PQE-2019 — Invited and Plenary Talks

Total Page:16

File Type:pdf, Size:1020Kb

PQE-2019 — Invited and Plenary Talks PQE-2019 — Invited and Plenary Talks Monday, January 7, 2019 Monday Morning Plenary Session 1 Location: Ballrooms 1 and 2 — Marlan Scully, Chair 7:30 Jeff Kimble, California Institute of Technology, “Quantum matter built from nanoscopic lattices of atoms and photons” 8:00 Johann Peter Reithmaier, University of Kassel, “Atom-Like Optical Gain Materials for Advanced Optoelectronics” 8:30 Matthew Pelton, University of Maryland, Baltimore County, “Cavity QED Using Single Quantum Dots and Plasmon Resonances” Monday Morning Invited Session 1 Breakout Session 1: Quantum Optics with Arrays of Atoms and Photons. Location: Ballroom 1 — Jeff Kimble, Chair 9:10 Ana Asenjo-Garcia, Columbia University, “Collective dissipation: going beyond two-level atoms” 9:30 Chen-Lung Hung, Purdue University, “Trapping and imaging single atoms on a microring photonic circuit with optical tweezers” 9:50 Alex Burgers, California Institute of Technology, “Engineering Atom-Light Interactions with Pho- tonic Crystal Waveguides” 10:10 Jeff Thompson, Princeton University, “Ytterbium atom arrays in optical tweezers” Breakout Session 2: Quantum Dot Lasers. Location: Magpie A — Johann Peter Reithmaier, Chair 9:10 Yasuhiko Arakawa, The University of Tokyo, “Advances in quantum dot lasers for silicon photonics” 9:30 Gadi Eisenstein, Technion, “Carrier dynamics in InAs/InP quantum dot - tunneling injection gain media” 9:50 John Bowers, University of California Santa Barbara, “Mode-Locked Quantum Dot Lasers Epi- taxially Grown on Si” 10:10 Frederic Grillot, Telecom Paristech, “Quantum dot lasers for next generation optical networks” Breakout Session 3: Plasmon-Exciton Coupling. Location: Magpie B — Matthew Pelton, Chair 9:10 Aaro Väkeväinen, Aalto University, Finland, “Bose-Einstein condensation in a plasmonic lattice” 9:30 Maiken Mikkelsen, Duke University, “Plasmonic nanogap cavities for enhanced fluorescence- based bio sensing” 9:50 David Norris, ETH Zurich, “Defeating the Dark Exciton in Perovskite Nanocrystals” 10:10 Denis Baranov, Chalmers University of Technology, “Effects of strong coupling at the single nanoparticle level” Breakout Session 4: Time-Domain Quantum Electrodynamics. Location: Wasatch A — Denis Seletskiy, Chair 9:10 Jerome Faist, ETH, “Spatial and temporal electric field correlation measurements on a vacuum field state in the THz” 9:30 Bertrand Reulet, Université de Sherbrooke, “From eletronic noise in circuits to broadband quantum radiation” 9:50 Dmitri Horoshko, University of Lille, “Monocycle squeezed states of light” 10:10 Shahaf Asban, University of California, “Ghost microscopy and image enhancement with entan- gled photons” Monday Morning Plenary Session 2 Location: Ballrooms 1 and 2 — Anatoly Svidzinsky, Chair 10:50 Naomi Halas, Rice University, “New Nonlinear Optical Materials and Processes” 11:20 Don Nelson Page, University of Alberta, “Aspects of Time in Physics” Monday Morning Invited Session 2 Breakout Session 1: Quantum Plasmonics. Location: Ballroom 1 — Naomi Halas, Chair 12:00 Prineha Narang, Harvard University, “Excited-State Dynamics and Quantum Photonic Interactions from First Principles” 12:20 Yugang Sun, Temple University, “Quantum-sized metal nanoparticles: Bridging photons and chem- ical transformations” 12:40 Stephen Gray, Argonne National Lab, “Optical Detection and Storage of Entanglement in Plas- monically Coupled Quantum Dot Systems” Breakout Session 2: Physics of Acceleration. Location: Magpie A — Don Nelson Page, Chair 12:00 Stephen A. Fulling, Texas A&M University, “Classical and Quantum Viewpoints on Radiation by an Accelerated Charge” 12:20 Andre Landulfo, Federal University of ABC, “Radiation from a Uniformly Accelerated Charge: Classical and Quantum Aspects and the Surprising Role of Zero-Energy Rindler Modes” 12:40 Guilherme Barbosa