Detection of a Transit of the Super-Earth 55 Cancri E with Warm Spitzer
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Planetary Phase Variations of the 55 Cancri System
The Astrophysical Journal, 740:61 (7pp), 2011 October 20 doi:10.1088/0004-637X/740/2/61 C 2011. The American Astronomical Society. All rights reserved. Printed in the U.S.A. PLANETARY PHASE VARIATIONS OF THE 55 CANCRI SYSTEM Stephen R. Kane1, Dawn M. Gelino1, David R. Ciardi1, Diana Dragomir1,2, and Kaspar von Braun1 1 NASA Exoplanet Science Institute, Caltech, MS 100-22, 770 South Wilson Avenue, Pasadena, CA 91125, USA; [email protected] 2 Department of Physics & Astronomy, University of British Columbia, Vancouver, BC V6T1Z1, Canada Received 2011 May 6; accepted 2011 July 21; published 2011 September 29 ABSTRACT Characterization of the composition, surface properties, and atmospheric conditions of exoplanets is a rapidly progressing field as the data to study such aspects become more accessible. Bright targets, such as the multi-planet 55 Cancri system, allow an opportunity to achieve high signal-to-noise for the detection of photometric phase variations to constrain the planetary albedos. The recent discovery that innermost planet, 55 Cancri e, transits the host star introduces new prospects for studying this system. Here we calculate photometric phase curves at optical wavelengths for the system with varying assumptions for the surface and atmospheric properties of 55 Cancri e. We show that the large differences in geometric albedo allows one to distinguish between various surface models, that the scattering phase function cannot be constrained with foreseeable data, and that planet b will contribute significantly to the phase variation, depending upon the surface of planet e. We discuss detection limits and how these models may be used with future instrumentation to further characterize these planets and distinguish between various assumptions regarding surface conditions. -
Interior Dynamics of Super-Earth 55 Cancri E Constrained by General Circulation Models
Geophysical Research Abstracts Vol. 21, EGU2019-4167, 2019 EGU General Assembly 2019 © Author(s) 2019. CC Attribution 4.0 license. Interior dynamics of super-Earth 55 Cancri e constrained by general circulation models Tobias Meier (1), Dan J. Bower (1), Tim Lichtenberg (2), and Mark Hammond (2) (1) Center for Space and Habitability, Universität Bern , Bern, Switzerland , (2) Department of Physics, University of Oxford, Oxford, United Kingdom Close-in and tidally-locked super-Earths feature a day-side that always faces the host star and are thus subject to intense insolation. The thermal phase curve of 55 Cancri e, one of the best studied super-Earths, reveals a hotspot shift (offset of the maximum temperature from the substellar point) and a large day-night temperature contrast. Recent general circulation models (GCMs) aiming to explain these observations determine the spatial variability of the surface temperature of 55 Cnc e for different atmospheric masses and compositions. Here, we use constraints from the GCMs to infer the planet’s interior dynamics using a numerical geodynamic model of mantle flow. The geodynamic model is devised to be relatively simple due to uncertainties in the interior composition and structure of 55 Cnc e (and super-Earths in general), which preclude a detailed treatment of thermophysical parameters or rheology. We focus on several end-member models inspired by the GCM results to map the variety of interior regimes relevant to understand the present-state and evolution of 55 Cnc e. In particular, we investigate differences in heat transport and convective style between the day- and night-sides, and find that the thermal structure close to the surface and core-mantle boundary exhibits the largest deviations. -
Ioptron AZ Mount Pro Altazimuth Mount Instruction
