
Journal of Pharmacy and Nutrition Sciences, 2019, 9, 000-000 1 Comparative Study of Fish Eel Amino Acid Profile (Anguilla marmorata (Q.) Gaimard) on Silver eel Phase from Palu River and Poso Lake Jamaluddin*, Cindra Rusli, Yonelian Yuyun and Agustinus Widodo Department of Pharmacy, Mathematics and Natural Science of Faculty, Tadulako University, Palu, Central Sulawesi, (Postal: 94118), Indonesia Abstract: Amino acid is an organic component containing amine and carboxyl groups. Amino acids are needed by the human body. One animal that has the amino acid content is eel (Anguilla marmorata (Q.) Gaimard) from Palu River and Poso Lake in Central Sulawesi which are endemic fish. This study aims to determine the comparison of amino acid profile in eel (Anguilla marmorata (Q.) Gaimard) on silver eel phase. Testing amino acid profile using High Performance Liquid Chromatography (HPLC). The results showed that the eel (Anguilla marmorata (Q.) Gaimard) on phase of silver eel from the Palu River and Poso Lake contained 18 kinds of amino acid consisting of 9 kinds of essential amino acids and 9 types of non-essential amino acids. Data comparison shows a significant difference in glycine P = 0.000 and has no significant differences in the valine at P = 0.132. Keywords: Amino acid, Anguilla marmorata, silver eel. INTRODUCTION Fisheries in Central Sulawesi) [4]. In Central Sulawesi eel fish populations are found in rivers, lakes, and Fishing is one sector that is relied upon for the estuaries of Palu. Many researches tend to focus on future development of Indonesia because it has the Poso river basins. Availability of data is lacking on the potential to contribute to the fulfillment of public river or lake, including Palu River [5]. -
Report on Biodiversity and Tropical Forests in Indonesia
Report on Biodiversity and Tropical Forests in Indonesia Submitted in accordance with Foreign Assistance Act Sections 118/119 February 20, 2004 Prepared for USAID/Indonesia Jl. Medan Merdeka Selatan No. 3-5 Jakarta 10110 Indonesia Prepared by Steve Rhee, M.E.Sc. Darrell Kitchener, Ph.D. Tim Brown, Ph.D. Reed Merrill, M.Sc. Russ Dilts, Ph.D. Stacey Tighe, Ph.D. Table of Contents Table of Contents............................................................................................................................. i List of Tables .................................................................................................................................. v List of Figures............................................................................................................................... vii Acronyms....................................................................................................................................... ix Executive Summary.................................................................................................................... xvii 1. Introduction............................................................................................................................1- 1 2. Legislative and Institutional Structure Affecting Biological Resources...............................2 - 1 2.1 Government of Indonesia................................................................................................2 - 2 2.1.1 Legislative Basis for Protection and Management of Biodiversity and -
Composition Analysis of Organic and Inorganic Waste and the Impacts of Coastal City in Palu-Central Sulawesi
