Shining a Light on Cancer Research

Total Page:16

File Type:pdf, Size:1020Kb

Shining a Light on Cancer Research NCI Alliance for Nanotechnology in Cancer Monthly Feature January/February 2005 tiple biochemical and genetic pathways that are involved in cancer. But that is just one of the many developing uses for tunable Shining a Light on nanoscale beacons. “From their initial use as easily-tracked markers, these nanoscale bea- cons are proving to be quite versatile in what we can do with them,” says Shuming Nie, associate professor of biomedical engineering Cancer Research at Emory University School of Medicine and director of nanotechnology at the Winship Quantum dots and nanoshells are driving Cancer Institute. development of novel analytical and therapeutic Nie, for example, is heading a multi-institu- tional consortium that is attempting to approaches for cancer develop second-generation quantum dots for use as tumor detection agents, and perhaps delivery vehicles for anticancer therapeutic In the early 1980s, researchers at Bell opment of new technologies that are chang- agents. Recent recipients of a $7.1 million Laboratories in the United States and at the ing the way that cancer researchers, among grant from the National Cancer Institute, Yoffe Institute in Russia made an unexpected others, are observing the fundamental molec- Nie’s team has modified the original cadmi- observation: as semiconductor crystals grew ular events that occur in and around cells. um selenide (CdSe) quantum dot with a ever smaller, their optical properties began to Using nanoscale semiconductor quantum coating of polymer that has two functions: change in what, at the time, seemed a myste- dots and gold nanoshells of various diame- the impermeable coating prevents highly rious fashion. Depending on their size, the ters, and thus different colors, biomedical toxic cadmium from leaching out of the crystals fluoresced at different wavelengths researchers are able to tag multiple different quantum dots and it provides a means of even though the chemical composition of the biological molecules with brightly colored chemically attaching tumor-targeting mole- crystals stayed the same. Eventually, the beacons that they can easily track in vivo cules and drug-delivery functionality to the researchers came to understand that the using a variety of imaging technologies, such molecular beacon.3 His team plans on using unusual behavior of these “quantum dots” as fluorescence microscopy. these quantum dots to identify tumor markers resulted from their nanoscale size, which from an extensive collection of archived tumor changed the electronic properties of the semi- As an example of this type of approach, a biopsies taken from hundreds of patients. conductor materials in a fundamental manner. team from Quantum Dot Corp., a company based in Hayward, CA, and Genentech, a In the future, targeted quantum dots could Fast forward to the mid-1990s, when pharmaceutical company in South San also serve as in vivo imaging agents if Nie researchers at Rice University made a similar Francisco, CA, used quantum dots to simul- and others, such as John Frangioni, assistant discovery about another class of materials. taneously label and visualize Her-2 on the professor at Harvard Medical School, and Working with gold-coated silica nanoshells, surface of live cancer cells and nuclear anti- Massachusetts Institute of Technology chem- Naomi Halas, professor of chemistry and gens inside the cell.1 More recently, investiga- istry professor Moungi Bawendi, are success- electrical and computer engineering at Rice tors at Quantum Dot have used quantum ful in their on-going efforts to extend the University in Houston, determined that by dots that fluoresce at different colors to wavelength at which these nanoparticles emit varying the thickness of the gold coating rel- simultaneously label and track mammalian light above 900 nanometers, the current ative to the diameter of the silica core, it was cells in culture using either standard fluores- upper limit. Nie explains that since there are possible to tune the optical behavior of the cence microscopy or a commercial cell sorter. no biomolecules that fluoresce above 1000 resulting nanoshells. But instead of emitting To get the quantum dots into cells, the nanometers, quantum dots capable of fluo- light of defined wavelength, i.e. color, as do group used a ferrying peptide known as Pep- rescing in that range would provide an quantum dots, the nanoshells absorbed or 1 to carry the quantum dots through the cell unambiguous signal when used in imaging scattered light at well-defined frequencies. membrane. The researchers estimate that applications. He adds that computer calcula- Two different materials, two different mecha- they can tag and image over 100 different tions predict that fluorescence above 1000 nisms explaining a color change, and both cells simultaneously using this method.2 nanometers should be capable of passing relying on fundamental differences in the through more tissue and be detectable at far way matter behaves at the nanoscale. The ability to keep track of multiple mole- lower