Circulation of the Ocean

Total Page:16

File Type:pdf, Size:1020Kb

Circulation of the Ocean Oceanography, An Invitation to Marine Science | 9e Tom Garrison 9 Circulation of the Ocean © 2016 Cengage Learning. All Rights Reserved. Key Concepts • Ocean circulation is driven by winds and by differences in water density • Along with the winds, ocean currents distribute tropical heat worldwide – Surface currents- wind-driven movements of water at or near the ocean’s surface-move in circular circuits—gyres— around peripheries of major ocean basins – Thermohaline currents are the slow, deep currents that affect the vast bulk of seawater beneath the pycnocline • El Niño and La Niña affect ocean and atmosphere – El Niño is an exception to normal wind and current flow © 2016 Cengage Learning. All Rights Reserved. Mass Flow of Ocean Water Is Driven by Wind and Gravity • Currents – mass flow of water – Surface currents • Wind-driven • At the ocean surface – Thermohaline currents • Slow, deep currents below the pycnocline • Depend on density differences caused by temperature and salinity © 2016 Cengage Learning. All Rights Reserved. Surface Currents Are Driven by Winds • The primary force driving surface currents is wind-10% of water in the ocean • Surface currents, water flowing horizontally in the uppermost 400 meters, flow around the periphery of ocean basins • The prime movers are the powerful westerlies and the persistent trade winds (easterlies). • Combination of four forces—surface winds, the sun’s heat, the Coriolis effect, and gravity circulates the ocean surface clockwise in the Northern Hemisphere and counterclockwise in the Southern Hemisphere, forming GYRES. © 2016 Cengage Learning. All Rights Reserved. Surface Currents Are Driven by Winds The North Atlantic gyre, a series of four interconnecting currents with different flow characteristics and temperatures. © 2016 Cengage Learning. All Rights Reserved. Surface Currents Flow around the Periphery of Ocean Basins The effect of Ekman spiraling and the Coriolis effect cause the water within a gyre to move in a circular pattern. The movement of water away from point B is influenced by the rightward tendency of the Coriolis effect and the gravity-powered movement of water down the pressure gradient. © 2016 Cengage Learning. All Rights Reserved. Ekman spiral • The Ekman spiral and the mechanism by which it operates. • The length of the arrows in the diagrams is proportional to the speed of the current in each layer. Though the direction of movement varies for each layer in the stack, the theoretical net flow of water in the Northern Hemisphere is 90° to the right of the prevailing wind force. © 2016 Cengage Learning. All Rights Reserved. Wind force Direction Friction of motion Stepped Art © 2016 Cengage Learning. All Rights Reserved. The Movement of Water The movement of water away from point 2 is influenced by the rightward tendency of the Coriolis effect and the gravity-powered movement of water down the pressure gradient. © 2016 Cengage Learning. All Rights Reserved. Water Cannot Flow Uphill • Hills in the mid-oceans • Maintained by wind energy • The surface of the North Atlantic is raised through wind motion and Ekman transport to form a low hill. Water from point 2 turns westward, flows along the side of the hill. Westward-moving water is balanced between the Coriolis effect (which would turn the water to the right) and flows down the pressure gradient, driven by gravity (which would turn it to the left). Thus, water in a gyre moves along the outside edge of an ocean basin. © 2016 Cengage Learning. All Rights Reserved. Water Cannot Flow Uphill • The hill is formed by Ekman transport. Water turns clockwise (inward) to form the dome, then descends, depressing the thermocline. The hill is formed by Ekman transport. Water turns clockwise (inward) to form the dome, then descends, depressing the thermocline. © 2016 Cengage Learning. All Rights Reserved. Water Flows in Six Surface Gyres Geostrophic gyres–in balance between pressure gradient and Coriolis effect Five geostrophic gyres-One exception – Antarctic Circumpolar Current Names and usual direction of the world ocean’s major surface currents. The powerful western boundary currents flow along the western boundaries of ocean© 2016 Cengage basins Learning. in both All Rights hemispheres. Reserved. Boundary Currents Have Different Characteristics • Western boundary currents – Narrow, deep, fast currents found at the western boundaries of ocean basins. – The Gulf Stream, Japan Current, and the Brazil Current – Agulhas Current and the Eastern Australian Current • Eastern boundary currents – Cold, shallow and broad, and their boundaries are not well defined. – The Canary Current, Benguela Current, and the California Current – The West Australian Current and Peru Current © 2016 Cengage Learning. All Rights Reserved. Water Flows in Six Surface Gyres (cont’d.) • Westward intensification • Countercurrents – flow on the surface in the opposite direction • Undercurrents – beneath surface currents • Calm centers-dead zones in the center of Gyres © 2016 Cengage Learning. All Rights Reserved. Boundary Currents Have Different Characteristics The general surface circulation of the North Atlantic. The unit used to express volume in transport in ocean currents is the sverdrup (sv), named in honor of Harald Sverdrup, one of this century’s pioneering oceanographers. The numbers indicate flow rates in sverdrups (1 sv = 1 million cubic meters of water per second). © 2016 Cengage Learning. All Rights Reserved. Surface Currents Affect Weather and Climate Warm water transfers heat to higher latitudes Cold currents cool lower latitudes General summer air circulation patterns of the US east and west coasts. Warm ocean currents (red); cold currents, (blue). Air is chilled as it approaches the west coast and warmed ©as 2016 it Cengage approaches Learning. All Rights the Reserved. east coast. Wind Can Cause Vertical Movement of Ocean Water • Wind-induced vertical circulation – Upwelling-upward motion of water. This motion brings cold, nutrient rich water towards the surface near the equator. Can have coastal upwelling. – Downwelling- downward motion of water. It supplies the deeper ocean with dissolved gases. – Wind can cause coastal downwelling • Langmuir circulation – Long sets of counter-rotating gyres at the ocean surface © 2016 Cengage Learning. All Rights Reserved. Wind Can Cause Vertical Movement of Ocean Water Equatorial Upwelling South Equatorial Current, straddles geographical equator. Water north of equator veers to the right, and water to the south veers to the left. Surface water therefore diverges, causing upwelling. In the Northern Hemisphere, coastal upwelling can be caused by winds from the north blowing along the west coast of a continent. Water moved offshore by Ekman transport is replaced by cold, deep, nutrient laden water © 2016 Cengage Learning. All Rights Reserved. Coastal Upwelling Wind Can Cause Vertical Movement of Ocean Water Shallow, slowly twisting cells of surface water are known as Langmuir circulation in honor of the researcher who explained their motion. Wind blowing from the south along a Northern Hemisphere west coast for a prolonged period can result in downwelling. Areas of downwelling are often low in nutrients and therefore relatively low in biological productivity. © 2016 Cengage Learning. All Rights Reserved. El Niño and La Niña Are Exceptions to Normal Wind and Current Flow • Southern Oscillation – changes in winds across the tropical Pacific • El Niño (ENSO) – Warmer than normal waters in the eastern Pacific El Niño year Non-El Niño year © 2016 Cengage Learning. All Rights Reserved. El Niño and La Niña Are Exceptions to Normal Wind and Current Flow • La Niña – Colder than normal waters in the eastern Pacific © 2016 Cengage Learning. All Rights Reserved. Thermohaline Circulation Affects All the Ocean’s Water • The movement of water due to different densities is thermohaline circulation. • Because the ocean is density stratified, the densest (heaviest) water is at the bottom. • There are five common water masses: – Surface water (to 200 meters) – Central water (to bottom of main thermocline) – Intermediate water (to 1500 meters) – Deep water (below intermediate water to 4000 meters) © 2016– CengageBottom Learning. waterAll Rights Reserved. (in contact with seafloor) Different Combinations of Temperature and Salinity can Yield the Same Density S curve tracks the combination of temperature and salinity(density) with increasing depth. Points 1 and 2 are on the same gently curving isopycnal—line of equal density. Seawater at points 1 and 2 have different temperatures and salinities but the same density. If these two masses of water were to merge, their combined density would be greater than either of their separate densities—a situation represented at point 3. This process is known as caballing and leads to the formation of deep © 2016 Cengage Learning. All Rights Reserved. water. Thermohaline and Surface Flow are Connected • Polar regions – formation of bottom water – Downwelling • Water masses move slowly across ocean bottom, rise slowly (How slowly?) • Convergence zones • Contour currents – bottom currents • Look up these concepts in the book! © 2016 Cengage Learning. All Rights Reserved. Water Masses May Converge, Fall, Travel across the Seabed, and Slowly Rise A model of thermocline circulation caused by heating in lower latitudes and cooling in higher latitudes. The thermocline at middle and low latitudes is “held up” by the slow upward movement of cold water. The water layers and deep circulation of the Atlantic Ocean. Arrows indicate the direction of water movement. Convergence zones are areas where water masses approach one another. © 2016 Cengage Learning. All Rights Reserved. The Global Pattern of Deep Circulation Global pattern of deep circulation resembles a vast “conveyor belt” that carries surface water to the depths and back again. © 2016 Cengage Learning. All Rights Reserved..