IOP Conference Series: Earth and Environmental Science PAPER • OPEN ACCESS Recent citations Composition analysis of organic and inorganic - DSPIR Framework as Planning and Management Tools for the La Boquita waste and the impacts of coastal city in Palu- Coastal System, Manzanillo, Mexico Central Sulawesi Julieta Hernández-López et al To cite this article: J Y Walalangi et al 2020 IOP Conf. Ser.: Earth Environ. Sci. 441 012125 View the article online for updates and enhancements. This content was downloaded from IP address 103.121.22.236 on 10/03/2021 at 06:14 2nd International Conference on Fisheries and Marine Science IOP Publishing IOP Conf. Series: Earth and Environmental Science 441 (2020) 012125 doi:10.1088/1755-1315/441/1/012125 Composition analysis of organic and inorganic waste and the impacts of coastal city in Palu-Central Sulawesi J Y Walalangi1,2,4, T D Lelono1, A M Suryanto1, A Damar3, H Effendi3 and E Susilo1,4 1Faculty of Fisheries and Marine Science, Brawijaya University, Malang 65145, East Java, Indonesia 2Faculty of Animal Husbandry and Fisheries, Tadulako University, Palu 94118, Central Sulawesi, Indonesia 3Faculty of Fisheries and Marine Science, IPB University, Bogor 16127, West Java, Indonesia 4Corresponding author: [email protected], and [email protected] Abstract. Organic and anorganic waste in Palu city has exceeded the capacity of the service and the existing waste management facilities so that waste piling up in landfills while (TPS), and locations of residential areas around the watershed that eventually the waste to the sea. Comprehensive research is needed to formulate the management of such waste. -
Seminar Nasional / National Seminar
PROGRAM BOOK PIT5-IABI 2018 PERTEMUAN ILMIAH TAHUNAN (PIT) KE-5 RISET KEBENCANAAN 2018 IKATAN AHLI KEBENCANAN INDONESIA (IABI) 5TH ANNUAL SCIENTIFIC MEETING – DISASTER RESEARCH 2018 INDONESIAN ASSOCIATION OF DISASTER EXPERTS (IABI) . SEMINAR NASIONAL / NATIONAL SEMINAR . INTERNASIONAL CONFERENCE ON DISASTER MANAGEMENT (ICDM) ANDALAS UNIVERSITY PADANG, WEST SUMATRA, INDONESIA 2-4 MAY 2018 PROGRAM BOOK PIT5-IABI 2018 Editor: Benny Hidayat, PhD Nurhamidah, MT Panitia sudah berusaha melakukan pengecekan bertahap terhadap kesalahan ketik, judul makalah, dan isi buku program ini sebelum proses pencetakan buku. Jika masih terdapat kesalahan dan kertinggalan maka panitia akan perbaiki di versi digital buku ini yang disimpan di website acara PIT5-IABI. The committee has been trying to check the typos and the contents of this program book before going to the book printing process. If there were still errors and omissions then the committee will fix it in the digital version of this book which is stored on the website of the PIT5-IABI event. Doc. Version: 11 2 PIT5-IABI OPENING REMARK FROM THE RECTOR Dear the International Conference on Disaster Management (ICDM 2018) and The National Conference of Disaster Management participants: Welcome to Andalas University! It is our great honor to host the very important conference at our green campus at Limau Manis, Padang. Andalas University (UNAND) is the oldest university outside of Java Island, and the fourth oldest university in Indonesia. It was officially launched on 13 September 1956 by our founding fathers Dr. Mohammad Hatta, Indonesia first Vice President. It is now having 15 faculties and postgraduate program and is home for almost 25000 students. -
Capacity Building Project in the Water in Indonesia
ASIAN DEVELOPMENT BANK Operations Evaluation Department PROJECT PERFORMANCE EVALUATION REPORT FOR INDONESIA In this electronic file, the report is followed by Management’s response. Performance Evaluation Report Project Number: 26190 Loan Number: 1339-INO August 2006 Indonesia: Capacity Building Project in the Water Resources Sector Operations Evaluation Department ABBREVIATIONS ADB – Asian Development Bank BAPEDALDA – Badan Pengendalian Dampak Lingkungan Daerah (provincial environment agency) BAPPENAS – Badan Perencanaan Pembangunan Nasional (National Development Planning Agency) CPO – central project office DGWR – Directorate General of Water Resources IHA – in-house adviser IRM – Indonesia Resident Mission m3 – cubic meters MPW – Ministry of Public Works NAD – Nanggroe Aceh Darussalam NGO – nongovernment organization NSIASP – Northern Sumatra Irrigated Agriculture Sector Project OED − Operations Evaluation Department OEM − operations evaluation mission PAMST – Policy Analysis and Management Support Team PCR – project completion report PISP – Participatory Irrigation Sector Project PP – peraturan pemerintah (national regulation) PPTA – project preparatory technical assistance PWRS – provincial water resources service RBO – river basin organization Rp – rupiah RRP – report and recommendation of the President TA – technical assistance WATSAL – Water Sector Adjustment Loan WATSAP – water sector adjustment program WRDC – water resources data center WRDM – water resources development and management GLOSSARY balai – provincial river basin -