levels, which would boost the sensitivi- cules and cells will undoubtedly be a boon ty of any test using such materials. As a Today, those initial discoveries and the for molecular and cell biologists who are try- corollary to this work, the Emory team is research they fostered have led to the devel- ing to understand the interplay among mul- NCI Alliance for Nanotechnology in Cancer1 Monthly Feature January/February 2005 NCI Alliance for Nanotechnology in Cancer Monthly Feature January/February 2005 also developing a new imaging camera that light falls on a semiconductor, electrons are mechanics allows scientists to predict the will be sensitive to emissions at 1000 excited from what chemists call the valence properties of complex molecules, the work nanometers. band – where they are tightly bound to their performed by the Rice team shows how the parent atom – into the so-called conduction properties of plasmons in complex metallic Proof that imaging with quantum dots is not band, where they can move and contribute nanostructures can be predicted in a simple just a goal but a reality comes from recent to current flow. Each electron leaves a posi- manner. As a result of this advance in work out of Harvard Medical School, where tive hole in the valence band, and the elec- understanding plasmons, Halas explains a team led by Frangioni and assistant profes- tron stays close to this hole in a bound system that, “we can design nanoscale materials in sor Tomislav Mihaljevic, also of Harvard called an exciton. Electrons emit their excess advance on the computer and then create Medical School, used coated, water-soluble energy as light when they recombine with them with the predicted optical properties quantum dots to detect so-called sentinel positive holes, and this means that excitons in the laboratory.” lymph nodes – the first lymph nodes to accumulate metastatic cells shed by nearby Figure 1: Comparing Nanoshells to Quantum Dots tumors – in animals as large as a 35 kilogram Courtesy of Naomi Halas, Rice University pig. These coated semiconductor nanoparti- cles, developed by Massachusetts Institute of Technology chemistry professor Moungi Bawendi, are readily visible in lymph nodes up to one centimeter beneath the skin4 and five centimeters in lung tissue.5 Photo by Corey Radlof Meanwhile, Halas and Rice University col- leagues Jennifer West and Rebekah Drezek, Photo by Colleen Nehl (Hafner Group) both professors of biomedical engineering, 50 nm have used gold nanoshells to image tumors in mice using an imaging approach that can Nanoshells Quantum Dots work as deep as 10 centimeters within an Tunable plasmonic nanoparticles Tunable excitonic nanoparticles ~ 10-300 nm diameter ~ 1-10 nm diameter(uncoated) animal’s body.6 Halas and West have also pio- neered nanoshells as miniature “thermal Quantum efficiencies ~10-4 Quantum efficiencies ~0.1-0.5 Spectral range (extinction): 500(Ag)-9000 nm Spectral range (emission): 400-2000 nm scalpels” that can literally cook cancer cells to Cross sections: ~10-13 m2 Cross sections: ~10-19 m2 death. The operating principle here is that these nanoshells will become hot when irra- diated with relatively low-intensity near- are the source of light in semiconductors. infrared laser light, and tests in laboratory In contrast, gold nanoshells owe their opti- Given the way that science works, it should animals have shown that the nanoshells can cal properties to plasmons, ripples of waves not be surprising that the research communi- transfer this thermal energy to tumor cells in the ocean of electrons flowing across the ty is not content with having two different, and kill them.7 Thus, if the nanoshells are surface of metallic nanostructures. The type versatile nanoscale tagging systems at their targeted to tumor cells, they may enable of plasmon that exists on a surface of a command. Among the up-and-coming physicians to first image the tumors and then nanoscale object is directly related to its nanoscale beacons are those developed by kill them by turning up the light intensity. geometric structure – the precise curvature Weihong Tan, professor of chemistry at the Nanospectra Biosciences, based in Houston, of a nanoscale gold sphere or a nano-sized University of Florida. He and his colleagues TX, is currently conducting further animal pore in metallic foil, for example. When have worked out methods for incorporating a tests and is hoping to begin human clinical light of a specific frequency strikes a plas- wide range of organic fluorescent dyes into trials with these nanoshells early in 2006. mon that oscillates at a compatible frequen- the core of silica nanoparticles.9 Florida col- Halas and her team are trying to better cy, the energy from the light is harvested by league Shouguang Jin, associate professor of understand how these particles turn light the plasmon, converted into electrical ener- molecular genetics and microbiology, and his into heat in order to better predict what type gy that propagates through the nanostruc- team recently used these nanobeacons to of gold nanoshell is best suited as a thermal ture and eventually converted back to light.
