New Perspectives on Antibacterial Drug Research

Total Page:16

File Type:pdf, Size:1020Kb

New Perspectives on Antibacterial Drug Research Cent. Eur. J. Biol. • 8(10) • 2013 • 943-957 DOI: 10.2478/s11535-013-0209-6 Central European Journal of Biology New perspectives on antibacterial drug research Review Article Joanna Ziemska, Aleksandra Rajnisz, Jolanta Solecka* Laboratory of Biologically Active Compounds, National Institute of Public Health - National Institute of Hygiene, 00-791 Warsaw, Poland Received 14 March 2013; Accepted 10 May 2013 Abstract: Bacterial resistance to commonly used antibiotics is constantly increasing. Bacteria particularly dangerous for human life are methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus faecium and fluoroquinolone-resistant Pseudomonas aeruginosa. Hence, there is an incessant need for developing compounds with new modes of action and seeking alternate drug targets. In this review, the authors discuss the current situation of antibacterial medicines and present data on new antibiotic targets. Moreover, alternatives to antibiotics, such as bacteriophages, antimicrobial peptides and monoclonal antibodies, are presented. The authors also draw attention to the valuable features of natural sources in developing antibacterial compounds. The need to prevent and control infections as well as the reasonable use of currently available antibiotics is also emphasized. Keywords: Bacterial resistance • Antibacterial compound • Drug discovery • Target • Antimicrobial peptides © Versita Sp. z o.o. 1. Introduction pathogens (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa) [2]. The use of antibiotics, especially the excessive and In this review, the authors will discuss the present indiscriminative use, both in medicine and veterinary status of bacterial resistance to antibiotics, especially science has contributed to the emergence of drug of bacterial species that cause serious hospital and resistant organisms. Antimicrobial drug resistance community-acquired infections. Furthermore, the constitutes a growing problem worldwide [1]. Infections review presents antibiotics that are currently on the caused by resistant pathogens result in increased market and summarizes novel promising discoveries in mortality and morbidity among human and animal drug development. The authors will also refer to new populations. In addition, pathogenic microorganisms, antibacterial targets and other alternatives to antibiotics. including Staphylococcus aureus, Streptococcus pneumoniae and Clostridium difficile, contribute to many hospital-acquired infections. Gram-negative 2. How antibiotics became outdated? bacteria are traditionally more difficult to destroy than Gram-positive bacteria as they contain an The lack of new and effective antibacterial compounds outer membrane that constitutes an extra barrier for is due to several factors. First of all, it is difficult to find antibacterial compounds. The latest reports from the new antibacterial compounds with good pharmacological American and European disease associations claim profiles and low toxicity for the host. Furthermore, from that there are only a few antibiotics in the clinical an economic point of view, pharmaceutical companies pipeline that are more effective in targeting Gram- are more interested in developing drugs for chronic negative bacteria than existing pharmaceuticals conditions than for short-term treatments. Moreover, it on the market [1]. In the surveillance report titled is preferable when antibiotics target multiple species. “Antimicrobial resistance surveillance in Europe” made In addition, bacteria tend to develop resistance to by the European Centre for Disease Prevention and antimicrobials which restricts their use and consequently Control, the authors show a general, Europe-wide causes drug sales decline [3]. Finally, the chemical increase in antimicrobial resistance