Chapter 6 Hydrology and Water Balance Study
The Study on Capacity Development for Jeneberang River Basin Management CHAPTER 6 HYDROLOGY AND WATER BALANCE STUDY 6.1 Meteorological Conditions in Jeneberang River Basin The Jeneberang river basin experiences a tropical climate, showing high and rather constant air temperature throughout the year but with a distinct variation in rainfall in the wet and dry seasons during the year. The northwest monsoon prevails from December to June, while the southeast monsoon extends from May to November. The northwest monsoon has a high moisture content, which is precipitated on Mt. Bawakaraeng, Mt. Lompobatang and their adjacent mountain ranges at the west edge of the river basin. As a result, the mountainous/hilly area in particular receives a large volume of rainfall during the northwest monsoon period. On the other hand, the river basin receives little rainfall during the east monsoon due to the sheltering effect by the mountain ranges. According to the average monthly rainfall records at four gauging stations, namely Malino, Bili-Bili, Kampili and Bonto Suggu in and around Jeneberang River basin, the monthly rainfall in a rainy season from December to May is far less than in the dry season from June to November, as listed below. About 80 % to 90 % of the annual rainfall is received from December to May, and the remainder in the dry season. Monthly Rainfall in Jeneberang River Basin Jan. Feb. Mar. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. Dec. Total Malino 864 706 532 439 216 145 91 25 49 101 381 735 4284 Bili-Bili 677 529 448 336 130 60 70 17 63 88 356 615 3389 Kampili 656 465 330 235 94 58 28 16 36 107 346 556 2926 Bonto Sunggu 669 410 273 140 89 47 23 6 24 83 203 482 2449 In addition to the above large variations in monthly rainfall, Jeneberang river basin has a large spatial variation in rainfall due to the topographic effect of the mountain ranges in the eastern part of the river basin. -
A Study on Flow Resistance and Mobility Index at Palu River
International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 10 (2017) pp. 2604-2612 © Research India Publications. http://www.ripublication.com A Study on Flow Resistance and Mobility Index at Palu River * Alifi Yunar, ** Muhammad Saleh Pallu, *** Farouk Maricar, **** Rita Lopa *Doctoral Course Student of Civil Engineering Department, Hasanuddin University, Makassar, 90245 **Professor, Civil Engineering Department, Hasanuddin University, Makassar, 90245 *** Professor, Architectural Engineering Department, Hasanuddin University, Makassar, 90245 ****Associate Professor, Civil Engineering Department, Hasanuddin University, Makassar, 90245 Abstract Furthermore, the friction factor equation available in literature has been used widely by hydraulic engineers. The following Flow Resistance and Mobility Index are theoretical equations analysis proposes the friction factor relation in the framework derived for nearbed region, in most cases, these equations of the Manning’s equation, Chezy’s Equation, Darcy’s have been studied using experimental methods. Thus, many formulae and other important flow parameters, sediment consider them as empirical equations. The flow resistance and characteristics and fluid characteristics with objective of mobility index were using equations parameters, such as water taking advantage of the widespread use with advanced depth and particle diameter. However, parameters of Flow research in alluvial river. Moreover, knowledge of the Resistance and Mobility Index is an index representing bed resistance characteristics of alluvial streams is of great value resistance related to relative roughness and furthermore when dealing with the location of bridges, training works, influences of stream velocity. This research was conducted in flood control works, irrigation, channel improvement, the lower reaches of the Palu river, around four research backwater purpose due to confluences, mathematical and locations. -