Recommended publications
  • PQE-2019 — Invited and Plenary Talks
    PQE-2019 — Invited and Plenary Talks Monday, January 7, 2019 Monday Morning Plenary Session 1 Location: Ballrooms 1 and 2 — Marlan Scully, Chair 7:30 Jeff Kimble, California Institute of Technology, “Quantum matter built from nanoscopic lattices of atoms and photons” 8:00 Johann Peter Reithmaier, University of Kassel, “Atom-Like Optical Gain Materials for Advanced Optoelectronics” 8:30 Matthew Pelton, University of Maryland, Baltimore County, “Cavity QED Using Single Quantum Dots and Plasmon Resonances” Monday Morning Invited Session 1 Breakout Session 1: Quantum Optics with Arrays of Atoms and Photons. Location: Ballroom 1 — Jeff Kimble, Chair 9:10 Ana Asenjo-Garcia, Columbia University, “Collective dissipation: going beyond two-level atoms” 9:30 Chen-Lung Hung, Purdue University, “Trapping and imaging single atoms on a microring photonic circuit with optical tweezers” 9:50 Alex Burgers, California Institute of Technology, “Engineering Atom-Light Interactions with Pho- tonic Crystal Waveguides” 10:10 Jeff Thompson, Princeton University, “Ytterbium atom arrays in optical tweezers” Breakout Session 2: Quantum Dot Lasers. Location: Magpie A — Johann Peter Reithmaier, Chair 9:10 Yasuhiko Arakawa, The University of Tokyo, “Advances in quantum dot lasers for silicon photonics” 9:30 Gadi Eisenstein, Technion, “Carrier dynamics in InAs/InP quantum dot - tunneling injection gain media” 9:50 John Bowers, University of California Santa Barbara, “Mode-Locked Quantum Dot Lasers Epi- taxially Grown on Si” 10:10 Frederic Grillot, Telecom Paristech, “Quantum
    [Show full text]
  • What's the Buzz About Nano?