in Gram-negative structures of antibiotics, especially those derived from * E-mail: [email protected] 943 New perspectives on antibacterial drug research nature, are complex. They consist of many stereocenters, 3. Present state of antibacterials rotatable bonds, proton donors and acceptors. Therefore, the discovery, design and development of novel, efficient The majority of antibiotics currently applied in medical drugs is more demanding [4,5]. therapy belong to drug classes discovered before Antibiotics are one of the most efficient compounds 1970, during the “golden age” of drug discovery. Since used in fighting human diseases. However, bacterial that time, most accomplishments in drug development resistance to known antibiotics is growing and has were based on improvements and modifications to become a serious limitation in the treatment of patients already existing compounds, giving rise to more potent worldwide. Antibiotic resistance has essentially analogues with greater stability to bacterial resistance developed by two main processes: mutation and [3]. Currently, nearly all anti-Gram-positive compounds acquisition of resistance genes by horizontal gene under development, or recently introduced on the transfer (HGT). There are at least four types of market, are analogues of already existing molecules, identified resistance mechanisms: alteration of the especially certain β-lactams, like cephalosporins (e.g. antibiotic, alteration of the target, drug efflux or reduced ceftobiprole and ceftaroline) and quinolones, which permeability of the cell wall [6]. were modified to target MRSA and are discussed below A major infectious problem in hospitals due to (i) [11]. resistance to known antibiotics, (ii) virulence of some Since 2000, more than 20 antibacterial compounds bacterial species, or (iii) high rate of recurrence, is have been introduced to the market. Some of them constituted by the “ESCAPE” pathogens, which include derive from natural products and usually carry semi- Enterococcus faecium (vancomycin-resistant), S. synthetic modifications, e.g. daptomycin (2003), aureus (methicillin-resistant), C. difficile, Acinetobacter telithromycin (2004), tigecycline (2005), retapamulin baumannii, Pseudomonas aeruginosa (fluoroquinolone- (2007), ceftobiprole medocaril (2008), ceftaroline resistant) and Enterobacteriaceae species [7]. The fosamil (2010), telavancin (2009), fidaxomicin (2011), abbreviation “ESCAPE” was proposed by Peterson in biapenem (2002), ertapenem (2002), doripenem (2005) 2009 to replace the previous “ESKAPE” which included and tebipenem pivoxil (2009). Others are of synthetic E. faecium, S. aureus, Klebsiella pneumoniae, A. origin and usually belong to fluoroquinolones, e.g. baumannii, P. aeruginosa and Enterobacter species prulifloxacin (2002), pazufloxacin (2002), balofloxacin (offered by Rice in 2008, [8]). The change of abbreviation (2002), gemifloxacin mesylate (2004), garenoxacin (“ESKAPE”) was related to increasing importance and (2007), sitafloxacin (2008), besifloxacin (2009), threat of other bacterial species. Master et al. reported antofloxacin (2009), oxazolidinones (linezolid, 2000) on changing antimicrobial resistance in the United [www.fda.gov, 1, 12-14] (Table 1). States between 2007-2011, using the Surveillance Antibacterial compounds that are currently Network (TSN) database. They mostly focused on undergoing pre-clinical and clinical development (phase bacterial resistance to β-lactams. The authors showed I, II, III) are listed in Table 2. Newly designed, modified that the bacteria tested (S. aureus, E. faecalis, E. drugs, which have already been introduced on the faecium, E.coli, K. pneumoniae, Enterobacter spp., market, as well as those undergoing clinical trials and P. aeruginosa, A. baumannii) have various different their modes of action are presented below in detail. mechanisms of resistance that impact the activity of β-lactam