® iOptron® AZ Mount ProTM Altazimuth Mount Instruction Manual Product #8900, #8903 and #8920 This product is a precision instrument. Please read the included QSG before assembling the mount. Please read the entire Instruction Manual before operating the mount. If you have any questions please contact us at [email protected] WARNING! NEVER USE A TELESCOPE TO LOOK AT THE SUN WITHOUT A PROPER FILTER! Looking at or near the Sun will cause instant and irreversible damage to your eye. Children should always have adult supervision while observing. 2 Table of Content Table of Content ......................................................................................................................................... 3 1. AZ Mount ProTM Altazimuth Mount Overview...................................................................................... 5 2. AZ Mount ProTM Mount Assembly ........................................................................................................ 6 2.1. Parts List .......................................................................................................................................... 6 2.2. Identification of Parts ....................................................................................................................... 7 2.3. Go2Nova® 8407 Hand Controller .................................................................................................... 8 2.3.1. Key Description ....................................................................................................................... -
Occurrence and Core-Envelope Structure of 1–4× Earth-Size Planets Around Sun-Like Stars
Occurrence and core-envelope structure of 1–4× SPECIAL FEATURE Earth-size planets around Sun-like stars Geoffrey W. Marcya,1, Lauren M. Weissa, Erik A. Petiguraa, Howard Isaacsona, Andrew W. Howardb, and Lars A. Buchhavec aDepartment of Astronomy, University of California, Berkeley, CA 94720; bInstitute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822; and cHarvard-Smithsonian Center for Astrophysics, Harvard University, Cambridge, MA 02138 Edited by Adam S. Burrows, Princeton University, Princeton, NJ, and accepted by the Editorial Board April 16, 2014 (received for review January 24, 2014) Small planets, 1–4× the size of Earth, are extremely common planets. The Doppler reflex velocity of an Earth-size planet − around Sun-like stars, and surprisingly so, as they are missing in orbiting at 0.3 AU is only 0.2 m s 1, difficult to detect with an − our solar system. Recent detections have yielded enough informa- observational precision of 1 m s 1. However, such Earth-size tion about this class of exoplanets to begin characterizing their planets show up as a ∼10-sigma dimming of the host star after occurrence rates, orbits, masses, densities, and internal structures. coadding the brightness measurements from each transit. The Kepler mission finds the smallest planets to be most common, The occurrence rate of Earth-size planets is a major goal of as 26% of Sun-like stars have small, 1–2 R⊕ planets with orbital exoplanet science. With three years of Kepler photometry in periods under 100 d, and 11% have 1–2 R⊕ planets that receive 1–4× hand, two groups worked to account for the detection biases in the incident stellar flux that warms our Earth. -
10. Scientific Programme 10.1
10. SCIENTIFIC PROGRAMME 10.1. OVERVIEW (a) Invited Discourses Plenary Hall B 18:00-19:30 ID1 “The Zoo of Galaxies” Karen Masters, University of Portsmouth, UK Monday, 20 August ID2 “Supernovae, the Accelerating Cosmos, and Dark Energy” Brian Schmidt, ANU, Australia Wednesday, 22 August ID3 “The Herschel View of Star Formation” Philippe André, CEA Saclay, France Wednesday, 29 August ID4 “Past, Present and Future of Chinese Astronomy” Cheng Fang, Nanjing University, China Nanjing Thursday, 30 August (b) Plenary Symposium Review Talks Plenary Hall B (B) 8:30-10:00 Or Rooms 309A+B (3) IAUS 288 Astrophysics from Antarctica John Storey (3) Mon. 20 IAUS 289 The Cosmic Distance Scale: Past, Present and Future Wendy Freedman (3) Mon. 27 IAUS 290 Probing General Relativity using Accreting Black Holes Andy Fabian (B) Wed. 22 IAUS 291 Pulsars are Cool – seriously Scott Ransom (3) Thu. 