10 Years of Iot Malware: a Feature-Based Taxonomy
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Iot Threats, Challenges and Secured Integration
IoT Threats, Challenges and Secured Integration Christian Shink, p. eng., CSSLP System Engineer • Why IoT Devices? • Bot Attacks • 3 Botnets fighting over IoT Firepower • Secure IoT integration Why IoT Devices Internet of Things Internet working of physical devices, vehicles, buildings, … Devices embedded with electronics, software, sensors, actuators Network connectivity Any Path Any Service Any Network Anytime Any Business Any context Anyone Machinery Anybody Building energy Anything Management Any Device Healthcare Retail A Rapidly Growing Number of Connected Devices Copyright © 2017 Radware. All rights reserved. IoT is Highly Susceptible to Cyber Attacks IoT devices run an embedded or stripped-down version of the familiar Linux operating system. 1 Malware can easily be compiled for the target architecture, mostly ARM, MIPS, x86 internet-accessible, lots of (I)IoT and ICS/SCADA are deployed without any form of 2 firewall protection Stripped-down operating system and processing power leaves less room for security 3 features, including auditing, and most compromises go unnoticed by the owners To save engineering time, manufacturers re-use portions of hardware and software in different 4 classes of devices resulting in default passwords and vulnerabilities being shared across device classes and manufacturers Internet Security Trend report 2015 by Nexus guard: IoT is becoming a soft target for cyber-attack Copyright © 2017 Radware. All rights reserved. From the News “D-Link failed to take reasonable steps to secure its routers and IP cameras, potentially compromising sensitive consumer information” “The cameras aren’t designed to receive software updates so the zero-day exploits can’t be patched.” “We believe that this backdoor was introduced by Sony developers on purpose” Sources: 1. -
Internet Infrastructure Review Vol.34
Internet Infrastructure Review Mar.2017 Vol. 34 Infrastructure Security Ursnif (Gozi) Anti-Analysis Techniques and Methods for Bypassing Them Technology Trends The Current State of Library OSes Internet Infrastructure Review March 2017 Vol.34 Executive Summary ............................................................................................................................ 3 1. Infrastructure Security .................................................................................................................. 4 1.1 Introduction ..................................................................................................................................... 4 1.2 Incident Summary ........................................................................................................................... 4 1.3 Incident Survey ...............................................................................................................................11 1.3.1 DDoS Attacks ...................................................................................................................................11 1.3.2 Malware Activities ......................................................................................................................... 13 1.3.3 SQL Injection Attacks ..................................................................................................................... 17 1.3.4 Website Alterations ....................................................................................................................... -
Evolution of Iot Attacks
Evolution of IoT Attacks By 2025, there will be 41.6 billion connected IoT devices, generating 79 zettabytes (ZB) of data (IDC). Every Internet-connected “thing,” from power grids to smart doorbells, is at risk of attack. BLUETOOTH INDUSTRIAL MEDICAL Throughout the last few decades, cyberattacks against IoT devices have become more sophisticated, more common, and unfortunately, much BOTNET GENERIC IOT SMART HOME more effective. However, the technology sector has fought back, developing and implementing new security technologies to prevent and CAR INFRASTRUCTURE WATCH/WEARABLE protect against cyberattacks. This infographic shows how the industry has evolved with new technologies, protocols, and processes to raise the bar on cybersecurity. STUXNET WATER BMW MIRAI FITBIT SAUDI PETROL SILEX LINUX DARK NEXUS VIRUS UTILITY CONNECTED BOTNET VULNERABILITY CHEMICAL MALWARE BOTNET SYSTEM DRIVE SYSTEM PLANT ATTACK (SCADA) PUERTO UNIVERSITY UKRAINIAN HAJIME AMNESIA AMAZON PHILIPS HUE RICO OF MICHIGAN POWER VIGILANTE BOTNET RING HACK LIGHTBULB SMART TRAFFIC GRID BOTNET METERS LIGHTS MEDTRONIC GERMAN TESLA CCTV PERSIRAI FANCY SWEYNTOOTH INSULIN STEEL MODEL S BOTNET BOTNET BEAR VS. FAMILY PUMPS MILL HACK REMOTE SPORTS HACK HACKABLE HEART BASHLITE FIAT CHRYSLER NYADROP SELF- REAPER THINKPHP TWO MILLION KAIJI MONITORS BOTNET REMOTE CONTROL UPDATING MALWARE BOTNET EXPLOITATION TAKEOVER MALWARE First Era | THE AGE OF EXPLORATION | 2005 - 2009 Second Era | THE AGE OF EXPLOITATION | 2011 - 2019 Third Era | THE AGE OF PROTECTION | 2020 Security is not a priority for early IoT/embedded devices. Most The number of connected devices is exploding, and cloud connectivity Connected devices are ubiquitous in every area of life, from cyberattacks are limited to malware and viruses impacting Windows- is becoming commonplace. -