antibiotics. The level of A. baumannii resistance 3.1 Cephalosporins to imipenem increased from 23.9% to 34.3% during the Ceftobiprole, a new cephalosporin, is active against period from 2007 to 2011. K. pneumoniae resistance to MRSA and penicillin-resistant streptococci [14]. This imipenem also grew, while methicillin-resistant S. aureus drug was first introduced in 2008 in Switzerland and (MRSA) rates decreased during 2007-2011. About half Canada, later withdrawn (in 2010), and is currently of S. aureus species detected in 2011 were resistant in clinical trials (Basilea Pharmaceutica Ltd.) to methicillin [9]. The spread of bacteria resistant [www.clinicaltrials.gov, 13]. Ceftaroline, on the to carbapenems, for example Enterobacteriaceae other hand, was approved by the U.S. Food and members, constitutes a serious threat due to the fact Drug Administration (FDA) for treatment of acute that carbapenems are broad-spectrum antibiotics and bacterial skin and skin structure infections (SSSI) and often are the only antibacterials effective against difficult- community-acquired pneumonia (CAP) [15]. It is a to-treat infections that are incurable by other antibiotics broad spectrum antibiotic with activity against MRSA [10]. The current situation on antibacterial market is still and drug resistant S. pneumoniae [16]. uncertain because many therapeutic options for the CXA-101 is a novel cephalosporin- ceftolozane, treatment of infections are becoming limited [7]. which displays potent activity against P. aeruginosa 944 J. Ziemska et al. Drug name Drug class Target Year introduced Natural origin daptomycin lipopeptide bacterial cell membrane 2003 telithromycin ketolide protein synthesis 2001 Europe, 2004 FDA [38] tigecycline glycylcycline protein synthesis 2005 [34] retapamulin pleuromutilin protein synthesis 2007
Recommended publications
  • The Role of Nanobiosensors in Therapeutic Drug Monitoring
    Journal of Personalized Medicine Review Personalized Medicine for Antibiotics: The Role of Nanobiosensors in Therapeutic Drug Monitoring Vivian Garzón 1, Rosa-Helena Bustos 2 and Daniel G. Pinacho 2,* 1 PhD Biosciences Program, Universidad de La Sabana, Chía 140013, Colombia; [email protected] 2 Therapeutical Evidence Group, Clinical Pharmacology, Universidad de La Sabana, Chía 140013, Colombia; [email protected] * Correspondence: [email protected]; Tel.: +57-1-8615555 (ext. 23309) Received: 21 August 2020; Accepted: 7 September 2020; Published: 25 September 2020 Abstract: Due to the high bacterial resistance to antibiotics (AB), it has become necessary to adjust the dose aimed at personalized medicine by means of therapeutic drug monitoring (TDM). TDM is a fundamental tool for measuring the concentration of drugs that have a limited or highly toxic dose in different body fluids, such as blood, plasma, serum, and urine, among others. Using different techniques that allow for the pharmacokinetic (PK) and pharmacodynamic (PD) analysis of the drug, TDM can reduce the risks inherent in treatment. Among these techniques, nanotechnology focused on biosensors, which are relevant due to their versatility, sensitivity, specificity, and low cost. They provide results in real time, using an element for biological recognition coupled to a signal transducer. This review describes recent advances in the quantification of AB using biosensors with a focus on TDM as a fundamental aspect of personalized medicine. Keywords: biosensors; therapeutic drug monitoring (TDM), antibiotic; personalized medicine 1. Introduction The discovery of antibiotics (AB) ushered in a new era of progress in controlling bacterial infections in human health, agriculture, and livestock [1] However, the use of AB has been challenged due to the appearance of multi-resistant bacteria (MDR), which have increased significantly in recent years due to AB mismanagement and have become a global public health problem [2].