Recommended publications
  • Technical Report No. 21
    Technical Report No. 21 Climatology of the HOPE-G Global Ocean - Sea Ice General Circulation Model Stephanie Legutke, Deutsches Klimarechenzentrum Ernst Maier-Reimer, Max-Planck-Institut für Meteorologie Bundesstraße 55, D-20146 Hamburg Edited by: Modellberatungsgruppe, DKRZ Hamburg, December 1999 ISSN 0940-9327 ABSTRACT The HOPE-G global ocean general circulation model (OGCM) climatology, obtained in a long-term forced integration is described. HOPE-G is a primitive-equation z-level ocean model which contains a dynamic-thermodynamic sea-ice model. It is formulated on a 2.8o grid with increased resolution in low latitudes in order to better resolve equatorial dynamics. The vertical resolution is 20 layers. The purpose of the integration was both to investigate the models ability to reproduce the observed gen- eral circulation of the world ocean and to obtain an initial state for coupled atmosphere - ocean - sea-ice climate simulations. The model was driven with daily mean data of a 15-year integration of the atmo- sphere general circulation model ECHAM4, the atmospheric component in later coupled runs. Thereby, a maximum of the flux variability that is expected to appear in coupled simulations is included already in the ocean spin-up experiment described here. The model was run for more than 2000 years until a quasi-steady state was achieved. It reproduces the major current systems and the main features of the so-called conveyor belt circulation. The observed distribution of water masses is reproduced reasonably well, although with a saline bias in the intermediate water masses and a warm bias in the deep and bottom water of the Atlantic and Indian Oceans.
    [Show full text]
  • Lecture Notes in Physical Oceanography
    LECTURE NOTES IN PHYSICAL OCEANOGRAPHY ODD HENRIK SÆLEN EYVIND AAS 1976 2012 CONTENTS FOREWORD INTRODUCTION 1 EXTENT OF THE OCEANS AND THEIR DIVISIONS 1.1 Distribution of Water and Land..........................................................................1 1.2 Depth Measurements............................................................................................3 1.3 General Features of the Ocean Floor..................................................................5 2 CHEMICAL PROPERTIES OF SEAWATER 2.1 Chemical Composition..........................................................................................1 2.2 Gases in Seawater..................................................................................................4 3 PHYSICAL PROPERTIES OF SEAWATER 3.1 Density and Freezing Point...................................................................................1 3.2 Temperature..........................................................................................................3 3.3 Compressibility......................................................................................................5 3.4 Specific and Latent Heats.....................................................................................5 3.5 Light in the Sea......................................................................................................6 3.6 Sound in the Sea..................................................................................................11 4 INFLUENCE OF ATMOSPHERE ON THE SEA 4.1 Major Wind
    [Show full text]
  • A Characterisation of the Marine Environment of the North-West Marine Region
    A Characterisation of the Marine Environment of the North-west Marine Region A summary of an expert workshop convened in Perth, Western Australia, 5-6 September 2007 Prepared by the North-west Marine Bioregional Planning section, Marine and Biodiversity Division, Department of the Environment, Water, Heritage and the Arts © Commonwealth of Australia 2007. This work is copyright. You may download, display, print and reproduce this material in unaltered form only (retaining this notice) for your personal, non- commercial use or use within your organisation. Apart from any use as permitted under the Copyright Act 1968, all other rights are reserved. Requests and inquiries concerning reproduction and rights should be addressed to Commonwealth Copyright Administration, Attorney General’s Department, Robert