Barros, IFT-Unesp, “Traces of the Unruh effect in suface waves” Breakout Session 3: Optics and Plasmonics of 2D and Topological Materials. Location: Magpie B — Alexey Belyanin, Chair 12:00 Stephanie Law, University of Delaware, “Topological insulator thin films as terahertz plasmonic materials” 12:20 Markus Raschke, University of Colorado, “Tip-enhanced strong coupling: broadband room tem- perature cavity nano-optics with single emitter” 12:40 Alexey Belyanin, Texas A&M University, “Bulk and surface polaritons in Weyl semimetals” Breakout Session 4: Quantum Nanophotonics. Location: Wasatch A — Maria Chekhova, Chair 12:00 Andrei Faraon, California Institute of Technology, “Probing single rare earth ions in nano-photonic resonators” 12:20 Alexey Kalachev, Zavoisky Physical-Technical Institute, “Electromagnetically induced trans- parency in isotopically purified rare-earth doped crystals” 12:40 Tobias Kippenberg, EPFL SB IPHYS LPQM, “Quantum feedback of a Nanomechanical Oscillator” Monday Evening Plenary Session Location: Ballrooms 1 and 2 — Olga Kocharovskaya, Chair 19:00 Dawei Wang, Zhejiang University, “Simulating chiral dynamics in quantum optics” 19:30 Yoshihisa Yamamoto, Japan Science and Technology Agency, “Coherent Ising Machine - Optical Neural Network operating at the Quantum Limit -” 20:00 Ralf Röhlsberger, DESY, Hamburg, “Quantum Optics with X-rays: Yesterday, Today and Tomorrow” Monday Evening Invited Session Breakout Session 1: Topological Phenomena in Quantum Optics. Location: Ballroom 1 — Dawei Wang, Chair 20:50 Bryce Gadway, University of Illinois at Urbana-Champaign, “Exploring topology, disorder, and interactions with atom optics” 21:10 Edbert Sie, Stanford University, “An Ultrafast Symmetry Switch in a Weyl Semimetal” 21:30 Guoqin Ge, Huazhong University of Science & Technology, “Physics of electromagnetically in- duced chirality and its applications” 21:50 Nicola Piovella, Università degli Studi di Milano, “Spatial Self-Organization of Cold Atoms via Optical Binding” 22:10 Han Cai, Zhejiang University, “Experimental observation of momentum-space chiral edge currents in room-temperature atoms” Breakout Session 2: Coherent Ising machines. Location: Magpie A — Yoshihisa Yamamoto, Chair 20:50 Alireza Marandi, California Institute of Technology, “Networks of Optical Parametric Oscillators: From Ising Machines to Quantum Photonic Engineering” 21:10 Peter McMahon, Stanford University / Cornell University, “Combinatorial optimization using net- works of optical parametric oscillators with measurement feedback” 21:30 Ryan Hamerly, Massachusetts Institute of Technology, “Quantum vs. Optical Annealing: Bench- marking the Coherent Ising Machine and D-Wave 2000Q on NP-hard Ising Problems” 21:50 Takahiro Inagaki, NTT Corporation, “Potts model solver with coherent Ising machine” 22:10 Timothee Leleu, The University of Tokyo, “Correction of amplitude heterogeneity for solving com- binatorial optimization problems efficiently using optoelectronics” Breakout Session 3: X-Ray Quantum Optics. Location: Magpie B — Ralf Röhlsberger, Chair 20:50 Joachim von Zanthier, Univ. of Erlangen-Nuremberg, Germany, “X-ray superradiance in free space” 21:10 Henry Chapman, CFEL DESY, “Atomic Imaging of Molecules by Intensity Interferometry of X- ray Fluorescence” 21:30 Tim Salditt, Uni Göttingen - IRP, “X-ray optics on a chip” 21:50 Jörg Evers, MPI for Nuclear Physics, Heidelberg, “Coherent x-ray-optical control of Moessbauer nuclei with zeptosecond timing stability” 22:10 Johann Haber, Stanford University, “The role of core electrons in a hard x-ray nonlinearity” Breakout Session 4: Plasmon-Enabled Processes. Location: Wasatch A — Naomi Halas, Chair 20:50 Teri Odom, Northwestern University, “Coherence of Ultrafast Plasmon Nanolasers” 21:10 Shunping Zhang, Wuhan University, “Nanocavities for Strong Light-Matter Interaction” 21:30 Jen Dionne, Stanford University, “Light- and