    [Show full text]
  • A Review on the Current Classification and Regulatory Provisions for Medicines in Drug & Cosmetic Act, in the Light of Present Day Context
    Section Pharmaindustry Commentary A Review on the Current Classification and Regulatory Provisions for Medicines in Drug & Cosmetic Act, in the light of Present Day Context Prashant Tandon1, Varun Gupta2, Ashish Ranjan3, Purav Gandhi4, Anand Kotiyal5, 3 Aastha Kapoor 3 1Founder ;2VP & Head Medical Affair; Manager Medical Affair; 5Drug Data Analyst Medical Affair, 1mg Technologies Private Limited, 4th Floor, Motorola Building, MG Road, Sector 14, Gurugram, Haryana, 122001. 4Founder, Remedy Social, C/602, Tulip Citadel, Shreyas Tekra, Ambawadi, Ahmedabad 380015, Gujarat. ABSTRACT______________________________________________________________ Background: Current classification of medicines in Conclusions: We have recommended a revised drug India under Drug and Cosmetic Act into Schedule G, classification system that is more comprehensive in coverage and H, H1, X is outdated, evolved through patchwork over eliminates the overlaps between classes. Moreover, considering the years and needs to be thoroughly updated. The the implementation challenges for such a drug classification primary aim of the scheduling system is to ensure system in the diverse and fragmented ecosystem in India, we appropriate access to medicines while balancing recommend a technology backed platform to help monitor the public health and safety. India is experiencing a rapid implementation. transition with the rising burden of chronic non- communicable diseases where regular access of Key words: Drug Classification System, Drug and Cosmetic Act affordable medicines is critical for chronic disease India, Digitization of Prescriptions, Drug Schedules in India, management to prevent complications. Methods: We Schedule H, Monitoring Drug Schedule System analyzed drugs commonly selling across India, Received: 01.09.17 | Accepted:16.09.17 through multiple information sources including 1mg drug database, PharmaTrac (AIOCD-AWACS), Corresponding Author inventory data from distributors and retailers, Dr.
    [Show full text]
  • Synthesis and Biological Evaluation of Trisindolyl-Cycloalkanes and Bis- Indolyl Naphthalene Small Molecules As Potent Antibacterial and Antifungal Agents
    Synthesis and Biological Evaluation of Trisindolyl-Cycloalkanes and Bis- Indolyl Naphthalene Small Molecules as Potent Antibacterial and Antifungal Agents Dissertation Zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) Vorgelegt der Naturwissenschaftlichen Fakultät I Institut für Pharmazie Fachbereich für Pharmazeutische Chemie der Martin-Luther-Universität Halle-Wittenberg von Kaveh Yasrebi Geboren am 09.14.1987 in Teheran/Iran (Islamische Republik) Gutachter: 1. Prof. Dr. Andreas Hilgeroth (Martin-Luther-Universität Halle-Wittenberg, Germany) 2. Prof. Dr. Sibel Süzen (Ankara Üniversitesi, Turkey) 3. Prof. Dr. Michael Lalk (Ernst-Moritz-Arndt-Universität Greifswald, Germany) Halle (Saale), den 21. Juli 2020 Selbstständigkeitserklärung Hiermit erkläre ich gemäß § 5 (2) b der Promotionsordnung der Naturwissenschaftlichen Fakultät I – Institut für Pharmazie der Martin-Luther-Universität Halle-Wittenberg, dass ich die vorliegende Arbeit selbstständig und ohne Benutzung anderer als der angegebenen Hilfsmittel und Quellen angefertigt habe. Alle Stellen, die wörtlich oder sinngemäß aus Veröffentlichungen entnommen sind, habe ich als solche kenntlich gemacht. Ich erkläre ferner, dass diese Arbeit in gleicher oder ähnlicher Form bisher keiner anderen Prüfbehörde zur Erlangung des Doktorgrades vorgelegt wurde. Halle (Saale), den 21. Juli 2020 Kaveh Yasrebi Acknowledgement This study was carried out from June 2015 to July 2017 in the Research Group of Drug Development and Analysis led by Prof. Dr. Andreas Hilgeroth at the Institute of Pharmacy, Martin-Luther-Universität Halle-Wittenberg. I would like to thank all the people for their participation who supported my work in this way and helped me obtain good results. First of all, I would like to express my gratitude to Prof. Dr. Andreas Hilgeroth for providing me with opportunity to carry out my Ph.D.