Garran Offices, National Circuit, Barton ACT 2600 or posted at http://www.ag.gov.au/cca Disclaimer The views and opinions expressed in this publication are those of the authors and do not necessarily reflect those of the Australian Government or the Minister for the Environment, Heritage and the Arts or the Minister for Climate Change and Water. While reasonable efforts have been made to ensure that the contents of this publication are factually correct, the Commonwealth does not accept responsibility for the accuracy or completeness of the contents, and shall not be liable for any loss or damage that may be occasioned directly or indirectly through the use of, or reliance on, the contents of this publication. 2 Background The Department of the Environment, Water, Heritage and the Arts (DEWHA) is developing a North-west Marine Bioregional Plan under the Environment Protection and Biodiversity Conservation Act 1999 (hereafter referred to as the Act).
    [Show full text]
  • New Record of Dust Input and Provenance During Glacial Periods in Western Australia Shelf (IODP Expedition 356, Site U1461) from the Middle to Late Pleistocene
    atmosphere Article New Record of Dust Input and Provenance during Glacial Periods in Western Australia Shelf (IODP Expedition 356, Site U1461) from the Middle to Late Pleistocene Margot Courtillat 1,2,* , Maximilian Hallenberger 3 , Maria-Angela Bassetti 1,2, Dominique Aubert 1,2 , Catherine Jeandel 4, Lars Reuning 5 , Chelsea Korpanty 6 , Pierre Moissette 7,8 , Stéphanie Mounic 9 and Mariem Saavedra-Pellitero 10,11 1 Centre de Formation et de Recherche sur les Environnements Méditerranéens, Université de Perpignan Via Domitia, UMR 5110, 52 Avenue Paul Alduy, CEDEX, F-66860 Perpignan, France; [email protected] (M.-A.B.); [email protected] (D.A.) 2 CNRS, Centre de Formation et de Recherche sur les Environnements Méditerranéens, UMR 5110, 52 Avenue Paul Alduy, CEDEX, F-66860 Perpignan, France 3 Energy & Mineral Resources Group, Geological Institute Wüllnerstr. 2, RWTH Aachen University, 52052 Aachen, Germany; [email protected] 4 Observatoire Midi-Pyrénées, LEGOS (Université de Toulouse, CNRS/CNES/IRD/UPS), 14 Avenue Edouard Belin, 31400 Toulouse, France; [email protected] 5 Institute of Geosciences, CAU Kiel, Ludewig-Meyn-Straße 10, 24118 Kiel, Germany; [email protected] 6 MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Str. 8, 28359 Bremen, Germany; [email protected] 7 Department of Historical Geology & Palaeontology, Faculty of Geology and Geoenvironment, National and Kapodistrian University of Athens, 15784 Athens, Greece; [email protected]
    [Show full text]
  • Oceanography
    Oceanography Chapter 7 CIRCULATION PATTERNS AND OCEAN CURRENTS أ . را اي Chapter 7: Circulation Patterns and Ocean Currents Circulation Patterns and Ocean Currents 7.1 Density -Driven Circulation 7.2 Thermohaline Circulation 7.3 The Layered Oceans The Atlantic Ocean The Arctic Ocean The Pacific Ocean The Indian Ocean 7.4 Measuring Water Properties 7.5 Wind -Driven Water Motion 7.6 Current Flow and Gyres 7.7 Ocean Surface Currents The Pacific Ocean The Atlantic Ocean The Arctic Ocean The Indian Ocean 7.8 Open -Ocean Convergence and Divergence 7.9 Coastal Upwelling and Downwelling 7.10 Eddies 7.11 Measuring the Currents 7.12 Energy Sources Thermal Energy Harnessing the Currents Prepared by: Raed M.Khaldi Chapter 7: Circulation Patterns and Ocean Currents Circulation Patterns and Ocean Currents Major Concept (I) The oceans are not a single, homogeneous body of water. They actually consist of a number of distinct water masses characterized by different densities due to variations in temperature, salinity, and pressure. There is relatively little mixing between water masses. Different water masses can be identified in the oceans on the basis of changes in salinity and/or temperature. Changes in salinity, temperature, and pressure cause differences in density, resulting in the layering we see in seawater. The individual characteristics of water masses are determined at the surface by such processes as: a. the gain and loss of heat, Prepared by: Raed M.Khaldi Chapter 7: Circulation Patterns and Ocean Currents b. evaporation and precipitation patterns, of sea ice, and ذون c. the freezing and thawing d.
