Designing an Effective Network Forensic Framework for The

Total Page:16

File Type:pdf, Size:1020Kb

Designing an Effective Network Forensic Framework for The Designing an effective network forensic framework for the investigation of botnets in the Internet of Things Nickolaos Koroniotis A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy School of Engineering and Information Technology The University of New South Wales Australia March 2020 COPYRIGHT STATEMENT ‘I hereby grant the University of New South Wales or its agents a non-exclusive licence to archive and to make available (including to members of the public) my thesis or dissertation in whole or part in the University libraries in all forms of media, now or here after known. I acknowledge that I retain all intellectual property rights which subsist in my thesis or dissertation, such as copyright and patent rights, subject to applicable law. I also retain the right to use all or part of my thesis or dissertation in future works (such as articles or books).’ ‘For any substantial portions of copyright material used in this thesis, written permission for use has been obtained, or the copyright material is removed from the final public version of the thesis.’ Signed ……………………………………………........................... Date …………………………………………….............................. AUTHENTICITY STATEMENT ‘I certify that the Library deposit digital copy is a direct equivalent of the final officially approved version of my thesis.’ Signed ……………………………………………........................... Date …………………………………………….............................. 1 Thesis Dissertation Sheet Surname/Family Name : Koroniotis Given Name/s : Nickolaos Abbreviation for degree : PhD as give in the University calendar Faculty : UNSW Canberra at ADFA School : UC Engineering & Info Tech Thesis Title : Designing an effective network forensic framework for the investigation of botnets in the Internet of Things 2 Abstract 350 words maximum: The emergence of the Internet of Things (IoT), has heralded a new attack surface, where attackers exploit the security weaknesses inherent in smart things. Comprised of heterogeneous technologies and protocols, the IoT is a source of high-speed and volume data, rendering pre-existing forensic solutions ineffective. As a result, developing new network forensic solutions for the IoT is imperative. Some of the challenges involved in designing network forensic solutions for the IoT are 1) obtaining realistic data that represent contemporary network behaviour, 2) selecting and optimizing a machine learning model, best suited to deal with such data and 3) identifying and tracing attacks. This thesis provides considerable contribution to the research focusing on building a network forensic framework tasked with investigating botnet activities in IoT networks. The first contribution is the design of a new virtual testbed and the generation of a new network dataset, called Bot-IoT. This new dataset incorporates normal IoT traffic and represents a range of realistic network attacks. The second contribution is the selection of optimal features for the dataset. The process combined two measures, namely Pearson Correlation and Joint Entropy to create a score for the features, allowing for the selection of the 10 least-similar, which helped in removing any redundant information from the dataset. The third contribution is the analysis performed on the Bot-IoT dataset. For this analysis, two other widely used dataset, the UNSW-NB15 and NSL-KDD datasets were selected and seven machine learning models were trained. The fourth contribution is the development of the Particle Deep Framework (PDF) which covers the stages of the digital forensic investigation process. The PDF utilizes Particle Swarm Optimization for the selection of the optimal hyperparameters of a deep learning model, which lies at its core and is trained to detect attack network flows. 3 Declaration relating to disposition of project thesis/dissertation I hereby grant to the University of New South Wales or its agents a non-exclusive licence to archive and to make available (including to members of the public) my thesis or dissertation in whole or in part in the University libraries in all forms of media, now or here after known. I acknowledge that I retain all intellectual property rights which subsist in my thesis or dissertation, such as copyright and patent rights, subject to applicable law. I also retain the right to use all or part of my thesis or dissertation in future works (such as articles or books). ................................................ ................................................ Signature Date The University recognises that there may be exceptional circumstances requiring restrictions on copying or conditions on use. Requests for restriction for a period of up to 2 years can be made when submitting the final copies of your thesis to the UNSW Library. Requests for a longer period of restriction may be considered in exceptional circumstances and require the approval of the Dean of Graduate Research. 4 Originality Statement I hereby declare that this submission is my own work and to the best of my knowledge and belief, it contains no material previously published or written by another person, nor material which to a substantial extent has been accepted for the award of any other degree or diploma at UNSW or any other educational institution, except where due acknowledgment is made in the thesis. Any contribution made to the research by colleagues, with whom I have worked at UNSW or elsewhere, during my candidature, is fully acknowledged. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project’s design and conception or in style, presentation and linguistic expression is acknowledged. .......................................... .................................................. Signature Date 5 Inclusion of Publicaitons Statement UNSW is supportive of candidates publishing their research results during their candi- dature as detailed in the UNSW Thesis Examination Procedure. Publications can be used in their thesis in lieu of a Chapter if: • The candidate contributed greater than 50% of the content in the publication and is the “primary author”, ie. the candidate was responsible primarily for the planning, execution and preparation of the work for publication. • The candidate has approval to include the publication in their thesis in lieu of a Chapter from their supervisor and Postgraduate Coordinator. • The publication is not subject to any obligations or contractual agreements with a third party that would constrain its inclusion in the thesis Please indicate whether this thesis contains published material or not: This thesis contains no publications, either published or submitted for publication. Some of the work described in this thesis has been published and it has been documented in the relevant Chapters with acknowledgement. This thesis has publications (either published or submitted for publication) incor- porated into it in lieu of a chapter and the details are presented below. 6 CANDIDATE’S DECLARATION I declare that: • I have complied with the UNSW Thesis Examination Procedure • where I have used a publication in lieu of a Chapter, the listed publication(s) below meet(s) the requirements to be included in the thesis. Candidate’s Name Signature Date (dd/mm/yy) POSTGRADUATE COORDINATOR’S DECLARATION I declare that: • the information below is accurate • where listed publication(s) have been used in lieu of Chapter(s), their use complies with the UNSW Thesis Examination Procedure • the minimum requirements for the format of the thesis have been met. PGC’s Name PGC’s Signature Date (dd/mm/yy) 7 Details of Publicaiton #1: Full title: Forensics and deep learning mechanisms for botnets in Internet of Things: A survey of challenges and solutions Authors: Koroniotis, Nickolaos and Moustafa, Nour and Sitnikova, Elena Journal or book name: IEEE Access Volume/page numbers: 7/61764–61785 Date accepted/published: 14 May 2019 Status Published Accepted In progress and in press (Submitted) The Candidate’s Contribution to the Work The candidate designed, implemented and is the primary author of this work. Location of the work in the thesis and/or how the work is incorporated in the thesis: The publication was used in lieu of Chapter 2, as the Literature Review. PRIMARY SUPERVISOR’S DECLARATION I declare that: • the information above is accurate • this has been discussed with the PGC and it is agreed that this publication can be included in this thesis in lieu of a Chapter • All of the co-authors of the publication have reviewed the above information and have agreed to its veracity by signing a ‘Co-Author Authorisation’ form. Primary Supervisor’s Primary Supervisor’s Date (dd/mm/yy) name signature 8 Details of Publicaiton #2: Full title: Towards the development of realistic botnet dataset in the internet of things for network forensic analytics: Bot-iot dataset Authors: Koroniotis, Nickolaos and Moustafa, Nour and Sitnikova, Elena and Turnbull, Benjamin Journal or book name: Future Generation Computer Systems Volume/page numbers: 100/779–796 Date accepted/published: 15 May 2019 Status Published Accepted In progress and in press (Submitted) The Candidate’s Contribution to the Work The candidate designed, implemented and is the primary author of this work. Location of the work in the thesis and/or how the work is incorporated in the thesis: The publication was used in lieu of Chapter 3, to describe the design, generation and refinement of the Bot-IoT dataset.
Recommended publications
  • Iot Threats, Challenges and Secured Integration
    IoT Threats, Challenges and Secured Integration Christian Shink, p. eng., CSSLP System Engineer • Why IoT Devices? • Bot Attacks • 3 Botnets fighting over IoT Firepower • Secure IoT integration Why IoT Devices Internet of Things Internet working of physical devices, vehicles, buildings, … Devices embedded with electronics, software, sensors, actuators Network connectivity Any Path Any Service Any Network Anytime Any Business Any context Anyone Machinery Anybody Building energy Anything Management Any Device Healthcare Retail A Rapidly Growing Number of Connected Devices Copyright © 2017 Radware. All rights reserved. IoT is Highly Susceptible to Cyber Attacks IoT devices run an embedded or stripped-down version of the familiar Linux operating system. 1 Malware can easily be compiled for the target architecture, mostly ARM, MIPS, x86 internet-accessible, lots of (I)IoT and ICS/SCADA are deployed without any form of 2 firewall protection Stripped-down operating system and processing power leaves less room for security 3 features, including auditing, and most compromises go unnoticed by the owners To save engineering time, manufacturers re-use portions of hardware and software in different 4 classes of devices resulting in default passwords and vulnerabilities being shared across device classes and manufacturers Internet Security Trend report 2015 by Nexus guard: IoT is becoming a soft target for cyber-attack Copyright © 2017 Radware. All rights reserved. From the News “D-Link failed to take reasonable steps to secure its routers and IP cameras, potentially compromising sensitive consumer information” “The cameras aren’t designed to receive software updates so the zero-day exploits can’t be patched.” “We believe that this backdoor was introduced by Sony developers on purpose” Sources: 1.