    [Show full text]
  • List Item Withdrawal Assessment Report for Garenoxacin Mesylate
    European Medicines Agency Pre-authorisation Evaluation of Medicines for Human Use London, 18 October 2007 Doc. Ref: EMEA/CHMP/363573/2007 WITHDRAWAL ASSESSMENT REPORT FOR Garenoxacin Mesylate (garenoxacin) EMEA/H/C/747 Day 120 Assessment Report as adopted by the CHMP with all information of a commercially confidential nature deleted. This should be read in conjunction with th e "Question and Answer" document on the withdrawal of the application: the Assessment Report may not include all available information on the product if the CHMP assessment of the latest submitted information was still ongoing at the time of the withdrawal of the application. 7 Westferry Circus, Canary Wharf, London, E14 4HB, UK Tel. (44-20) 74 18 84 00 Fax (44-20) 74 18 84 16 E-mail: [email protected] http://www.emea.europa.eu ©EMEA 2007 Reproduction and/or distribution of this document is authorised for non commercial purposes only provided the EMEA is acknowledged TABLE OF CONTENTS I. RECOMMENDATION ........................................................................................................... 3 II. EXECUTIVE SUMMARY...................................................................................................... 3 II.1 Problem statement............................................................................................. .. ..................... 3 II.2 About the product ............................................................................................. .. ..................... 4 II.3 The development programme/Compliance with
    [Show full text]
  • Second and Third Generation Oral Fluoroquinolones
    Therapeutic Class Overview Second and Third Generation Oral Fluoroquinolones Therapeutic Class • Overview/Summary: The second and third generation quinolones are approved to treat a variety of infections, including dermatologic, gastrointestinal, genitourinary, respiratory, as well as several miscellaneous infections.1-10 They are broad-spectrum agents that directly inhibit bacterial deoxyribonucleic acid (DNA) synthesis by blocking the actions of DNA gyrase and topoisomerase IV, which leads to bacterial cell death.11,12 The quinolones are most active against gram-negative bacilli and gram-negative cocci.12 Ciprofloxacin has the most potent activity against gram-negative bacteria. Norfloxacin, ciprofloxacin and ofloxacin have limited activity against streptococci and many anaerobes while levofloxacin and moxifloxacin have greater potency against gram-positive cocci, and moxifloxacin has enhanced activity against anaerobic bacteria.11-12 Gemifloxacin, levofloxacin and moxifloxacin are considered respiratory fluoroquinolones. They possess enhanced activity against Streptococcus pneumoniae while maintaining efficacy against Haemophilus influenzae, Moraxella catarrhalis and atypical pathogens. Resistance to the quinolones is increasing and cross-resistance among the various agents has been documented. Two mechanisms of bacterial resistance have been identified. These include mutations in chromosomal genes (DNA gyrase and/or topoisomerase IV) and altered drug permeability across the bacterial cell membranes.11-12 Clinical Guidelines support
    [Show full text]
  • What Is the Best Treatment for Impetigo?