    [Show full text]
  • Ocean Surface Circulation
    Ocean surface circulation Recall from Last Time The three drivers of atmospheric circulation we discussed: • Differential heating • Pressure gradients • Earth’s rotation (Coriolis) Last two show up as direct forcing of ocean surface circulation, the first indirectly (it drives the winds, also transport of heat is an important consequence). Coriolis In northern hemisphere wind or currents deflect to the right. Equator In the Southern hemisphere they deflect to the left. Major surfaceA schematic currents of them anyway Surface salinity A reasonable indicator of the gyres 31.0 30.0 32.0 31.0 31.030.0 33.0 33.0 28.0 28.029.0 29.0 34.0 35.0 33.0 33.0 33.034.035.0 36.0 34.0 35.0 37.0 35.036.0 36.0 34.0 35.0 35.0 35.0 34.0 35.0 37.0 35.0 36.0 36.0 35.0 35.0 35.0 34.0 34.0 34.0 34.0 34.0 34.0 Ocean Gyres Surface currents are shallow (a few hundred meters thick) Driving factors • Wind friction on surface of the ocean • Coriolis effect • Gravity (Pressure gradient force) • Shape of the ocean basins Surface currents Driven by Wind Gyres are beneath and driven by the wind bands . Most of wind energy in Trade wind or Westerlies Again with the rotating Earth: is a major factor in ocean and Coriolisatmospheric circulation. • It is negligible on small scales. • Varies with latitude. Ekman spiral Consider the ocean as a Wind series of thin layers. Friction Direction of Wind friction pushes on motion the top layers.
    [Show full text]
  • ESSO–National Centre for Antarctic and Ocean Research
    Proc Indian Natn Sci Acad 82 No. 3 July Spl Issue 2016 pp. 1145-1161 Printed in India. DOI: 10.16943/ptinsa/2016/48509 Institutional Report ESSO–National Centre for Antarctic and Ocean Research M THAMBAN* and M RAVICHANDRAN ESSO–National Centre for Antarctic and Ocean Research, Headland Sada, Goa 403 004, India (Received on 13 July 2016; Accepted on 15 July 2016) Introduction oceanographic vessels as well as exploration for hydrothermal mineralization in the Indian Ocean Ridge The National Centre for Antarctic and Ocean areas. Research (NCAOR) under the Earth System Science Organization (ESSO) of the Ministry of Earth The mission objectives of NCAOR are however, Sciences is the nodal agency to coordinate country’s not merely restricted to the scientific, technical and entire activities in the polar regions and oceans as logistics management of the Indian Polar programs well as to carry out independent research activities in nor to facilitating of the implementation of the other specialised areas. The major mandates of NCAOR mandated responsibilities entrusted to it by the Ministry. include: (a) Overall planning, co-ordination and The Centre has a well-focused scientific mandate of implementation of the scientific programmes mounted initiating and supporting basic and applied research in in Antarctica, Arctic, Southern Ocean and the a variety of scientific disciplines and themes that are Himalayas; (b) Implementation of the ocean surveys otherwise not being pursued by any institution or and mineral resources programs of the MoES such laboratory
    [Show full text]
  • Upper-Ocean Hydrodynamics Along Meridional Sections in the Southwest Indian Sector of the Southern Ocean During Austral Summer 2007