    What’s the buzz about nano? Peter Grutter Supported by NSERC, FQRNT, CFI, CIAR, CIHR, NanoQuebec, IBM, GenomeQuebec, James McGill Fellowship P. Grutter Science Fiction: Convergence: GMO, AI & nano 7of 9 on Star Trek Doc Ock (Spiderman) Nano sells! Guess: Nano (yellow/pink patent) nanopants When nanopants attack Nanocube So – what is nano? 1. Making mundane, ordinary science and/or delusional scientific concepts sound like revolutionary scientific “innovations” and/or look feasible by putting the word “nano” somewhere in the text. 2. A flim-flam method of extracting grants from gullible and clueless scientific funding bodies based on minimal scientific substance and giving little in scientific return. http://lachlan.bluehaze.com.au/nanoshite/ How big is a nanometer? What enables Nanoscience and Nanotechnology? New tools!!! • Drive discoveries • Enable technology • Are a high value added business opportunity Storing information atom by atom Ultra high density (Library of Congress on a pin head) Ultra slow (needs life time of universe to write) Huge footprint (UHV 4K STM) D. Eigler, IBM Almaden Small is different Scaling law Small is different Breakdown of scaling Scaling law Nano: Renaissance Science ! size solid state physics & engineering nm biology chemistry time now! nm “Labors of the Months” (Norwich, England, ca. 1480). (The ruby color is probably due to embedded gold nanoparticles.) Nano materials in labeling • High throughput multiplexed assays (‘nano bar code’) • Optical tracking on a cellular level with tagged CdSe quantum Basis: size dependent emission dots: which gene is color of ZnS capped CdSe active? nano particles The Benefits of Nanotech: Nanoshell Cancer Therapy Gold Nanoshells Are biocompatible silica core Small enough to pass through circulatory system gold shell Easily attached to antibodies for specific cellular targeting 10-300 nm diameter Are strong absorbers of light in the near infrared, where light penetrates up to 7 cm into the human body Courtesy of Prof.
    [Show full text]
  • 2013 NCI Alliance for Nanotechnology in Cancer Annual Bulletin EDITOR-IN-CHIEF
    2013 NCI Alliance for Nanotechnology in Cancer Annual Bulletin EDITOR-IN-CHIEF Piotr Grodzinski (NCI) SENIOR EDITOR Stephanie A. Morris (NCI) ASSOCIATE EDITOR(S) Dorothy Farrell (NCI) Lynn Hull (NCI) Mary Spiro (JHU) CONTRIBUTORS Martha Alexander (Rice CNPP) Michelle Berny-Lang (NCI) Dorothy Farrell (NCI) Emily Greenspan (NCI) Piotr Grodzinski (NCI) George Hinkal (NCI) Brenda Hugot (Boston CNTC) Lynn Hull (NCI) Contents Hannah Kim (Texas CCNE) 1 Introduction Julia Ljubimova (Cedars-Sinai CNPP) NIH Funding Opportunities Extend the Range Laura A. Miller (UIUC CNTC) 2 of Cancer Nanotechnology in Biomedical Research Sarah H. Petrosko (Northwestern CCNE) Mary Spiro (Johns Hopkins CCNE & CNTC) 6 Alliance Working Groups Provide Their Opinions to the Nanotechnology Community Li Tang (UIUC CNTC) Biana Godin Vilentchouk (Texas CCNE) 8 Crowdsourcing and the Dialogue Matthew Ware (Texas CCNE) on Nanotechnology in Cancer 9 Nano in the News DESIGN Danielle Peterson, Brio Design 12 Alliance Transitions INTRODUCTION BY DOROTHY FARRELL The third year of Phase II of the NCI Alliance for Nanotechnology These efforts included crowdsourcing strategies coordinated in Cancer was a busy and productive one for the Alliance. through a dedicated website (nanocancer.ideascale.com) and a Our investigators published over 300 papers in 2013, bringing Request for Information on the Directions and Needs for Cancer the total number of Alliance publications over the past three Nanotechnology (grants.nih.gov/grants/guide/notice-files/ years to approximately 1,100. Alliance research continues to NOT-CA-13-017.html). The insights gained through these forums be high profile and high impact, as measured by the quality are discussed in the Crowdsourcing section of the Bulletin.