    Evidence-based answers from the Family Physicians Inquiries Network clinical inquiries Jae Shim, MD; Jeffrey Lanier, MD What is the best treatment Martin Army Community Hospital, Fort Benning, Ga for impetigo? Maylene (Kefeng) Qui, MLIS Biomedical Library, University of Pennsylvania, EvidEncE-basEd answEr Philadelphia AssistAnt EDItOR Although evidence is lack- als [RCTs] and a single RCT of retapamulin). Paul Crawford, MD A ing to support a single best treat- Topical bacitracin and fusidic acid are Nellis Family Medicine ment for impetigo, topical mupirocin, 15% more likely than disinfectant solu- Residency, Nellis Air Force Base, Nev fusidic acid, gentamicin, and retapamu- tions to cure or improve impetigo (SOR: a, lin are all at least 20% more likely than systematic review of RCTs). The opinions and assertions con- tained herein are the private views placebo to produce cure or improvement Oral antibiotics may be as effective as of the authors and are not to be (strength of recommendation [SOR]: a, topical antibiotics (SOR: b, RCTs with dif- construed as official or as reflecting the views of the US Army or the meta-analysis of randomized controlled tri- ferent results). Department of Defense. Evidence summary A 2012 Cochrane review of various inter- Most data on the effectiveness of topical an- ventions included 68 RCTs with a total of 5708 tibiotics focus on bacitracin, fusidic acid (not participants, primarily from pediatric or der- available in the United States), and mupiro- matology hospital outpatient clinics in North cin. Retapamulin
    [Show full text]
  • United States Patent ( 10 ) Patent No.: US 10,561,6759 B2 Griffith Et Al
    US010561675B2 United States Patent ( 10 ) Patent No.: US 10,561,6759 B2 Griffith et al. (45 ) Date of Patent : * Feb . 18 , 2020 (54 ) CYCLIC BORONIC ACID ESTER ( 58 ) Field of Classification Search DERIVATIVES AND THERAPEUTIC USES CPC A61K 31/69 ; A61K 31/396 ; A61K 31/40 ; THEREOF A61K 31/419677 (71 ) Applicant: Rempex Pharmaceuticals , Inc. , (Continued ) Lincolnshire , IL (US ) (56 ) References Cited (72 ) Inventors : David C. Griffith , San Marcos, CA (US ) ; Michael N. Dudley , San Diego , U.S. PATENT DOCUMENTS CA (US ) ; Olga Rodny , Mill Valley , CA 4,194,047 A 3/1980 Christensen et al . ( US ) 4,260,543 A 4/1981 Miller ( 73 ) Assignee : REMPEX PHARMACEUTICALS , ( Continued ) INC . , Lincolnshire , IL (US ) FOREIGN PATENT DOCUMENTS ( * ) Notice : Subject to any disclaimer, the term of this EP 1550657 A1 7/2005 patent is extended or adjusted under 35 JP 2003-229277 A 8/2003 U.S.C. 154 ( b ) by 1129 days. (Continued ) This patent is subject to a terminal dis claimer . OTHER PUBLICATIONS Abdel -Magid et al. , “ Reductive Amination ofAldehydes and Ketones ( 21) Appl. No .: 13 /843,579 with Sodium Triacetoxyborohydride: Studies on Direct and Indirect Reductive Amination Procedures ” , J Org Chem . ( 1996 )61 ( 11 ): 3849 ( 22 ) Filed : Mar. 15 , 2013 3862 . (65 ) Prior Publication Data (Continued ) US 2013/0331355 A1 Dec. 12 , 2013 Primary Examiner — Shengjun Wang Related U.S. Application Data (74 ) Attorney, Agent, or Firm — Wilmer Cutler Pickering (60 ) Provisional application No.61 / 656,452 , filed on Jun . Hale and Dorr LLP 6 , 2012 (57 ) ABSTRACT (51 ) Int. Ci. A61K 31/69 ( 2006.01) Method of treating or ameliorating a bacterial infection A61K 31/00 ( 2006.01 ) comprising administering a composition comprising a cyclic (Continued ) boronic acid ester compound in combination with a car ( 52 ) U.S.