    Available online at www.sciencedirect.com Polar Science 3 (2009) 13e30 http://ees.elsevier.com/polar/ Upper-ocean hydrodynamics along meridional sections in the southwest Indian sector of the Southern Ocean during austral summer 2007 Alvarinho J. Luis*, M. Sudhakar National Centre for Antarctic and Ocean Research (NCAOR), Polar Remote Sensing Section, Ministry of Earth Sciences, Govt. of India, Headland Sada, Goa 403804, India Received 6 December 2008; revised 13 February 2009; accepted 2 March 2009 Available online 1 April 2009 Abstract This paper addresses analysis of surface meteorological and hydrographic data collected along the transects DurbaneIndia Bay, Antarctica (Track-1) and Prydz BayeMauritius (Track-2) during FebruaryeMarch 2007 as part of the International Polar Year project (IPY#70). Strong winds (>12 m sÀ1) resulted in enhanced turbulent heat loss north of 45S. Whereas a highly stable marine atmospheric boundary layer (MABL) and strong winds facilitated the release of latent heat of condensation along Track-1, a highly unstable MABL and strong winds resulted in large turbulent heat loss from the sea surface along Track-2, in the 40e45S belt. The northern and southern branches of Subantarctic Front on both tracks coalesce, while the Agulhas Retroflection Front (AF) and South Subtropical Front (SSTF) merge between 43 and 44S on Track-2. The southern branch of the Polar Front (PF2) meanders 550 km southward towards the east. The Subtropical Surface Water, Central Water, and Mode Water are located north of 43.5S, while the Subantarctic Surface Water, Antarctic Surface Water, Antarctic Intermediate Water, and Circumpolar Deep Water are encountered in the region of the Antarctic Circumpolar Current (ACC).
    [Show full text]
  • Polish Geographical Names of Undersea and Antarctic Features the Names Which “Escape” the Definition of Exonym and Endonym
    UNITED NATIONS GROUP OF EXPERTS ON GEOGRAPHICAL NAMES 10th Meeting of the UNGEGN Working Group on Exonyms Tainach, Austria, 28-30 April 2010 Polish geographical names of undersea and Antarctic features The names which “escape” the definition of exonym and endonym Prepared by Maciej Zych, Commission on Standardization of Geographical Names Outside the Republic of Poland Polish geographical names of undersea and Antarctic features The names which “escape” the definition of exonym and endonym According to the definition of exonym adopted by UNGEGN in 2007 at the Ninth United Nations Conference on the Standardization of Geographical Names, it is a name used in a specific language for a geographical feature situated outside the area where that language is widely spoken, and differing in its form from the respective endonym(s) in the area where the geographical feature is situated. At the same time the definition of endonym was adopted, according to which it is a name of a geographical feature in an official or well-established language occurring in that area where the feature is situated1. So formulated definitions of exonym and endonym do not cover a whole range of geographical names and, at the same time, in many cases they introduce ambiguity when classifying a given name as an exonym or an endonym. The ambiguity in classifying certain names as exonyms or endonyms derives from the introduction to the definition of the notion of the well-established language, which can be understood in different ways. Is the well-established language a
    [Show full text]
  • Aquatic Sciences and Fisheries Information System: Geographic
    ASFIS-7 (Rev. 3) AQUATIC SCIENCES AND FISHERIES INFORMATION SYSTEM GEOGRAPHIC AUTHORITY LIST ASFIS REFERENCE SERIES, No. 7 Revision 3 ASFIS-7 (Rev. 3) AQUATIC SCIENCES AND FISHERIES INFORMATION SYSTEM GEOGRAPHIC AUTHORITY LIST edited by David S Moulder Plymouth Marine Laboratory Plymouth, United Kingdom revised by Ian Pettman and Hardy Schwamm Freshwater Biological Association Ambleside, Cumbria, United Kingdom Food and Agriculture Organization of the United Nations Rome, 2019 Required citation: FAO. 2019. Aquatic sciences and fisheries information system. Geographic authority list. ASFIS-7 (Rev. 3) Rome. Licence: CC BY-NC-SA 3.0 IGO. The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO. ISBN 978-92-5-131173-8 © FAO, 2019 Some rights reserved. This work is made available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo/legalcode/legalcode).