    [Show full text]
  • Federico Capasso
    Federico Capasso ADDRESS: John A. Paulson School of Engineering and Applied Sciences Harvard University 205 A Pierce Hall 29 Oxford Street Cambridge MA 02138 PHONE: (617) 384-7611 FAX: (617) 495-2875 EMAIL: [email protected] PERSONAL: Married; two children CITIZENSHIP: Italian and U.S. (Naturalized; 09/23/1992) EDUCATION: 1973 Doctor of Physics, Summa Cum Laude University of Rome, La Sapienza, Italy 1973-1974 Postdoctoral Fellow Fondazione Bordoni, Rome, Italy ACADEMIC APPOINTMENTS Jan. 2003- Present Robert Wallace Professor of Applied Physics Vinton Hayes Senior Research Fellow in Electrical Engineering, John A. Paulson, School of Engineering and Applied Sciences, Harvard University, PROFESSIONAL POSITIONS: 2000 – 2002 Vice President of Physical Research, Bell Laboratories Lucent Technologies, Murray Hill, NJ 1997- 2000 Department Head, Semiconductor Physics Research, Bell Laboratories Lucent Technologies, Murray Hill, NJ. 1987- 1997 Department Head, Quantum Phenomena and Device Research, Bell Laboratories Lucent Technologies (formerly AT&T Bell Labs, until 1996), Murray Hill, NJ 1984 – 1987 Distinguished Member of Technical Staff, Bell Laboratories, Murray Hill, NJ 1977 – 1984 Member of Technical Staff, Bell Laboratories, Murray Hill, NJ 1976 – 1977 Visiting Scientist, Bell Laboratories, Holmdel, NJ 1974 – 1976 Research Physicist, Fondazione Bordoni, Rome, Italy Citations (Google Scholar) Over 93000 H-index (Google Scholar) 144 Publications Over 500 hundred peer reviewed journals Patents 70 US patents KEY ACHIEVEMENTS 1. Bandstructure Engineering and Quantum Cascade Lasers (QCLs) Capasso and his Bell Labs collaborators over a 20-year period pioneered band-structure engineering, a technique to design and implement artificially structured (“man-made”) semiconductor, materials, and related phenomena/ devices, which revolutionized heterojunction devices in photonics and electronics.
    [Show full text]
  • The 2018 Edward Noble Kramer Distinguished Interdisciplinary
    Edward Noble Kramer was born April 17, 1908 in Cambridge, Wisconsin but grew up in the small town of Oregon, Wisconsin, just south of Madison, where his parents ran a printing business and published the The 2018 Edward Noble Kramer weekly newspaper, the Oregon Observer. He received his BS and MS degrees in chemistry from Distinguished Interdisciplinary Lecture the University of Wisconsin- Madison and after one year as instructor in chemistry at the University of Wisconsin- Extension at Milwaukee, returned to Madison and completed his PhD in chemistry in Professor Naomi J. Halas 1933 at the age of 25. At UW-Madison he was coxswain of the freshman crew and a member of the Department of Electrical and Computer marching band. He was hired by the DuPont Engineering Company at a time that DuPont had started to Rice University develop a new business to manufacture titanium dioxide white pigment. Over the span of his 40 year career at DuPont Dr. Kramer was intimately involved in the From Faraday to tomorrow: the Growing chemistry, chemical process engineering, physics and materials science of producing titanium dioxide nanoparticles of optimum size, crystal structure and surface Importance and Impact of Metallic characteristics to be effective paint additives. He had a major role in development of the chloride process for producing the rutile form of titanium dioxide, an exceptionally efficient Nanoparticles and controllable process used to produce almost all commercial titanium dioxide. When he retired in 1973 Dr. Kramer was in charge of all technical aspects of the Pigments Department of the DuPont Company. Tuesday, September 18, 2018 Since Dr.