23 Magnetars: neutron stars with magnetic storms Nanda Rea (3) Thu. 23 Probing Gravitation with Pulsars Michael Kremer (3) Thu. 23 IAUS 292 From Gas to Stars over Cosmic Time Mordacai-Mark Mac Low (B) Tue. 21 IAUS 293 The Kepler Mission: NASA’s ExoEarth Census Natalie Batalha (3) Tue. 28 IAUS 294 The Origin and Evolution of Cosmic Magnetism Bryan Gaensler (B) Wed. 29 IAUS 295 Black Holes in Galaxies John Kormendy (B) Thu. 30 (c) Symposia - Week 1 IAUS 288 Astrophysics from Antartica IAUS 290 Accretion on all scales IAUS 291 Neutron Stars and Pulsars IAUS 292 Molecular gas, Dust, and Star Formation in Galaxies (d) Symposia –Week 2 IAUS 289 Advancing the Physics of Cosmic -
Ioptron CEM40 Center-Balanced Equatorial Mount
iOptron®CEM40 Center-Balanced Equatorial Mount Instruction Manual Product CEM40 (#7400A series) and CEM40EC (#7400ECA series, as shown) Please read the included CEM40 Quick Setup Guide (QSG) BEFORE taking the mount out of the case! This product is a precision instrument. Please read the included QSG before assembling the mount. Please read the entire Instruction Manual before operating the mount. You must hold the mount firmly when disengaging the gear switches. Otherwise personal injury and/or equipment damage may occur. Any worm system damage due to improper operation will not be covered by iOptron’s limited warranty. If you have any questions please contact us at [email protected] WARNING! NEVER USE A TELESCOPE TO LOOK AT THE SUN WITHOUT A PROPER FILTER! Looking at or near the Sun will cause instant and irreversible damage to your eye. Children should always have adult supervision while using a telescope. 2 Table of Contents Table of Contents ........................................................................................................................................ 3 1. CEM40 Introduction ............................................................................................................................... 5 2. CEM40 Overview ................................................................................................................................... 6 2.1. Parts List ......................................................................................................................................... -
Stars and Their Spectra: an Introduction to the Spectral Sequence Second Edition James B
Cambridge University Press 978-0-521-89954-3 - Stars and Their Spectra: An Introduction to the Spectral Sequence Second Edition James B. Kaler Index More information Star index Stars are arranged by the Latin genitive of their constellation of residence, with other star names interspersed alphabetically. Within a constellation, Bayer Greek letters are given first, followed by Roman letters, Flamsteed numbers, variable stars arranged in traditional order (see Section 1.11), and then other names that take on genitive form. Stellar spectra are indicated by an asterisk. The best-known proper names have priority over their Greek-letter names. Spectra of the Sun and of nebulae are included as well. Abell 21 nucleus, see a Aurigae, see Capella Abell 78 nucleus, 327* ε Aurigae, 178, 186 Achernar, 9, 243, 264, 274 z Aurigae, 177, 186 Acrux, see Alpha Crucis Z Aurigae, 186, 269* Adhara, see Epsilon Canis Majoris AB Aurigae, 255 Albireo, 26 Alcor, 26, 177, 241, 243, 272* Barnard’s Star, 129–130, 131 Aldebaran, 9, 27, 80*, 163, 165 Betelgeuse, 2, 9, 16, 18, 20, 73, 74*, 79, Algol, 20, 26, 176–177, 271*, 333, 366 80*, 88, 104–105, 106*, 110*, 113, Altair, 9, 236, 241, 250 115, 118, 122, 187, 216, 264 a Andromedae, 273, 273* image of, 114 b Andromedae, 164 BDþ284211, 285* g Andromedae, 26 Bl 253* u Andromedae A, 218* a Boo¨tis, see Arcturus u Andromedae B, 109* g Boo¨tis, 243 Z Andromedae, 337 Z Boo¨tis, 185 Antares, 10, 73, 104–105, 113, 115, 118, l Boo¨tis, 254, 280, 314 122, 174* s Boo¨tis, 218* 53 Aquarii A, 195 53 Aquarii B, 195 T Camelopardalis, -
Space Viewer Template