Reporting, and General Mentions Seem to Be in Decline
CYBER THREAT ANALYSIS Return to Normalcy: False Flags and the Decline of International Hacktivism By Insikt Group® CTA-2019-0821 CYBER THREAT ANALYSIS Groups with the trappings of hacktivism have recently dumped Russian and Iranian state security organization records online, although neither have proclaimed themselves to be hacktivists. In addition, hacktivism has taken a back seat in news reporting, and general mentions seem to be in decline. Insikt Group utilized the Recorded FutureⓇ Platform and reports of historical hacktivism events to analyze the shifting targets and players in the hacktivism space. The target audience of this research includes security practitioners whose enterprises may be targets for hacktivism. Executive Summary Hacktivism often brings to mind a loose collective of individuals globally that band together to achieve a common goal. However, Insikt Group research demonstrates that this is a misleading assumption; the hacktivist landscape has consistently included actors reacting to regional events, and has also involved states operating under the guise of hacktivism to achieve geopolitical goals. In the last 10 years, the number of large-scale, international hacking operations most commonly associated with hacktivism has risen astronomically, only to fall off just as dramatically after 2015 and 2016. This constitutes a return to normalcy, in which hacktivist groups are usually small sets of regional actors targeting specific organizations to protest regional events, or nation-state groups operating under the guise of hacktivism. Attack vectors used by hacktivist groups have remained largely consistent from 2010 to 2019, and tooling has assisted actors to conduct larger-scale attacks. However, company defenses have also become significantly better in the last decade, which has likely contributed to the decline in successful hacktivist operations. -
Training & Conferences
WWW.ISSA - COS.ORG VOLUME 6 NUMBER 6 J U N E 2 0 1 7 Training & Conferences olleagues, Our first Security+ Exam Prep Review Seminar, held on April 1 and 8, was another Hard to believe, but we’re almost huge success – as it always is – thanks to C half-way through the year. Our the exceptional work by Susan Ross and our impressive team of volunteers has volunteer instructors. And our second dedicated much time and effort to bring a Security+ Seminar kicks off in just a few variety of events to our membership. This days! Each of these seminars provides a 12- chapter hosts a lot of amazing events, all hour comprehensive due to the efforts of our review of the CompTIA volunteers. Security+ exam material. Our first conference of A Note From Over 50 students the year, the Cyber Focus registered for these Day (CFD), was a huge Seminars! success! We had over 200 Our President We held eight people attend the one-day membership meetings, in conference, earning seven Jan, Feb, Apr, and May, continuing education units. four at lunchtime and four If you weren’t able to in the evening. If you attend CFD this year, you haven’t made it to our missed some great presen- monthly meetings, here’s tations! what you missed so far: Our Training Commit- tee held two Mini- By Ms. Colleen Murphy Airport Security, by Seminars, providing three Dr. Shawn Murray continuing education opportunities for each What Constitutes mini-seminar, with more Mini-Seminars on Reasonable Security?, by Mr. -
The Tangled Genealogy of Iot Malware
The Tangled Genealogy of IoT Malware Emanuele Cozzi Pierre-Antoine Vervier Matteo Dell’Amico emanuele:cozzi@eurecom:fr France della@linux:it EURECOM France Sophia Antipolis, France Yun Shen Leyla Bilge Davide Balzarotti yun:shen@nortonlifelock:com leylya:yumer@nortonlifelock:com davide:balzarotti@eurecom:fr NortonLifeLock, Inc. NortonLifeLock, Inc. EURECOM Reading, United Kingdom Sophia Antipolis, France Sophia Antipolis, France ABSTRACT 1 INTRODUCTION The recent emergence of consumer off-the-shelf embedded (IoT) Over the last few years we have witnessed an increase in both the devices and the rise of large-scale IoT botnets has dramatically in- volume and sophistication of malware targeting IoT systems. Tra- creased the volume and sophistication of Linux malware observed ditional botnets and DDoS tools now cohabit with crypto-mining, in the wild. The security community has put a lot of effort to docu- spyware, ransomware, and targeted samples designed to conduct ment these threats but analysts mostly rely on manual work, which cyber espionage. To make things worse, the public availability of makes it difficult to scale and hard to regularly maintain. Moreover, the source code associated with some of the main IoT malware the vast amount of code reuse that characterizes IoT malware calls families have paved the way for myriads of variants and tangled for an automated approach to detect similarities and identify the relationships of similarities and code reuse. To make sense of this phylogenetic tree of each family. complex evolution, the security community has devoted a consider- In this paper we present the largest measurement of IoT malware able effort to analyze and document these emerging threats, mostly to date. -
Прогнозы На 2018 Год Kaspersky Security Bulletin: Прогнозы На 2018 Год