    [Show full text]
  • Internet Infrastructure Review Vol.34
    Internet Infrastructure Review Mar.2017 Vol. 34 Infrastructure Security Ursnif (Gozi) Anti-Analysis Techniques and Methods for Bypassing Them Technology Trends The Current State of Library OSes Internet Infrastructure Review March 2017 Vol.34 Executive Summary ............................................................................................................................ 3 1. Infrastructure Security .................................................................................................................. 4 1.1 Introduction ..................................................................................................................................... 4 1.2 Incident Summary ........................................................................................................................... 4 1.3 Incident Survey ...............................................................................................................................11 1.3.1 DDoS Attacks ...................................................................................................................................11 1.3.2 Malware Activities ......................................................................................................................... 13 1.3.3 SQL Injection Attacks ..................................................................................................................... 17 1.3.4 Website Alterations .......................................................................................................................
    [Show full text]
  • Evolution of Iot Attacks
    Evolution of IoT Attacks By 2025, there will be 41.6 billion connected IoT devices, generating 79 zettabytes (ZB) of data (IDC). Every Internet-connected “thing,” from power grids to smart doorbells, is at risk of attack. BLUETOOTH INDUSTRIAL MEDICAL Throughout the last few decades, cyberattacks against IoT devices have become more sophisticated, more common, and unfortunately, much BOTNET GENERIC IOT SMART HOME more effective. However, the technology sector has fought back, developing and implementing new security technologies to prevent and CAR INFRASTRUCTURE WATCH/WEARABLE protect against cyberattacks. This infographic shows how the industry has evolved with new technologies, protocols, and processes to raise the bar on cybersecurity. STUXNET WATER BMW MIRAI FITBIT SAUDI PETROL SILEX LINUX DARK NEXUS VIRUS UTILITY CONNECTED BOTNET VULNERABILITY CHEMICAL MALWARE BOTNET SYSTEM DRIVE SYSTEM PLANT ATTACK (SCADA) PUERTO UNIVERSITY UKRAINIAN HAJIME AMNESIA AMAZON PHILIPS HUE RICO OF MICHIGAN POWER VIGILANTE BOTNET RING HACK LIGHTBULB SMART TRAFFIC GRID BOTNET METERS LIGHTS MEDTRONIC GERMAN TESLA CCTV PERSIRAI FANCY SWEYNTOOTH INSULIN STEEL MODEL S BOTNET BOTNET BEAR VS. FAMILY PUMPS MILL HACK REMOTE SPORTS HACK HACKABLE HEART BASHLITE FIAT CHRYSLER NYADROP SELF- REAPER THINKPHP TWO MILLION KAIJI MONITORS BOTNET REMOTE CONTROL UPDATING MALWARE BOTNET EXPLOITATION TAKEOVER MALWARE First Era | THE AGE OF EXPLORATION | 2005 - 2009 Second Era | THE AGE OF EXPLOITATION | 2011 - 2019 Third Era | THE AGE OF PROTECTION | 2020 Security is not a priority for early IoT/embedded devices. Most The number of connected devices is exploding, and cloud connectivity Connected devices are ubiquitous in every area of life, from cyberattacks are limited to malware and viruses impacting Windows- is becoming commonplace.
    [Show full text]
  • Reporting, and General Mentions Seem to Be in Decline
    CYBER THREAT ANALYSIS Return to Normalcy: False Flags and the Decline of International Hacktivism By Insikt Group® CTA-2019-0821 CYBER THREAT ANALYSIS Groups with the trappings of hacktivism have recently dumped Russian and Iranian state security organization records online, although neither have proclaimed themselves to be hacktivists. In addition, hacktivism has taken a back seat in news reporting, and general mentions seem to be in decline. Insikt Group utilized the Recorded FutureⓇ Platform and reports of historical hacktivism events to analyze the shifting targets and players in the hacktivism space. The target audience of this research includes security practitioners whose enterprises may be targets for hacktivism. Executive Summary Hacktivism often brings to mind a loose collective of individuals globally that band together to achieve a common goal. However, Insikt Group research demonstrates that this is a misleading assumption; the hacktivist landscape has consistently included actors reacting to regional events, and has also involved states operating under the guise of hacktivism to achieve geopolitical goals. In the last 10 years, the number of large-scale, international hacking operations most commonly associated with hacktivism has risen astronomically, only to fall off just as dramatically after 2015 and 2016. This constitutes a return to normalcy, in which hacktivist groups are usually small sets of regional actors targeting specific organizations to protest regional events, or nation-state groups operating under the guise of hacktivism. Attack vectors used by hacktivist groups have remained largely consistent from 2010 to 2019, and tooling has assisted actors to conduct larger-scale attacks. However, company defenses have also become significantly better in the last decade, which has likely contributed to the decline in successful hacktivist operations.