    [Show full text]
  • Nanoplasmonic Sensors and Spectroscopy 2011 Chalmers, Göteborg, Sweden, September 19-22
    Nanoplasmonic Sensors and Spectroscopy 2011 Chalmers, Göteborg, Sweden, September 19-22 Conference program Monday, 19 Tuesday, 20 Wednesday, 21 Thursday, 22 Session Chair: Vahid Session Chair: Bo Lieberg Sandoghdar Session Chair: Ralph Nuzzo Session Chair: Mikael Käll 8.30 Jiri Homola, IPE, Prague, Lukas Novotny, Hongxing Xu, Institute of Olivier Martin, EPFL, Czech Republic: University of Rochester, Physics, Chinese Academy Switzerland: Sensing Affinity biosensors USA: Optical Antennas of Sciences, Beijing, China: reactive oxygen species in based on spectroscopy of for Enhanced Light- Plasmon-based stressed micro-organisms surface plasmons: Matter Interactions interferometric logic and using plasmon resonant technology and applications plasmon-assisted chemical energy transfer reactions 9.20 Borja Sepulveda, Research Ivan Maksymov, Gobind Das, Italian David Richards, King's Center on Nanoscience and Australian National Institute of Technology, College London, UK: Super- Nanotechnology, Bellaterra, University, Canberra, Genoa, Italy: Molecular resolution axial sensitivity Barcelona, Spain: Anomalous Australia: Enhanced spectroscopic detection in plasmonic fluorescence Dispersion of Nanoplasmonic Emission and Light using large area cellular assays of protein Guided Modes for Enhanced Control with Plasmonic surface enhanced Raman internalisation Biosensing Yagi-Uda-like scattering substrate Nanoantennas 9.45 Andrey B. Evlyukhin, Laser Thomas Taubner, RWTH Matthew Doherty, Queen's Andreas B. Dahlin, ETH- Zentrum Hannover, Aachen, Germany:
    [Show full text]
  • Naomi J. Halas
    Nano/Bio Interface Center NBIC Award for Research Excellence in Nanotechnology NAOMI J. HALAS 2008 Recipient Naomi Halas is Stanley C. Moore Professor of Electrical and Computer Engineering, Professor of Chemistry, and Professor of Bioengineering at Rice University. She received her undergraduate degree in Chemistry from La Salle University and her master’s and Ph.D. degrees in Physics from Bryn Mawr College, the latter while she was a graduate fellow at IBM Yorktown. She also did postdoctoral research at AT&T Bell Laboratories. Halas is best known for inventing nanoshells, a new type of nanoparticle with tunable optical properties. Awards include an NSF Young Investigator Award, three Hershel Rich Invention Awards, the 2003 Cancer Innovator Award, and the 2000 CRS-Cygnus award for Outstanding Work in Drug Delivery. She was also awarded “Best Discovery of 2003” by Nanotechnology Now and was named finalist for Small Times magazine’s 2004 Nanotechnology Researcher of the Year. She is the author of over 150 peer-reviewed publications, has presented over 275 invited talks, and has ten issued patents. Dr. Halas is a Fellow of the American Association for the Advancement of Science, the American Physical Society, Institute of Electrical and Electronics Engineers, the Optical Society of America, and the International Society for Optical Engineering (SPIE). She is also the founder and director of the Rice University Laboratory for Nanophotonics, a multidisciplinary research resource whose mission is the design, invention, and application of nanoscale optical components and systems. Abstract: Perhaps the most important and potentially far-reaching outcome of the many nanotechnology initiatives worldwide is the birth of the new field of Nanophotonics.
    [Show full text]
  • 2020 BU Photonics Center Annual Report
    Boston University Photonics Center Annual Report 2020 Reliable deep learning for biomedical microscopy. Assistant Professor Lei Tian and collaborators developed a new Bayesian deep learning framework for computational phase microscopy that enables uncertainty quantification of the neural network predicted results, which in turn assesses the reliability of the prediction, identify system aberrations, prevents “hallucination,” as well as to detect novel and rare biological phenomena. Reprinted/Adapted with permission from Yujia Xue, Shiyi Cheng, Yunzhe Li, and Lei Tian. “Reliable deep- learning-based phase imaging with uncertainty quantification,” Optica, 2019, 6(5), 618-629. © The Optical Society. (Front Cover: A photo of the BU Photonics Center. Photo Credit: Vernon Doucette) Letter from the Director GREAT RESEARCH UNIVERSITIES are differentiated by the areas of specialization in which they choose to excel. Next year the Boston University Photonics Center community celebrates its twenty-fifth year as a sustained, prominent peak in the University’s research profile. Our community continues to thrive in all aspects of academic life, including production of scholarly works, leadership of major research grants, engagement with business innovators, and training of students at all levels. This annual report summarizes activities of the Photonics Center for the 2019- 2020 academic year. In it, you will find quantitative and descriptive information regarding our photonics programs in research, education, and technology development. Over the past year the income from grants that were awarded to Photonics Center faculty totaled about $38M, another record achievement. This increase in grant support has strengthened our capacity to train students, make innovative discoveries, and impact society. Located at the heart of Boston University’s urban campus, the Photonics Next year the Boston Center is an interdisciplinary hub for education, research, scholarship, innovation, and University Photonics technology development associated with practical uses of light.