Hydrograph Study of Palu River Watershed
MATEC Web of Conferences 331, 04001 (2020) https://doi.org/10.1051/matecconf/202033104001 ICUDR 2019 Hydrograph Study of Palu River Watershed Yassir Arafat1*, IG Tunas1, Tuty Amaliah1 , and Aswar Amiruddin1 1Department of Civil Engineering, Tadulako University, Palu 94118, Indonesia Abstract. Hydrograph is a way of predicting the amount of flood discharge plans in a watershed. Each watershed has different drainage characteristics due to the topographic shape of the watershed, land use, river typology (length, number, and slope), height and duration of rainfall. This research was conducted in Palu River Basin, with a basin area of 3.060,388 km2, mismatch analysis of watershed and synthetic unit hydrograph, rain and discharge analysis, hydrograph discharge design analysis using optimal synthetic unit hydrograph parameter model. From the results of research calculation of Synthetic Unit Hydrograph Nakayasu Method has big enough key compared with another method. By using hydrograph model of flood plan for Palu River Watershed with the approach of Synthetic Unit Hydrograph Nakayasu, hydrograph calculation of flood in Palu river watershed, obtained alpha coefficient equal to 0,651 and Tr coefficient 0,3 with cash value model 71,491%. 1 Introduction Rainfall in the tropical area have high spatial and temporal variability, where is influenced by the topography and climatological conditions in the watershed. Hydrograph theory is a way of predicting the amount of flood discharge plans in a watershed. Hydrograph is a graph showing the relationship between discharge and flood time. Planning water construction required analysis of estimation data of flood discharge. These estimates should be based on appropriate methods so as to produce flood estimates that are in line with the actual conditions. -
The 28 September 2018 M7.5 Palu-Donggala, Indonesia Earthquake
Geotechnical Extreme Events Reconnaissance Geotechnical Reconnaissance: The 28 September 2018 M7.5 Palu-Donggala, Indonesia Earthquake (Version 1.0; 3 April 2019) GEER Members: H. Benjamin Mason (United States team leader), Aaron P. Gallant, Daniel Hutabarat, Jack Montgomery, A. Nicole Reed, Joseph Wartman HATTI Members: Masyhur Irsyam (Indonesian team leader), Widjojo Prakoso, Didiek Djarwadi, Dandung Harnanto, Idrus Alatas, Paulus Rahardjo, Pintor Simatupang, Aksan Kawanda PusGen Members: Rahma Hanifa ACKNOWLEDGEMENTS The GEER reconnaissance was led by H. Benjamin Mason (Oregon State University) and included team members Aaron Gallant (University of Maine), Daniel Hutabarat (University of California, Berkeley), Jack Montgomery (Auburn University), and Joseph Wartman (University of Washington). A. Nicole Reed (Auburn University) provided support to the field team through pre- reconnaissance damage mapping and was responsible for mapping displacements of buildings using satellite images. We had incredible in country partners, which helped open many doors for us during the reconnaissance efforts. In particular, we thank the HATTI and PusGen organizations for all of their support and in particular, the in country collaborators: Masyhur Irsyam (Indonesian team leader), Widjojo Prakoso, Didiek Djarwadi, Dandung Harnanto, Idrus Alatas, Paulus Rahardjo, Pintor Simatupang, Aksan Kawanda, and Rahma Hanifa, who are co-authors of the report. The government of Indonesia was very supportive of our travel and issuing our research permits. We would like to particularly thank Ardito Kodijat, of the UNESCO Office in Jakarta, and Laura Kong, of the International Tsunami Information Center, for helping us quickly process the research permits and establish ourselves in Indonesia. We are sure that many more hands went into the process of helping, opening doors, and making us feel welcome in Indonesia. -