Kaspersky Security Bulletin: ПРОГНОЗЫ НА 2018 ГОД KASPERSKY SECURITY BULLETIN: ПРОГНОЗЫ НА 2018 ГОД СОДЕРЖАНИЕ Введение .......................................................................................................3 APT-угрозы по прогнозам глобального центра исследования и анализа угроз (GReAT) ........................................4 Введение ..................................................................................................5 Оглядываясь назад ...............................................................................6 Чего ждать в 2018 году? ....................................................................7 Вывод ......................................................................................................20 Прогнозы по отраслям и технологиям ......................................21 Прогнозируемые угрозы в автомобильной отрасли ...... 22 Прогнозируемые угрозы в отрасли «подключенной» медицины ........................................................ 27 Прогнозируемые угрозы и мошеннические схемы в финансовой отрасли ......................................................31 Прогнозируемые угрозы в сфере промышленной безопасности ..................................................................................... 36 Прогнозируемые угрозы для криптовалют ...........................41 2 KASPERSKY SECURITY BULLETIN: ПРОГНОЗЫ НА 2018 ГОД ВВЕДЕНИЕ В 2017 году опытные злоумышленники и хактивисты продол- жили серию дерзких атак и краж, которые прогремели на весь мир. Но в этом году внимание СМИ было приковано -
Identifying and Characterizing Bashlite and Mirai C&C Servers
Identifying and Characterizing Bashlite and Mirai C&C Servers Gabriel Bastos∗, Artur Marzano∗, Osvaldo Fonseca∗, Elverton Fazzion∗y, Cristine Hoepersz, Klaus Steding-Jessenz, Marcelo H. P. C. Chavesz, Italo´ Cunha∗, Dorgival Guedes∗, Wagner Meira Jr.∗ ∗Department of Computer Science – Universidade Federal de Minas Gerais (UFMG) yDepartment of Computing – Universidade Federal de Sao˜ Joao˜ del-Rei (UFSJ) zCERT.br - Brazilian National Computer Emergency Response Team NIC.br - Brazilian Network Information Center Abstract—IoT devices are often a vector for assembling massive which contributes to the rise of a large number of variants. botnets, as a consequence of being broadly available, having Variants exploit other vulnerabilities, include new forms of limited security protections, and significant challenges in deploy- attack, and use different mechanisms to circumvent existing ing software upgrades. Such botnets are usually controlled by centralized Command-and-Control (C&C) servers, which need forms of defense. The increasing number of variants of these to be identified and taken down to mitigate threats. In this paper malwares makes the analysis and reverse engineering process we propose a framework to infer C&C server IP addresses using expensive, hindering the development of countermeasures and four heuristics. Our heuristics employ static and dynamic analysis mitigations. To address the growing number of threats, security to automatically extract information from malware binaries. We analysts and researchers need tools to automate the collection, use active measurements to validate inferences, and demonstrate the efficacy of our framework by identifying and characterizing analysis, and reverse engineering of malware. C&C servers for 62% of 1050 malware binaries collected using The C&C server is a core component of botnets, responsible 47 honeypots. -
Protecting Iot Devices Against Ddos Attacks
AntibIoTic: Protecting IoT Devices Against DDoS Attacks Michele De Donno1 Nicola Dragoni1;2 Alberto Giaretta2 and Manuel Mazzara3 1 DTU Compute, Technical University of Denmark, Denmark 2 Centre for Applied Autonomous Sensor Systems, Orebro¨ University, Sweden 3 Innopolis University, Russian Federation Abstract. The 2016 is remembered as the year that showed to the world how dangerous Distributed Denial of Service attacks can be. Gauge of the disruptiveness of DDoS attacks is the number of bots involved: the bigger the botnet, the more powerful the attack. This character, along with the increasing availability of connected and insecure IoT devices, makes DDoS and IoT the perfect pair for the malware industry. In this paper we present the main idea behind AntibIoTic, a palliative solution to prevent DDoS attacks perpetrated through IoT devices. 1 The AntibIoTic Against DDoS Attacks Today, it's a matter of fact that IoT devices are extremely poorly secured and many different IoT malwares are exploiting this insecurity trend to spread glob- ally in the IoT world and build large-scale botnets later used for extremely powerful cyber-attacks [1,2], especially Distributed Denial of Service (DDoS) [3]. Therefore, the main problem that has to be solved is the low security level of the IoT cosmos, and that is where AntibIoTic comes in. What drove us in the design of AntibIoTic is the belief that the intrinsic weakness of IoT devices might be seen as the solution of the problem instead of as the problem itself. In fact, the idea is to use the vulnerability of IoT units as a means to grant their security: like an antibiotic that enters in the bloodstream and travels through human body killing bacteria without damaging human cells, AntibIoTic is a worm that infects vulnerable devices and creates a white botnet of safe systems, removing them from the clutches of other potential dangerous malwares. -