Space Viewer Template View Finder This goes on top of your two plates, and is glued to the paper towel tube. We recommend using cardboard for this. < Bottom Disc This gives your view finding disc structure, and is where you label the constellations. We recommend using card stock or lightweight cardboard for this. Constellation Plate > This disc is home to your constellations, and gets glued to the larger disc. We recommend using paper for this, so the holes are easier to punch. Use the punch guides on the next page to punch holes and add labels to your viewer. Orion Cancer Look for the middle star of Orions When you look at this constellation, look sword, that is an area of brighter nearby for 55 Cancri a star that has light, it’s actually a nebula! The five exoplanets orbiting it. One of those Orion Nebula is a gigantic cloud of plants (55 Cancri e) is a super hot dust and gas, where new stars are planet entirely covered in an ocean of being created. lava! Cygnus Andromeda This constellation is home to the This constellation is very close to the Kepler-186 system, including the Andromeda Galaxy (an enormous planet Kepler-186f. Seen by collection of gas, dust, and billions of NASA's Kepler Space Telescope, stars and solar systems). This spiral this is the first Earth-sized planet galaxy is so bright, you can spot it with discovered that is in"habitable the naked eye! zone" of its star. Ursa Minor Cassiopeia Ursa Minor has two stars known While gazing at Cassiopeia look for with exoplanets orbiting them - the“Pacman Nebula” (It’s official name both are gas giants, that are much is NGC 281). -
A Case for an Atmosphere on Super-Earth 55 Cancri E
The Astronomical Journal, 154:232 (8pp), 2017 December https://doi.org/10.3847/1538-3881/aa9278 © 2017. The American Astronomical Society. All rights reserved. A Case for an Atmosphere on Super-Earth 55 Cancri e Isabel Angelo1,2 and Renyu Hu1,3 1 Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA; [email protected] 2 Department of Astronomy, University of California, Campbell Hall, #501, Berkeley CA, 94720, USA 3 Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA Received 2017 August 2; revised 2017 October 6; accepted 2017 October 8; published 2017 November 16 Abstract One of the primary questions when characterizing Earth-sized and super-Earth-sized exoplanets is whether they have a substantial atmosphere like Earth and Venus or a bare-rock surface like Mercury. Phase curves of the planets in thermal emission provide clues to this question, because a substantial atmosphere would transport heat more efficiently than a bare-rock surface. Analyzing phase-curve photometric data around secondary eclipses has previously been used to study energy transport in the atmospheres of hot Jupiters. Here we use phase curve, Spitzer time-series photometry to study the thermal emission properties of the super-Earth exoplanet 55 Cancri e. We utilize a semianalytical framework to fit a physical model to the infrared photometric data at 4.5 μm. The model uses parameters of planetary properties including Bond albedo, heat redistribution efficiency (i.e., ratio between radiative timescale and advective timescale of the atmosphere), and the atmospheric greenhouse factor. -
FY13 High-Level Deliverables
National Optical Astronomy Observatory Fiscal Year Annual Report for FY 2013 (1 October 2012 – 30 September 2013) Submitted to the National Science Foundation Pursuant to Cooperative Support Agreement No. AST-0950945 13 December 2013 Revised 18 September 2014 Contents NOAO MISSION PROFILE .................................................................................................... 1 1 EXECUTIVE SUMMARY ................................................................................................ 2 2 NOAO ACCOMPLISHMENTS ....................................................................................... 4 2.1 Achievements ..................................................................................................... 4 2.2 Status of Vision and Goals ................................................................................. 