electron-induced Raman spectroscopy for bacterial identification and sub-cellular molecular mapping” 21:50 Tigran Shahbazyan, Jackson State University, “Spontaneous emission mediated by cooperative energy transfer to a plasmonic antenna” 22:10 Nicolas Large, University of Texas at San Antonio, “Acousto-Plasmonic Interactions in Raman Scattering” Tuesday, January 8, 2019 Tuesday Morning Plenary Session 1 Location: Ballrooms 1 and 2 — Mark Saffman, Chair 7:30 Shinji Matsuo, NTT Corporation, “Electrically driven photonic crystal nanocavity lasers using em- bedded active region” 8:00 Wolfgang Schleich, Ulm University, “Quantum waves and gravity” 8:30 Christopher Monroe, University of Maryland and IonQ, “Quantum Computing and Quantum Sim- ulation with Atoms” Tuesday Morning Invited Session 1 Breakout Session 1: Physics of Semiconductor Nanolasers. Location: Ballroom 1 — Shinji Matsuo, Chair 9:10 Gian Luca Lippi, Université Côte d’Azur, Physics Institute, “From spontaneous emission to lasing: What do we learn from the small scale?” 9:30 Jesper Mork, Technical University of Denmark, “On the quantum-limited intensity noise and linewidth of nanolasers” 9:50 Stephan Reitzenstein, TU Berlin, “Electrically Triggered Emission of Indistinguishable Photons by Resonant Microlaser Excitation” 10:10 Tao Peng, Texas A&M University IQSE, “Higher Order Spectral Line Distribution of the Laser” Breakout Session 2: Quantum waves and gravity 1. Location: Magpie A — Wolfgang Schleich, Chair 9:10 Hansjoerg Dittus, German Aerospace Center, “Quantum Technology Application in Space” 9:30 Hartmut Abele, TU Wien, “qBOUNCE, and an acoustic Ramsey-type Gravity Resonance Spectrometer” 9:50 Yair Margalit, Massachusetts Institute of Technology, “Quantum complementarity of clocks in the context of general relativity” 10:10 Denys Bondar, Tulane University, “Towards quantum
Recommended publications
  • What's the Buzz About Nano?
    What’s the buzz about nano? Peter Grutter Supported by NSERC, FQRNT, CFI, CIAR, CIHR, NanoQuebec, IBM, GenomeQuebec, James McGill Fellowship P. Grutter Science Fiction: Convergence: GMO, AI & nano 7of 9 on Star Trek Doc Ock (Spiderman) Nano sells! Guess: Nano (yellow/pink patent) nanopants When nanopants attack Nanocube So – what is nano? 1. Making mundane, ordinary science and/or delusional scientific concepts sound like revolutionary scientific “innovations” and/or look feasible by putting the word “nano” somewhere in the text. 2. A flim-flam method of extracting grants from gullible and clueless scientific funding bodies based on minimal scientific substance and giving little in scientific return. http://lachlan.bluehaze.com.au/nanoshite/ How big is a nanometer? What enables Nanoscience and Nanotechnology? New tools!!! • Drive discoveries • Enable technology • Are a high value added business opportunity Storing information atom by atom Ultra high density (Library of Congress on a pin head) Ultra slow (needs life time of universe to write) Huge footprint (UHV 4K STM) D. Eigler, IBM Almaden Small is different Scaling law Small is different Breakdown of scaling Scaling law Nano: Renaissance Science ! size solid state physics & engineering nm biology chemistry time now! nm “Labors of the Months” (Norwich, England, ca. 1480). (The ruby color is probably due to embedded gold nanoparticles.) Nano materials in labeling • High throughput multiplexed assays (‘nano bar code’) • Optical tracking on a cellular level with tagged CdSe quantum Basis: size dependent emission dots: which gene is color of ZnS capped CdSe active? nano particles The Benefits of Nanotech: Nanoshell Cancer Therapy Gold Nanoshells Are biocompatible silica core Small enough to pass through circulatory system gold shell Easily attached to antibodies for specific cellular targeting 10-300 nm diameter Are strong absorbers of light in the near infrared, where light penetrates up to 7 cm into the human body Courtesy of Prof.