Designing an Effective Network Forensic Framework for The
Designing an effective network forensic framework for the investigation of botnets in the Internet of Things Nickolaos Koroniotis A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy School of Engineering and Information Technology The University of New South Wales Australia March 2020 COPYRIGHT STATEMENT ‘I hereby grant the University of New South Wales or its agents a non-exclusive licence to archive and to make available (including to members of the public) my thesis or dissertation in whole or part in the University libraries in all forms of media, now or here after known. I acknowledge that I retain all intellectual property rights which subsist in my thesis or dissertation, such as copyright and patent rights, subject to applicable law. I also retain the right to use all or part of my thesis or dissertation in future works (such as articles or books).’ ‘For any substantial portions of copyright material used in this thesis, written permission for use has been obtained, or the copyright material is removed from the final public version of the thesis.’ Signed ……………………………………………........................... Date …………………………………………….............................. AUTHENTICITY STATEMENT ‘I certify that the Library deposit digital copy is a direct equivalent of the final officially approved version of my thesis.’ Signed ……………………………………………........................... Date …………………………………………….............................. 1 Thesis Dissertation Sheet Surname/Family Name : Koroniotis Given Name/s : Nickolaos Abbreviation for degree : PhD as give in the University calendar Faculty : UNSW Canberra at ADFA School : UC Engineering & Info Tech Thesis Title : Designing an effective network forensic framework for the investigation of botnets in the Internet of Things 2 Abstract 350 words maximum: The emergence of the Internet of Things (IoT), has heralded a new attack surface, where attackers exploit the security weaknesses inherent in smart things. -
Techniques for Detecting Compromised Iot Devices
MSc System and network Engineering Research Project 1 Techniques for detecting compromised IoT devices Project Report Ivo van der Elzen Jeroen van Heugten February 12, 2017 Abstract The amount of connected Internet of Things (IoT) devices is growing, expected to hit 50 billion devices in 2020. Many of those devices lack proper security. This has led to malware families designed to infect IoT devices and use them in Distributed Denial of Service (DDoS) attacks. In this paper we do an in-depth analysis of two families of IoT malware to determine common properties which can be used for detection. Focusing on the ISP-level, we evaluate commonly available detection techniques and apply the results from our analysis to detect IoT malware activity in an ISP network. Applying our detection method to a real-world data set we find indications for a Mirai malware infection. Using generic honeypots we gain new insight in IoT malware behavior. 1 Introduction ple of days after the attacks, the source code for the malware (dubbed \Mirai") was pub- September 20th 2016: A record setting Dis- lished [9] [10]. tributed Denial of Service (DDoS) attack of over 660 Gbps is launched on the website krebsonse- With the rise of these IoT based DDoS at- curity.com of infosec journalist Brian Krebs [1]. tacks [11] it has become clear that this problem A few days later, web hosting company OVH will only become bigger in the future, unless reports they have been hit with a DDoS of over IoT device vendors accept responsibility and 1 Tbps [2]. -
Securing Your Home Routers: Understanding Attacks and Defense Strategies of the Modem’S Serial Number As a Password
Securing Your Home Routers Understanding Attacks and Defense Strategies Joey Costoya, Ryan Flores, Lion Gu, and Fernando Mercês Trend Micro Forward-Looking Threat Research (FTR) Team A TrendLabsSM Research Paper TREND MICRO LEGAL DISCLAIMER The information provided herein is for general information Contents and educational purposes only. It is not intended and should not be construed to constitute legal advice. The information contained herein may not be applicable to all situations and may not reflect the most current situation. 4 Nothing contained herein should be relied on or acted upon without the benefit of legal advice based on the particular facts and circumstances presented and nothing Entry Points: How Threats herein should be construed otherwise. Trend Micro reserves the right to modify the contents of this document Can Infiltrate Your Home at any time without prior notice. Router Translations of any material into other languages are intended solely as a convenience. Translation accuracy is not guaranteed nor implied. If any questions arise related to the accuracy of a translation, please refer to 10 the original language official version of the document. Any discrepancies or differences created in the translation are not binding and have no legal effect for compliance or Postcompromise: Threats enforcement purposes. to Home Routers Although Trend Micro uses reasonable efforts to include accurate and up-to-date information herein, Trend Micro makes no warranties or representations of any kind as to its accuracy, currency, or completeness. You agree that access to and use of and reliance on this document 17 and the content thereof is at your own risk.