    [Show full text]
  • Training & Conferences
    WWW.ISSA - COS.ORG VOLUME 6 NUMBER 6 J U N E 2 0 1 7 Training & Conferences olleagues, Our first Security+ Exam Prep Review Seminar, held on April 1 and 8, was another Hard to believe, but we’re almost huge success – as it always is – thanks to C half-way through the year. Our the exceptional work by Susan Ross and our impressive team of volunteers has volunteer instructors. And our second dedicated much time and effort to bring a Security+ Seminar kicks off in just a few variety of events to our membership. This days! Each of these seminars provides a 12- chapter hosts a lot of amazing events, all hour comprehensive due to the efforts of our review of the CompTIA volunteers. Security+ exam material. Our first conference of A Note From Over 50 students the year, the Cyber Focus registered for these Day (CFD), was a huge Seminars! success! We had over 200 Our President We held eight people attend the one-day membership meetings, in conference, earning seven Jan, Feb, Apr, and May, continuing education units. four at lunchtime and four If you weren’t able to in the evening. If you attend CFD this year, you haven’t made it to our missed some great presen- monthly meetings, here’s tations! what you missed so far: Our Training Commit- tee held two Mini- By Ms. Colleen Murphy Airport Security, by Seminars, providing three Dr. Shawn Murray continuing education opportunities for each What Constitutes mini-seminar, with more Mini-Seminars on Reasonable Security?, by Mr.
    [Show full text]
  • Прогнозы На 2018 Год Kaspersky Security Bulletin: Прогнозы На 2018 Год
    Kaspersky Security Bulletin: ПРОГНОЗЫ НА 2018 ГОД KASPERSKY SECURITY BULLETIN: ПРОГНОЗЫ НА 2018 ГОД СОДЕРЖАНИЕ Введение .......................................................................................................3 APT-угрозы по прогнозам глобального центра исследования и анализа угроз (GReAT) ........................................4 Введение ..................................................................................................5 Оглядываясь назад ...............................................................................6 Чего ждать в 2018 году? ....................................................................7 Вывод ......................................................................................................20 Прогнозы по отраслям и технологиям ......................................21 Прогнозируемые угрозы в автомобильной отрасли ...... 22 Прогнозируемые угрозы в отрасли «подключенной» медицины ........................................................ 27 Прогнозируемые угрозы и мошеннические схемы в финансовой отрасли ......................................................31 Прогнозируемые угрозы в сфере промышленной безопасности ..................................................................................... 36 Прогнозируемые угрозы для криптовалют ...........................41 2 KASPERSKY SECURITY BULLETIN: ПРОГНОЗЫ НА 2018 ГОД ВВЕДЕНИЕ В 2017 году опытные злоумышленники и хактивисты продол- жили серию дерзких атак и краж, которые прогремели на весь мир. Но в этом году внимание СМИ было приковано
    [Show full text]
  • Identifying and Characterizing Bashlite and Mirai C&C Servers
    Identifying and Characterizing Bashlite and Mirai C&C Servers Gabriel Bastos∗, Artur Marzano∗, Osvaldo Fonseca∗, Elverton Fazzion∗y, Cristine Hoepersz, Klaus Steding-Jessenz, Marcelo H. P. C. Chavesz, Italo´ Cunha∗, Dorgival Guedes∗, Wagner Meira Jr.∗ ∗Department of Computer Science – Universidade Federal de Minas Gerais (UFMG) yDepartment of Computing – Universidade Federal de Sao˜ Joao˜ del-Rei (UFSJ) zCERT.br - Brazilian National Computer Emergency Response Team NIC.br - Brazilian Network Information Center Abstract—IoT devices are often a vector for assembling massive which contributes to the rise of a large number of variants. botnets, as a consequence of being broadly available, having Variants exploit other vulnerabilities, include new forms of limited security protections, and significant challenges in deploy- attack, and use different mechanisms to circumvent existing ing software upgrades. Such botnets are usually controlled by centralized Command-and-Control (C&C) servers, which need forms of defense. The increasing number of variants of these to be identified and taken down to mitigate threats. In this paper malwares makes the analysis and reverse engineering process we propose a framework to infer C&C server IP addresses using expensive, hindering the development of countermeasures and four heuristics. Our heuristics employ static and dynamic analysis mitigations. To address the growing number of threats, security to automatically extract information from malware binaries. We analysts and researchers need tools to automate the collection, use active measurements to validate inferences, and demonstrate the efficacy of our framework by identifying and characterizing analysis, and reverse engineering of malware. C&C servers for 62% of 1050 malware binaries collected using The C&C server is a core component of botnets, responsible 47 honeypots.