    [Show full text]
  • The Flow Field of the Subtropical Gyre of the South Indian Ocean
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 102,NO. C3, PAGES 5513-5530,MARCH 15, 1997 The flow field of the subtropical gyre of the South Indian Ocean L. Stramma and J. R. E. Lutjeharms1 Institut fiir Meereskunde an der Universit/it Kiel, Kiel, Germany Abstract. The mean state of the transport field of the subtropicalgyre of the South Indian Ocean has been derived for the upper 1000 m from selectedhistorical hydrographicdata. The subtropicalgyre in the southwesternIndian Oceanis stronger than the flow in the other two oceansof the southern hemisphere. Most of the water in the SouthIndian gyre recirculatesin the westernand centralparts of the basin. In the upper 1000 m the eastward transport of the South Indian Ocean Current starts with 60 Sv in the regionsoutheast of SouthAfrica. Betweenthe longitudesof 40ø and 50øE about 20 Sv of the 60 Sv recirculatesin a southwestIndian subgyre. Another major diversion northward occursbetween 60 ø and 70øE. At 90øE the remaining 20 Sv of the eastwardflow splits up, 10 Sv going north to join the westwardflow and only 10 Sv continuingin a northeastwarddirection to movenorthward near Australia. Near Australia, there is indicationof the polewardflowing Leeuwin Current with a transport of 5 Sv. In the central tropical Indian Ocean between 10øSand 20øS, about 15 $v flows to the west. The western boundary current of this subtropical gyre consistsof the AgulhasCurrent along the east coastof southernAfrica. Its mean flow is composedof 25 $v from east of Madagascarand 35 $v from recirculationin the southwestIndian subgyresouth of Madagascar,with only 5 $v being contributed from the MozambiqueChannel. A net southwardtransport of 10 $v resultsfor the upper 1000 m of the South Indian Ocean.
    [Show full text]
  • Observed Interhemispheric Meridional Heat Transports and the Role of the Indonesian Throughflow in the Pacific Ocean
    15 DECEMBER 2019 T R E N B E R T H A N D Z H A N G 8523 Observed Interhemispheric Meridional Heat Transports and the Role of the Indonesian Throughflow in the Pacific Ocean a KEVIN E. TRENBERTH AND YONGXIN ZHANG National Center for Atmospheric Research, Boulder, Colorado (Manuscript received 25 June 2019, in final form 12 August 2019) ABSTRACT The net surface energy flux is computed as a residual of the energy budget using top-of-atmosphere radi- ation combined with the divergence of the column-integrated atmospheric energy transports, and then used with the vertically integrated ocean heat content tendencies to compute the ocean meridional heat transports (MHTs). The mean annual cycles and 12-month running mean MHTs as a function of latitude are presented for 2000–16. Effects of the Indonesian Throughflow (ITF), associated with a net volume flow around Australia accompanied by a heat transport, are fully included. Because the ITF-related flow necessitates a return current northward in the Tasman Sea that relaxes during El Niño, the reduced ITF during El Niño may contribute to warming in the south Tasman Sea by allowing the East Australian Current to push farther south even as it gains volume from the tropical waters not flowing through the ITF. Although evident in 2015/16, when a major marine heat wave occurred, these effects can be overwhelmed by changes in the atmospheric circulation. Large interannual MHT variability in the Pacific is 4 times that of the Atlantic. Strong re- lationships reveal influences from the southern subtropics on ENSO for this period.
    [Show full text]