    [Show full text]
  • 2013 NCI Alliance for Nanotechnology in Cancer Annual Bulletin EDITOR-IN-CHIEF
    2013 NCI Alliance for Nanotechnology in Cancer Annual Bulletin EDITOR-IN-CHIEF Piotr Grodzinski (NCI) SENIOR EDITOR Stephanie A. Morris (NCI) ASSOCIATE EDITOR(S) Dorothy Farrell (NCI) Lynn Hull (NCI) Mary Spiro (JHU) CONTRIBUTORS Martha Alexander (Rice CNPP) Michelle Berny-Lang (NCI) Dorothy Farrell (NCI) Emily Greenspan (NCI) Piotr Grodzinski (NCI) George Hinkal (NCI) Brenda Hugot (Boston CNTC) Lynn Hull (NCI) Contents Hannah Kim (Texas CCNE) 1 Introduction Julia Ljubimova (Cedars-Sinai CNPP) NIH Funding Opportunities Extend the Range Laura A. Miller (UIUC CNTC) 2 of Cancer Nanotechnology in Biomedical Research Sarah H. Petrosko (Northwestern CCNE) Mary Spiro (Johns Hopkins CCNE & CNTC) 6 Alliance Working Groups Provide Their Opinions to the Nanotechnology Community Li Tang (UIUC CNTC) Biana Godin Vilentchouk (Texas CCNE) 8 Crowdsourcing and the Dialogue Matthew Ware (Texas CCNE) on Nanotechnology in Cancer 9 Nano in the News DESIGN Danielle Peterson, Brio Design 12 Alliance Transitions INTRODUCTION BY DOROTHY FARRELL The third year of Phase II of the NCI Alliance for Nanotechnology These efforts included crowdsourcing strategies coordinated in Cancer was a busy and productive one for the Alliance. through a dedicated website (nanocancer.ideascale.com) and a Our investigators published over 300 papers in 2013, bringing Request for Information on the Directions and Needs for Cancer the total number of Alliance publications over the past three Nanotechnology (grants.nih.gov/grants/guide/notice-files/ years to approximately 1,100. Alliance research continues to NOT-CA-13-017.html). The insights gained through these forums be high profile and high impact, as measured by the quality are discussed in the Crowdsourcing section of the Bulletin.