    [Show full text]
  • Protecting Iot Devices Against Ddos Attacks
    AntibIoTic: Protecting IoT Devices Against DDoS Attacks Michele De Donno1 Nicola Dragoni1;2 Alberto Giaretta2 and Manuel Mazzara3 1 DTU Compute, Technical University of Denmark, Denmark 2 Centre for Applied Autonomous Sensor Systems, Orebro¨ University, Sweden 3 Innopolis University, Russian Federation Abstract. The 2016 is remembered as the year that showed to the world how dangerous Distributed Denial of Service attacks can be. Gauge of the disruptiveness of DDoS attacks is the number of bots involved: the bigger the botnet, the more powerful the attack. This character, along with the increasing availability of connected and insecure IoT devices, makes DDoS and IoT the perfect pair for the malware industry. In this paper we present the main idea behind AntibIoTic, a palliative solution to prevent DDoS attacks perpetrated through IoT devices. 1 The AntibIoTic Against DDoS Attacks Today, it's a matter of fact that IoT devices are extremely poorly secured and many different IoT malwares are exploiting this insecurity trend to spread glob- ally in the IoT world and build large-scale botnets later used for extremely powerful cyber-attacks [1,2], especially Distributed Denial of Service (DDoS) [3]. Therefore, the main problem that has to be solved is the low security level of the IoT cosmos, and that is where AntibIoTic comes in. What drove us in the design of AntibIoTic is the belief that the intrinsic weakness of IoT devices might be seen as the solution of the problem instead of as the problem itself. In fact, the idea is to use the vulnerability of IoT units as a means to grant their security: like an antibiotic that enters in the bloodstream and travels through human body killing bacteria without damaging human cells, AntibIoTic is a worm that infects vulnerable devices and creates a white botnet of safe systems, removing them from the clutches of other potential dangerous malwares.
    [Show full text]
  • Techniques for Detecting Compromised Iot Devices
    MSc System and network Engineering Research Project 1 Techniques for detecting compromised IoT devices Project Report Ivo van der Elzen Jeroen van Heugten February 12, 2017 Abstract The amount of connected Internet of Things (IoT) devices is growing, expected to hit 50 billion devices in 2020. Many of those devices lack proper security. This has led to malware families designed to infect IoT devices and use them in Distributed Denial of Service (DDoS) attacks. In this paper we do an in-depth analysis of two families of IoT malware to determine common properties which can be used for detection. Focusing on the ISP-level, we evaluate commonly available detection techniques and apply the results from our analysis to detect IoT malware activity in an ISP network. Applying our detection method to a real-world data set we find indications for a Mirai malware infection. Using generic honeypots we gain new insight in IoT malware behavior. 1 Introduction ple of days after the attacks, the source code for the malware (dubbed \Mirai") was pub- September 20th 2016: A record setting Dis- lished [9] [10]. tributed Denial of Service (DDoS) attack of over 660 Gbps is launched on the website krebsonse- With the rise of these IoT based DDoS at- curity.com of infosec journalist Brian Krebs [1]. tacks [11] it has become clear that this problem A few days later, web hosting company OVH will only become bigger in the future, unless reports they have been hit with a DDoS of over IoT device vendors accept responsibility and 1 Tbps [2].