    [Show full text]
  • 4 Ihalail Onharfnf
    RICE UN IVERSITY Plasmon Hybridization in R,eal Metals by Kui Bao A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE D EGREE Doctor of Philosophy APPROVED, THESIS COMMITTEE: ~~ Peter N ordlander, Chair Professor of Physics and Astronomy; Professor of Electrical and Computer E 4 iHalail Stanley C. l.V1oore Professor of Electrical and Computer Engineering; Professor of Chemistry; Professor of Physics and Astronomy , onHarfnF ssociate Professor of Physics and Astronomy; Associate Professor of Chemistry Houston, Texas February, 2012 Abstract Plasmon Hybridization in Real Metals by Kui Bao By treating free electrons in metallic nanostructures as incompressible and irro­ tational fluid, Plasmon hybridization (PH) method can be used as a very useful tool in interpolating the electric magnetic behaviors of complex metallic nanostructures. Using PH theory and Finite Element Method (FEM), we theoretically investigated the optical properties of some complex nanostructrus induding coupled nanoparticle aggregates and nanowires. We investigated the plasmonic properties of a symmetric silver sphere heptamer and showed that the extinction spectrum exhibited a narrow Fano resonance. Us­ ing the plasmon hybridization approach and group theory we showed that this Fano resonance is caused by the interference of two bonding dipolar subradiant and su­ perradiant plasmon modes of El u symmetry. We investigate the effect of structural symmetry breaking and show that the energy and shape of the Fano resonance can be tuned over a broad wavelength range. We show that the wavelength of the Fano resonance depends very sensitively on the dielectric permittivity of the surrounding media. Besides heptamer, we also used plasmon hybridization method and finite element method to investigate the plasmonic properties of silver or gold nano spherical clus­ ters.
    [Show full text]
  • Surface Plasmons, Metamaterials, and Catalysis” at Rice University Bioscience Research Collaborative Building, Lecture Room 280 October 21-23, 2013 PROGRAM
    ARO workshop on “Surface Plasmons, Metamaterials, and Catalysis” at Rice University BioScience Research Collaborative Building, Lecture Room 280 October 21-23, 2013 PROGRAM Monday, October 21, 2013 Conferees/Speakers arrive 18:00 Welcome reception Talk Session 1 - Chair: Doug Natelson 20:00 Welcome Isabell Thomann 20:15 Talk 1: Rick Van Duyne “SERS and TERS for Catalysis” 20:45 Talk 2: Paul Bohn “Coupled Plasmonics, Transport and Catalysis in 0-D and 1-D Nanofluidic Structures” 21:15 Talk 3: Jennifer Dionne “In-situ, single particle studies of heterogeneous catalysis” 21:45 End of Monday's program Tuesday, October 22, 2013 8:00 Breakfast Talk Session 2 - Chair: Peter Nordlander 09:00 Talk 4: Harry Atwater “Quantum Informatics and Electrochemical Potential Control with Plasmons” 09:30 Talk 5: Mengyan Shen “Photosynthesis with metal nanostructures” 10:00 Talk 6: John Yates “Watching Hot Carriers in TiO2 Excited by UV Radiation” 10:30 Coffee break 11:00 Talk 7: Mark Brongersma “Nanophotonics-enhanced solar fuel generation” 11:30 Talk 8: Michael Filler “Enhanced LSPR Absorption from Dielectric Anisotropy in Si Nanowires” 11:45 Talk 9: Isabell Thomann “Ultrafast Spectroscopy and Nanophotonics for Photocatalysis” 12:00 Lunch Talk Session 3 - Chair: Naomi Halas 13:30 Talk 10: Wei-Shun Chang “One-Photon Luminescence as a Potential Probe of Hot Electrons” 13:45 Talk 11: Phillip Christopher “Resonant heterogeneous photocatalysis enabled by nanoscale effects” 14:00 Talk 12: Joseph Herzog “Anomalous Polarization Dependence of Surfaced Enhanced Raman
    [Show full text]
  • Nanoscale Islands Dot Light-Driven Catalyst 4 October 2017