    [Show full text]
  • Federico Capasso
    Federico Capasso ADDRESS: John A. Paulson School of Engineering and Applied Sciences Harvard University 205 A Pierce Hall 29 Oxford Street Cambridge MA 02138 PHONE: (617) 384-7611 FAX: (617) 495-2875 EMAIL: [email protected] PERSONAL: Married; two children CITIZENSHIP: Italian and U.S. (Naturalized; 09/23/1992) EDUCATION: 1973 Doctor of Physics, Summa Cum Laude University of Rome, La Sapienza, Italy 1973-1974 Postdoctoral Fellow Fondazione Bordoni, Rome, Italy ACADEMIC APPOINTMENTS Jan. 2003- Present Robert Wallace Professor of Applied Physics Vinton Hayes Senior Research Fellow in Electrical Engineering, John A. Paulson, School of Engineering and Applied Sciences, Harvard University, PROFESSIONAL POSITIONS: 2000 – 2002 Vice President of Physical Research, Bell Laboratories Lucent Technologies, Murray Hill, NJ 1997- 2000 Department Head, Semiconductor Physics Research, Bell Laboratories Lucent Technologies, Murray Hill, NJ. 1987- 1997 Department Head, Quantum Phenomena and Device Research, Bell Laboratories Lucent Technologies (formerly AT&T Bell Labs, until 1996), Murray Hill, NJ 1984 – 1987 Distinguished Member of Technical Staff, Bell Laboratories, Murray Hill, NJ 1977 – 1984 Member of Technical Staff, Bell Laboratories, Murray Hill, NJ 1976 – 1977 Visiting Scientist, Bell Laboratories, Holmdel, NJ 1974 – 1976 Research Physicist, Fondazione Bordoni, Rome, Italy Citations (Google Scholar) Over 93000 H-index (Google Scholar) 144 Publications Over 500 hundred peer reviewed journals Patents 70 US patents KEY ACHIEVEMENTS 1. Bandstructure Engineering and Quantum Cascade Lasers (QCLs) Capasso and his Bell Labs collaborators over a 20-year period pioneered band-structure engineering, a technique to design and implement artificially structured (“man-made”) semiconductor, materials, and related phenomena/ devices, which revolutionized heterojunction devices in photonics and electronics.
    [Show full text]
  • The 2018 Edward Noble Kramer Distinguished Interdisciplinary
    Edward Noble Kramer was born April 17, 1908 in Cambridge, Wisconsin but grew up in the small town of Oregon, Wisconsin, just south of Madison, where his parents ran a printing business and published the The 2018 Edward Noble Kramer weekly newspaper, the Oregon Observer. He received his BS and MS degrees in chemistry from Distinguished Interdisciplinary Lecture the University of Wisconsin- Madison and after one year as instructor in chemistry at the University of Wisconsin- Extension at Milwaukee, returned to Madison and completed his PhD in chemistry in Professor Naomi J. Halas 1933 at the age of 25. At UW-Madison he was coxswain of the freshman crew and a member of the Department of Electrical and Computer marching band. He was hired by the DuPont Engineering Company at a time that DuPont had started to Rice University develop a new business to manufacture titanium dioxide white pigment. Over the span of his 40 year career at DuPont Dr. Kramer was intimately involved in the From Faraday to tomorrow: the Growing chemistry, chemical process engineering, physics and materials science of producing titanium dioxide nanoparticles of optimum size, crystal structure and surface Importance and Impact of Metallic characteristics to be effective paint additives. He had a major role in development of the chloride process for producing the rutile form of titanium dioxide, an exceptionally efficient Nanoparticles and controllable process used to produce almost all commercial titanium dioxide. When he retired in 1973 Dr. Kramer was in charge of all technical aspects of the Pigments Department of the DuPont Company. Tuesday, September 18, 2018 Since Dr.
    [Show full text]
  • Nanoplasmonic Sensors and Spectroscopy 2011 Chalmers, Göteborg, Sweden, September 19-22
    Nanoplasmonic Sensors and Spectroscopy 2011 Chalmers, Göteborg, Sweden, September 19-22 Conference program Monday, 19 Tuesday, 20 Wednesday, 21 Thursday, 22 Session Chair: Vahid Session Chair: Bo Lieberg Sandoghdar Session Chair: Ralph Nuzzo Session Chair: Mikael Käll 8.30 Jiri Homola, IPE, Prague, Lukas Novotny, Hongxing Xu, Institute of Olivier Martin, EPFL, Czech Republic: University of Rochester, Physics, Chinese Academy Switzerland: Sensing Affinity biosensors USA: Optical Antennas of Sciences, Beijing, China: reactive oxygen species in based on spectroscopy of for Enhanced Light- Plasmon-based stressed micro-organisms surface plasmons: Matter Interactions interferometric logic and using plasmon resonant technology and applications plasmon-assisted chemical energy transfer reactions 9.20 Borja Sepulveda, Research Ivan Maksymov, Gobind