    [Show full text]
  • Securing Your Home Routers: Understanding Attacks and Defense Strategies of the Modem’S Serial Number As a Password
    Securing Your Home Routers Understanding Attacks and Defense Strategies Joey Costoya, Ryan Flores, Lion Gu, and Fernando Mercês Trend Micro Forward-Looking Threat Research (FTR) Team A TrendLabsSM Research Paper TREND MICRO LEGAL DISCLAIMER The information provided herein is for general information Contents and educational purposes only. It is not intended and should not be construed to constitute legal advice. The information contained herein may not be applicable to all situations and may not reflect the most current situation. 4 Nothing contained herein should be relied on or acted upon without the benefit of legal advice based on the particular facts and circumstances presented and nothing Entry Points: How Threats herein should be construed otherwise. Trend Micro reserves the right to modify the contents of this document Can Infiltrate Your Home at any time without prior notice. Router Translations of any material into other languages are intended solely as a convenience. Translation accuracy is not guaranteed nor implied. If any questions arise related to the accuracy of a translation, please refer to 10 the original language official version of the document. Any discrepancies or differences created in the translation are not binding and have no legal effect for compliance or Postcompromise: Threats enforcement purposes. to Home Routers Although Trend Micro uses reasonable efforts to include accurate and up-to-date information herein, Trend Micro makes no warranties or representations of any kind as to its accuracy, currency, or completeness. You agree that access to and use of and reliance on this document 17 and the content thereof is at your own risk.
    [Show full text]
  • Early Detection of Mirai-Like Iot Bots in Large-Scale Networks Through Sub-Sampled Packet Traffic Analysis
    Early Detection Of Mirai-Like IoT Bots In Large-Scale Networks Through Sub-Sampled Packet Traffic Analysis Ayush Kumar and Teng Joon Lim Department of Electrical and Computer Engineering, National University of Singapore, Singapore 119077 [email protected], [email protected] Abstract. The widespread adoption of Internet of Things has led to many secu- rity issues. Recently, there have been malware attacks on IoT devices, the most prominent one being that of Mirai. IoT devices such as IP cameras, DVRs and routers were compromised by the Mirai malware and later large-scale DDoS at- tacks were propagated using those infected devices (bots) in October 2016. In this research, we develop a network-based algorithm which can be used to detect IoT bots infected by Mirai or similar malware in large-scale networks (e.g. ISP network). The algorithm particularly targets bots scanning the network for vul- nerable devices since the typical scanning phase for botnets lasts for months and the bots can be detected much before they are involved in an actual attack. We analyze the unique signatures of the Mirai malware to identify its presence in an IoT device. The prospective deployment of our bot detection solution is discussed next along with the countermeasures which can be taken post detection. Further, to optimize the usage of computational resources, we use a two-dimensional (2D) packet sampling approach, wherein we sample the packets transmitted by IoT devices both across time and across the devices. Leveraging the Mirai signatures identified and the 2D packet sampling approach, a bot detection algorithm is pro- posed.
    [Show full text]
  • Honor Among Thieves: Towards Understanding the Dynamics and Interdependencies in Iot Botnets
    Honor Among Thieves: Towards Understanding the Dynamics and Interdependencies in IoT Botnets Jinchun Choi1;2, Ahmed Abusnaina1, Afsah Anwar1, An Wang3, Songqing Chen4, DaeHun Nyang2, Aziz Mohaisen1 1University of Central Florida 2Inha University 3Case Western Reserve University 4George Mason University Abstract—In this paper, we analyze the Internet of Things (IoT) affected. The same botnet was able to take down the Internet Linux malware binaries to understand the dependencies among of the African nation of Liberia [14]. malware. Towards this end, we use static analysis to extract Competition and coordination among botnets are not well endpoints that malware communicates with, and classify such endpoints into targets and dropzones (equivalent to Command explored, although recent reports have highlighted the potential and Control). In total, we extracted 1,457 unique dropzone of such competition as demonstrated in adversarial behaviors IP addresses that target 294 unique IP addresses and 1,018 of Gafgyt towards competing botnets [9]. Understanding a masked target IP addresses. We highlight various characteristics phenomenon in behavior is important for multiple reasons. of those dropzones and targets, including spatial, network, and First, such an analysis would highlight the competition and organizational affinities. Towards the analysis of dropzones’ interdependencies and dynamics, we identify dropzones chains. alliances among IoT botnets (or malactors; i.e., those who Overall, we identify 56 unique chains, which unveil coordination are behind the botnet), which could shed light on cybercrime (and possible attacks) among different malware families. Further economics. Second, understanding such a competition would analysis of chains with higher node counts reveals centralization. necessarily require appropriate analysis modalities, and such We suggest a centrality-based defense and monitoring mechanism a competition signifies those modalities, even when they are to limit the propagation and impact of malware.
    [Show full text]