    [Show full text]
  • A TWO-YEAR RETROSPECTIVE ANALYSIS of ADVERSE DRUG REACTIONS with 5PSQ-031 FLUOROQUINOLONE and QUINOLONE ANTIBIOTICS 24Th Congress Of
    A TWO-YEAR RETROSPECTIVE ANALYSIS OF ADVERSE DRUG REACTIONS WITH 5PSQ-031 FLUOROQUINOLONE AND QUINOLONE ANTIBIOTICS 24th Congress of V. Borsi1, M. Del Lungo2, L. Giovannetti1, M.G. Lai1, M. Parrilli1 1 Azienda USL Toscana Centro, Pharmacovigilance Centre, Florence, Italy 2 Dept. of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), 27-29 March 2019 Section of Pharmacology and Toxicology , University of Florence, Italy BACKGROUND PURPOSE On 9 February 2017, the Pharmacovigilance Risk Assessment Committee (PRAC) initiated a review1 of disabling To review the adverse drugs and potentially long-lasting side effects reported with systemic and inhaled quinolone and fluoroquinolone reactions (ADRs) of antibiotics at the request of the German medicines authority (BfArM) following reports of long-lasting side effects systemic and inhaled in the national safety database and the published literature. fluoroquinolone and quinolone antibiotics that MATERIAL AND METHODS involved peripheral and central nervous system, Retrospective analysis of ADRs reported in our APVD involving ciprofloxacin, flumequine, levofloxacin, tendons, muscles and joints lomefloxacin, moxifloxacin, norfloxacin, ofloxacin, pefloxacin, prulifloxacin, rufloxacin, cinoxacin, nalidixic acid, reported from our pipemidic given systemically (by mouth or injection). The period considered is September 2016 to September Pharmacovigilance 2018. Department (PVD). RESULTS 22 ADRs were reported in our PVD involving fluoroquinolone and quinolone antibiotics in the period considered and that affected peripheral or central nervous system, tendons, muscles and joints. The mean patient age was 67,3 years (range: 17-92 years). 63,7% of the ADRs reported were serious, of which 22,7% caused hospitalization and 4,5% caused persistent/severe disability. 81,8% of the ADRs were reported by a healthcare professional (physician, pharmacist or other) and 18,2% by patient or a non-healthcare professional.
    [Show full text]
  • Nigerian Veterinary Journal 39(3)
    Nigerian Veterinary Journal 39(3). 2018 Asambe et al. NIGERIAN VETERINARY JOURNAL ISSN 0331-3026 Nig. Vet. J., September 2018 Vol 39 (3): 199 -208. https://dx.doi.org/10.4314/nvj.v39i3.3 ORIGINAL ARTICLE In Vitro Comparative Activity of Ciprofloxacin and Enrofloxacin against Clinical Isolates from Chickens in Benue State, Nigeria Asambe, A.1*; Babashani, M2. and Salisu, U. S.1 ¹.Federal University Dutsinma, Katsina State. 2.Ahmadu Bello University Zaria. *Corresponding author: Email: [email protected]; Tel No:+2348063103254 SUMMARY This study compares the in vitro activities of enrofloxacin and its main metabolite ciprofloxacin against clinical Escherichia coli and non-lactose fermenting enterobacteria isolates from chickens. Ten (10) Escherichia coli and 8 non lactose fermenting enterobacteriaceae species isolated from a pool of clinical cases at the Microbiology Laboratory of the Veterinary Teaching Hospital, University of Agriculture Makurdi were used in this study. Ten-fold serial dilution of 10 varying concentrations (0.1-50μg/mL) of enrofloxacin and ciprofloxacin were tested against the isolates in vitro by Bauer’s disc-diffusion method to determine and compare their antimicrobial activities against the isolates. The 18 isolates tested were susceptible to both enrofloxacin and ciprofloxacin, and their mean values in the susceptibility of Escherichia coli and non-lactose fermenters were significantly different (p < 0.01). The study concluded that the clinical isolates are susceptible to both enrofloxacin and ciprofloxacin though ciprofloxacin exhibit higher activity. Comparatively, ciprofloxacin was found to be more potent than enrofloxacin and the difference statistically significant. Ciprofloxacin was recommended as a better choice in the treatment of bacterial infections of chicken in this area compared to enrofloxacin.