Das, Italian David Richards, King's Center on Nanoscience and Australian National Institute of Technology, College London, UK: Super- Nanotechnology, Bellaterra, University, Canberra, Genoa, Italy: Molecular resolution axial sensitivity Barcelona, Spain: Anomalous Australia: Enhanced spectroscopic detection in plasmonic fluorescence Dispersion of Nanoplasmonic Emission and Light using large area cellular assays of protein Guided Modes for Enhanced Control with Plasmonic surface enhanced Raman internalisation Biosensing Yagi-Uda-like scattering substrate Nanoantennas 9.45 Andrey B. Evlyukhin, Laser Thomas Taubner, RWTH Matthew Doherty, Queen's Andreas B. Dahlin, ETH- Zentrum Hannover, Aachen, Germany:
    [Show full text]
  • Naomi J. Halas
    Nano/Bio Interface Center NBIC Award for Research Excellence in Nanotechnology NAOMI J. HALAS 2008 Recipient Naomi Halas is Stanley C. Moore Professor of Electrical and Computer Engineering, Professor of Chemistry, and Professor of Bioengineering at Rice University. She received her undergraduate degree in Chemistry from La Salle University and her master’s and Ph.D. degrees in Physics from Bryn Mawr College, the latter while she was a graduate fellow at IBM Yorktown. She also did postdoctoral research at AT&T Bell Laboratories. Halas is best known for inventing nanoshells, a new type of nanoparticle with tunable optical properties. Awards include an NSF Young Investigator Award, three Hershel Rich Invention Awards, the 2003 Cancer Innovator Award, and the 2000 CRS-Cygnus award for Outstanding Work in Drug Delivery. She was also awarded “Best Discovery of 2003” by Nanotechnology Now and was named finalist for Small Times magazine’s 2004 Nanotechnology Researcher of the Year. She is the author of over 150 peer-reviewed publications, has presented over 275 invited talks, and has ten issued patents. Dr. Halas is a Fellow of the American Association for the Advancement of Science, the American Physical Society, Institute of Electrical and Electronics Engineers, the Optical Society of America, and the International Society for Optical Engineering (SPIE). She is also the founder and director of the Rice University Laboratory for Nanophotonics, a multidisciplinary research resource whose mission is the design, invention, and application of nanoscale optical components and systems. Abstract: Perhaps the most important and potentially far-reaching outcome of the many nanotechnology initiatives worldwide is the birth of the new field of Nanophotonics.
    [Show full text]
  • 2020 BU Photonics Center Annual Report
    Boston University Photonics Center Annual Report 2020 Reliable deep learning for biomedical microscopy. Assistant Professor Lei Tian and collaborators developed a new Bayesian deep learning framework for computational phase microscopy that enables uncertainty quantification of the neural network predicted results, which in turn assesses the reliability of the prediction, identify system aberrations, prevents “hallucination,” as well as to detect novel and rare biological phenomena. Reprinted/Adapted with permission from Yujia Xue, Shiyi Cheng, Yunzhe Li, and Lei Tian. “Reliable deep- learning-based phase imaging with uncertainty quantification,” Optica, 2019, 6(5), 618-629. © The Optical Society. (Front Cover: A photo of the BU Photonics Center. Photo Credit: Vernon Doucette) Letter from the Director GREAT RESEARCH UNIVERSITIES are differentiated by the areas of specialization in which they choose to excel. Next year the Boston University Photonics Center community celebrates its twenty-fifth year as a sustained, prominent peak in the University’s research profile. Our community continues to thrive in all aspects of academic life, including production of scholarly works, leadership of major research grants, engagement with business innovators, and training of students at all levels. This annual report summarizes activities of the Photonics Center for the 2019- 2020 academic year. In it, you will find quantitative and descriptive information regarding our photonics programs in research, education, and technology development. Over the past year the income from grants that were awarded to Photonics Center faculty totaled about $38M, another record achievement. This increase in grant support has strengthened our capacity to train students, make innovative discoveries, and impact society. Located at the heart of Boston University’s urban campus, the Photonics Next year the Boston Center is an interdisciplinary hub for education, research, scholarship, innovation, and University Photonics technology development associated with practical uses of light.