ANALISIS KAPASITAS SUNGAI JENEBERANG BAGIAN HILIR Zul Hidayat1) Dan Muh Abdillah Dulil2)
iv ANALISIS KAPASITAS SUNGAI JENEBERANG BAGIAN HILIR Zul Hidayat1) dan Muh Abdillah Dulil2) 1) Program Studi Teknik Pengairan Universitas Muhammadiyah Makassar, [email protected] 2) Program Studi Teknik Pengairan Universitas Muhammadiyah Makassar, [email protected] Abstrak Sungai Jeneberang merupakan sungai yang terletak di kabupaten Gowa Provinsi Sulawesi Selatan. Sungai Jeneberang memiliki panjang 78,75 km mengalir dari timur ke barat dari Gunung Bawakaraeng dan Gunung Lompobattang menuju ke Selat Makassar, dengan luas DAS 727 km2. Pada bulan Januari 2019 terjadi luapan pada Sungai Jeneberang akibat debit air di Bendungan Bili- bili, Kabupaten Gowa, meningkat hingga 101,87 meter karena intensitas hujan yang tinggi, yang mencapai debit air di sungai Jeneberang meninggkat hingga 2.240 m3/detik.. Untuk mengkaji ulang kapasitas pengaliran sungai Jeneberang pasca bencana banjir digunakan softwere HEC-RAS. Tapi sebelumnya, simulasi hidrologi perlu dilakukan untuk mengetahui debit banjir rencana hingga kala periode ulang 200 tahun dan metode yang digunakan adalah HSS Nakayasu. Berdasarkan hasil pengolahan data dengan menggunakan HSS Nakayasu diperoleh hasil untuk Q25 sebesar 1879,0686 m3/detik. Debit yang diperoleh selanjutnya diinput ke softwere HEC-RAS. Berdasarkan hasil simulasi dari 35 cross dengan menggunakan HEC-RAS, ditemukan beberapa penampang sungai yang kapasitas alirannya tidak mampu menampung debit banjir Q25, seperti pada patok 21 sampai patok 35 yang berada di jarak 10 sampai 16 kilometer dari muara sungai Jeneberang (hulu Jembatan kembar poros Takalar) yang beberapa penampang sungainya ada yang tidak bertanggul. Kata kunci : Debit Banjir, HSS Nakayasu, Kapasitas Aliran, HEC-RAS. Abstract Jeneberang River is a river located in Gowa Regency, South Sulawesi Province. -
Analysis of Fertility Rate and Water Quality in the Jeneberang River, Gowa Regency, Indonesia
International Journal of ChemTech Research CODEN (USA): IJCRGG, ISSN: 0974-4290, ISSN(Online):2455-9555 Vol.12 No.02, pp 95-103, 2019 Analysis of Fertility Rate and Water Quality in The Jeneberang River, Gowa Regency, Indonesia Patang*1 1Universitas Negeri Makassar, Indonesia Abstract : This research aims to know fertility rate based on nitrogen, phosphate and eutrification content and water quality content along the Jeneberang River in Gowa Regency, Indonesia. This research was conducted by taking samples at five observation stations in the waters of the Jeneberang River, Gowa Regency, Indonesia by measuring biological parameters, namely community structure and plankton abundance as the main parameter, while as a supporting parameter, the water quality parameters are physical and chemical parameters, namely temperature, pH, dissolved oxygen, nitrogen (N) and phosphate (PO4). Data obtained from observations, presented in the form of tables and graphs and analyzed by descriptive analysis. Keywords : Fertility, Water Quality, Jeneberang River, Plankton. Introduction Naturally, rivers can be polluted only on the surface of the water, on a large river with heavy water flows, a small amount of contamination material will undergo dilution so the pollution level is very low. This causes the consumption of dissolved oxygen needed by aquatic life and biodegradation will be updated quickly, but sometimes a river experiences heavy pollution so that the water contains contamination material one of which is phosphate 11. The Jeneberang River is one of the rivers located in Gowa Regency, Indonesia has a length of 75 km with a watershed area of 727 Km2 and sourced from Mount Bawakaraeng at an elevation of +2,833.00 MSL10.