5 2.2.1 Status of FY13 High-Level Deliverables ............................................ 5 2.2.2 FY13 Planned vs. Actual Spending and Revenues .............................. 8 2.3 Challenges and Their Impacts ............................................................................ 9 3 SCIENTIFIC ACTIVITIES AND FINDINGS .............................................................. 11 3.1 Cerro Tololo Inter-American Observatory ....................................................... 11 3.2 Kitt Peak National Observatory ....................................................................... 14 3.3 Gemini Observatory ........................................................................................ -
Small Astronomy Calendar for Amateur Astronomers 2019
IGAEF Small Astronomy Calendar for Amateur Astronomers 2019 C A L E N D A R F O R 2019 January February March Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa 1 2 3 4 5 1 2 1 2 6 7 8 9 10 11 12 3 4 5 6 7 8 9 3 4 5 6 7 8 9 13 14 15 16 17 18 19 10 11 12 13 14 15 16 10 11 12 13 14 15 16 20 21 22 23 24 25 26 17 18 19 20 21 22 23 17 18 19 20 21 22 23 27 28 29 30 31 24 25 26 27 28 24 25 26 27 28 29 30 31 April May June Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa 1 2 3 4 5 6 1 2 3 4 1 7 8 9 10 11 12 13 5 6 7 8 9 10 11 2 3 4 5 6 7 8 14 15 16 17 18 19 20 12 13 14 15 16 17 18 9 10 11 12 13 14 15 21 22 23 24 25 26 27 19 20 21 22 23 24 25 16 17 18 19 20 21 22 28 29 30 26 27 28 29 30 31 23 24 25 26 27 28 29 30 July August September Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa 1 2 3 4 5 6 1 2 3 1 2 3 4 5 6 7 7 8 9 10 11 12 13 4 5 6 7 8 9 10 8 9 10 11 12 13 14 14 15 16 17 18 19 20 11 12 13 14 15 16 17 15 16 17 18 19 20 21 21 22 23 24 25 26 27 18 19 20 21 22 23 24 22 23 24 25 26 27 28 28 29 30 31 25 26 27 28 29 30 31 29 30 October November December Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa 1 2 3 4 5 1 2 1 2 3 4 5 6 7 6 7 8 9 10 11 12 3 4 5 6 7 8 9 8 9 10 11 12 13 14 13 14 15 16 17 18 19 10 11 12 13 14 15 16 15 16 17 18 19 20 21 20 21 22 23 24 25 26 17 18 19 20 21 22 23 22 23 24 25 26 27 28 27 28 29 30 31 24 25 26 27 28 29 30 29 30 31 Easter Sunday: 2019 Apr 21 Phases of the Moon 2019 New Moon First Quarter Full Moon Last Quarter d h d h d h ⊕dist d h Jan 6 1.5 Jan 14 6.7 Jan 21 -
Binocular Challenges
This page intentionally left blank Cosmic Challenge Listing more than 500 sky targets, both near and far, in 187 challenges, this observing guide will test novice astronomers and advanced veterans alike. Its unique mix of Solar System and deep-sky targets will have observers hunting for the Apollo lunar landing sites, searching for satellites orbiting the outermost planets, and exploring hundreds of star clusters, nebulae, distant galaxies, and quasars. Each target object is accompanied by a rating indicating how difficult the object is to find, an in-depth visual description, an illustration showing how the object realistically looks, and a detailed finder chart to help you find each challenge quickly and effectively. The guide introduces objects often overlooked in other observing guides and features targets visible in a variety of conditions, from the inner city to the dark countryside. Challenges are provided for viewing by the naked eye, through binoculars, to the largest backyard telescopes. Philip S. Harrington is the author of eight previous books for the amateur astronomer, including Touring the Universe through Binoculars, Star Ware, and Star Watch. He is also a contributing editor for Astronomy magazine, where he has authored the magazine’s monthly “Binocular Universe” column and “Phil Harrington’s Challenge Objects,” a quarterly online column on Astronomy.com. He is an Adjunct Professor at Dowling College and Suffolk County Community College, New York, where he teaches courses in stellar and planetary astronomy. Cosmic Challenge The Ultimate Observing List for Amateurs PHILIP S. HARRINGTON CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sao˜ Paulo, Delhi, Dubai, Tokyo, Mexico City Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521899369 C P.