    [Show full text]
  • 4 Ihalail Onharfnf
    RICE UN IVERSITY Plasmon Hybridization in R,eal Metals by Kui Bao A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE D EGREE Doctor of Philosophy APPROVED, THESIS COMMITTEE: ~~ Peter N ordlander, Chair Professor of Physics and Astronomy; Professor of Electrical and Computer E 4 iHalail Stanley C. l.V1oore Professor of Electrical and Computer Engineering; Professor of Chemistry; Professor of Physics and Astronomy , onHarfnF ssociate Professor of Physics and Astronomy; Associate Professor of Chemistry Houston, Texas February, 2012 Abstract Plasmon Hybridization in Real Metals by Kui Bao By treating free electrons in metallic nanostructures as incompressible and irro­ tational fluid, Plasmon hybridization (PH) method can be used as a very useful tool in interpolating the electric magnetic behaviors of complex metallic nanostructures. Using PH theory and Finite Element Method (FEM), we theoretically investigated the optical properties of some complex nanostructrus induding coupled nanoparticle aggregates and nanowires. We investigated the plasmonic properties of a symmetric silver sphere heptamer and showed that the extinction spectrum exhibited a narrow Fano resonance. Us­ ing the plasmon hybridization approach and group theory we showed that this Fano resonance is caused by the interference of two bonding dipolar subradiant and su­ perradiant plasmon modes of El u symmetry. We investigate the effect of structural symmetry breaking and show that the energy and shape of the Fano resonance can be tuned over a broad wavelength range. We show that the wavelength of the Fano resonance depends very sensitively on the dielectric permittivity of the surrounding media. Besides heptamer, we also used plasmon hybridization method and finite element method to investigate the plasmonic properties of silver or gold nano spherical clus­ ters.
    [Show full text]
  • Surface Plasmons, Metamaterials, and Catalysis” at Rice University Bioscience Research Collaborative Building, Lecture Room 280 October 21-23, 2013 PROGRAM
    ARO workshop on “Surface Plasmons, Metamaterials, and Catalysis” at Rice University BioScience Research Collaborative Building, Lecture Room 280 October 21-23, 2013 PROGRAM Monday, October 21, 2013 Conferees/Speakers arrive 18:00 Welcome reception Talk Session 1 - Chair: Doug Natelson 20:00 Welcome Isabell Thomann 20:15 Talk 1: Rick Van Duyne “SERS and TERS for Catalysis” 20:45 Talk 2: Paul Bohn “Coupled Plasmonics, Transport and Catalysis in 0-D and 1-D Nanofluidic Structures” 21:15 Talk 3: Jennifer Dionne “In-situ, single particle studies of heterogeneous catalysis” 21:45 End of Monday's program Tuesday, October 22, 2013 8:00 Breakfast Talk Session 2 - Chair: Peter Nordlander 09:00 Talk 4: Harry Atwater “Quantum Informatics and Electrochemical Potential Control with Plasmons” 09:30 Talk 5: Mengyan Shen “Photosynthesis with metal nanostructures” 10:00 Talk 6: John Yates “Watching Hot Carriers in TiO2 Excited by UV Radiation” 10:30 Coffee break 11:00 Talk 7: Mark Brongersma “Nanophotonics-enhanced solar fuel generation” 11:30 Talk 8: Michael Filler “Enhanced LSPR Absorption from Dielectric Anisotropy in Si Nanowires” 11:45 Talk 9: Isabell Thomann “Ultrafast Spectroscopy and Nanophotonics for Photocatalysis” 12:00 Lunch Talk Session 3 - Chair: Naomi Halas 13:30 Talk 10: Wei-Shun Chang “One-Photon Luminescence as a Potential Probe of Hot Electrons” 13:45 Talk 11: Phillip Christopher “Resonant heterogeneous photocatalysis enabled by nanoscale effects” 14:00 Talk 12: Joseph Herzog “Anomalous Polarization Dependence of Surfaced Enhanced Raman
    [Show full text]
  • Nanoscale Islands Dot Light-Driven Catalyst 4 October 2017
    Nanoscale islands dot light-driven catalyst 4 October 2017 reaction-promoting catalysts. The technique developed in the labs of Rice materials scientists Emilie Ringe and Naomi Halas uses aluminum nanocrystals as a base for size- tunable transition metal islands that enable localized surface plasmon resonances. Aluminum is an effective plasmonic material, but adding smaller catalytic particles from three columns of the periodic table enhances the structure's ability to promote chemical reactions driven by light's energy, as shown in a previous collaboration between the Halas and Ringe groups. The technique allows for customizable surface chemistry and reactivity in one material, the researchers said. It could be useful for photocatalysis, surface-enhanced spectroscopy and quantum plasmonics, the study of the quantum properties of light and how they interact with nanoparticles. Nano-islands of ruthenium adhere to an aluminum nanoparticle. Rice University scientists and colleagues at The research appears in the American Chemical the University of Cambridge combined aluminum Society journal ACS Nano. nanoparticles and smaller metal particles as they created versatile plasmonic nanostructures. Credit: The researchers said their general polyol technique Sadegh Yazdi/Rice University can be used to combine multiple materials in a simple, controllable process. Individual nanoscale nuggets of gold, copper, aluminum, silver and other metals that capture light's energy and put it to work are being employed by Rice University scientists who have discovered a way to build multifunctional nanoscale structures. The structures have an aluminum core and are dotted with even smaller metallic islands. The materials all sustain localized surface plasmon resonances, collective oscillations of the electrons inside the nanostructure that activate when light hits the particle.