    Nanoscale islands dot light-driven catalyst 4 October 2017 reaction-promoting catalysts. The technique developed in the labs of Rice materials scientists Emilie Ringe and Naomi Halas uses aluminum nanocrystals as a base for size- tunable transition metal islands that enable localized surface plasmon resonances. Aluminum is an effective plasmonic material, but adding smaller catalytic particles from three columns of the periodic table enhances the structure's ability to promote chemical reactions driven by light's energy, as shown in a previous collaboration between the Halas and Ringe groups. The technique allows for customizable surface chemistry and reactivity in one material, the researchers said. It could be useful for photocatalysis, surface-enhanced spectroscopy and quantum plasmonics, the study of the quantum properties of light and how they interact with nanoparticles. Nano-islands of ruthenium adhere to an aluminum nanoparticle. Rice University scientists and colleagues at The research appears in the American Chemical the University of Cambridge combined aluminum Society journal ACS Nano. nanoparticles and smaller metal particles as they created versatile plasmonic nanostructures. Credit: The researchers said their general polyol technique Sadegh Yazdi/Rice University can be used to combine multiple materials in a simple, controllable process. Individual nanoscale nuggets of gold, copper, aluminum, silver and other metals that capture light's energy and put it to work are being employed by Rice University scientists who have discovered a way to build multifunctional nanoscale structures. The structures have an aluminum core and are dotted with even smaller metallic islands. The materials all sustain localized surface plasmon resonances, collective oscillations of the electrons inside the nanostructure that activate when light hits the particle.
    [Show full text]
  • Plasmonics: the Aluminium Rush
    news & views on the slow kinetics of silica polymerization 50 nm) have been derived after the removal complex specimens for biomedical research adds to the structural diversity currently of the self-assembled organic templates. These and bioengineering applications. In organ available from the natural biomineralizing materials are of great interest as catalysts and transplant research, there has been substantial microorganisms. advanced functional materials. interest in using decellurized organs as a Another interesting aspect of the silica In the future, the use of the silica host for seeding stem cells from patients10. replica of the cell is that when amphiphilic replicas of the mammalian cells to create The inverted biomaterial replicas of tissues, lipid bilayers in the form of liposomes were biomaterials for cell culture and tissue organoids and organs may potentially act as a added to the replicas, they localized only on engineering applications could be possible. structural support and offer an environment the outer surfaces of the replicas, suggesting For example, the replica can act as a mould for controlled differentiation of stem cells. ❐ that the membrane lipids could potentially for the polymerization of different types of be reconstituted. Furthermore, when treated biomaterials. Following the removal of silica Jackie Y. Ying is in the Institute of Bioengineering with high-temperature pyrolysis (900 °C (for example, by etching in a basic solution), and Nanotechnology, 31 Biopolis Way, The Nanos, in nitrogen) followed by dissolution of the a porous biomaterial that is an inverted copy Singapore 138669, Singapore. silica with basic solutions, the replicas were of the silica replica can be obtained.
    [Show full text]