    [Show full text]
  • Plasmonics: the Aluminium Rush
    news & views on the slow kinetics of silica polymerization 50 nm) have been derived after the removal complex specimens for biomedical research adds to the structural diversity currently of the self-assembled organic templates. These and bioengineering applications. In organ available from the natural biomineralizing materials are of great interest as catalysts and transplant research, there has been substantial microorganisms. advanced functional materials. interest in using decellurized organs as a Another interesting aspect of the silica In the future, the use of the silica host for seeding stem cells from patients10. replica of the cell is that when amphiphilic replicas of the mammalian cells to create The inverted biomaterial replicas of tissues, lipid bilayers in the form of liposomes were biomaterials for cell culture and tissue organoids and organs may potentially act as a added to the replicas, they localized only on engineering applications could be possible. structural support and offer an environment the outer surfaces of the replicas, suggesting For example, the replica can act as a mould for controlled differentiation of stem cells. ❐ that the membrane lipids could potentially for the polymerization of different types of be reconstituted. Furthermore, when treated biomaterials. Following the removal of silica Jackie Y. Ying is in the Institute of Bioengineering with high-temperature pyrolysis (900 °C (for example, by etching in a basic solution), and Nanotechnology, 31 Biopolis Way, The Nanos, in nitrogen) followed by dissolution of the a porous biomaterial that is an inverted copy Singapore 138669, Singapore. silica with basic solutions, the replicas were of the silica replica can be obtained.
    [Show full text]
  • SERS: an Update of Progress Made
    Electronically reprinted from November 2015 ® Molecular Spectroscopy Workbench SERS: An Update of Progress Made This column is a mini survey of progress that has been made in the area of surface enhancement over the last few years since my previous column on surface-enhanced Raman scattering (SERS) in 2008. The potential of SERS to provide signals of analytes at very low concentrations continues to beckon the analytical chemist. What the last few years has produced is a body of work describing the role of the plasmonic properties of metals, based on their geometrical and electronic properties, in enhancing the signals. As this field matures, we foresee production of surface-enhancing films and particles, engineered to provide large enhancements at selected wavelengths that will provide repro- ducible Raman signals for applications in areas such as environmental and biomedical studies. Fran Adar y earlier article on surface-enhanced Raman scat- ously compare the sensitivity and reproducibility of various tering (SERS) (1) did not include much discus- SERS substrates.” But it is necessary to recognize that SERS Msion of particular applications except to mention measurement detects a two-dimensional (2D) area while a improved sensitivity for bioclinical studies. Here, I provide comparable bulk measurement detects molecules in a three- a conceptual introduction to plasmonics to support the con- dimensional volume. Furthermore, it is difficult to calculate tention that, in the not-too-distant future, SERS will enable the number of adsorbed molecules on the SERS surface and measurements at low concentrations. in the detected volume of a normal Raman measurement; therefore, the assessment proposed in this article (2) is an Background Motivation empirical protocol.
    [Show full text]