    [Show full text]
  • AMR Surveillance in Pharma: a Case-Study for Data Sharingauthor by Professor Barry Cookson
    AMR Open Data Initiative AMR Surveillance in Pharma: a case-study for data sharingauthor by Professor Barry Cookson External Consultant to Project eLibrary • Division of Infection and Immunity, Univ. College London ESCMID• Dept. of Microbiology, © St Thomas’ Hospital Background of “90 day Project” Addressed some recommendations of the first Wellcome funded multi-disciplinary workshop (included Pharma Academia & Public Health invitees: 27thauthor July 2017 (post the Davos Declaration): by 1) Review the landscape of existing Pharma AMR programmes, their protocols,eLibrary data standards and sets 2) Develop a "portal" (register/platform) to access currently available AMR Surveillance data ESCMID Important ©to emphasise that this is a COLLABORATION between Pharma and others Overview of Questionnaire Content • General information - including name,author years active, countries, antimicrobials, microorganisms.by • Methodology - including accreditation, methodology for; surveillance, isolate collection, organism identification, breakpointseLibrary used, • Dataset - including data storage methodology, management and how accessed. ESCMID © 13 Company Responses author 7 by 3 3 eLibrary ESCMID © Structure of register Companies can have different ways of referring to their activities: We had to choose a consistent framework. author Companies Companyby 1 Programmes Programme A Programme B eLibrary Antimicrobials 1 2 3 4 5 company’s product comparator company’s product antimicrobials Programmes canESCMID contain multiple studies (e.g. Pfizer has© single
    [Show full text]
  • In Vitro Activity of Retapamulin
    Correspondence: Abstract 2338 B. Johnson In Vitro Activity of Retapamulin (SB-275833), a Novel Topical Antimicrobial, against 3721 Gram-Positive IHMA (F-2050) 2122 Palmer Drive Schaumburg Isolates Associated with Skin and Skin Structure Infections (SSSIs) From 17 Sites in North America IL 60173 USA 1 1 1 1 2 2 1 1 Tel: +1 847 303 5003 B. Johnson, A. Jordan, S. Bouchillon, D. Hoban, N. Scangarella, R. Shawar, J. Johnson & R. Badal Fax: +1 847 303 5601 1International Health Management Associates, Schaumburg, IL, USA; 2GlaxoSmithKline, Collegeville, PA, USA E-mail: [email protected] Table 3. MIC (µg/mL) Summary for Retapamulin and Comparators against S. aureus from Table 6. MIC (µg/mL) Summary For Retapamulin and Comparators against Viridans Revised Abstract Materials and Methods North America (n = 1182) Streptococci from North America (n = 471) Background: Retapamulin is a novel pleuromutilin currently in development as a topical G MIC endpoints were determined by broth microdilution according to MIC (µg/mL) MIC (µg/mL) antimicrobial for the treatment of skin and skin structure infections (SSSIs) that shows no Clinical and Laboratory Standards Institute (CLSI) guidelines3 for retapamulin a a Compound %Sus %Int %Res Range MIC50 MIC90 Compound %Sus %Int %Res Range MIC50 MIC90 target specific cross-resistance to other classes of antibiotics and exhibits a unique mode of and 14 comparators in customized dried broth microdilution panels (Trek action. Methods: A total of 3721 clinical isolates of staphylococci (Staphylococcus aureus and Retapamulin NA NA NA 0.015–0.5 0.06 0.12 Retapamulin NA NA NA 0.004–0.5 0.06 0.25 Diagnostic Systems Ltd, West Sussex, UK).
    [Show full text]
  • Antimicrobial Resistance Benchmark 2020 Antimicrobial Resistance Benchmark 2020
    First independent framework for assessing pharmaceutical company action Antimicrobial Resistance Benchmark 2020 Antimicrobial Resistance Benchmark 2020 ACKNOWLEDGEMENTS The Access to Medicine Foundation would like to thank the following people and organisations for their contributions to this report.1 FUNDERS The Antimicrobial Resistance Benchmark research programme is made possible with financial support from UK AID and the Dutch Ministry of Health, Welfare and Sport. Expert Review Committee Research Team Reviewers Hans Hogerzeil - Chair Gabrielle Breugelmans Christine Årdal Gregory Frank Fatema Rafiqi Karen Gallant Nina Grundmann Adrián Alonso Ruiz Hans Hogerzeil Magdalena Kettis Ruth Baron Hitesh Hurkchand Joakim Larsson Dulce Calçada Joakim Larsson Marc Mendelson Moska Hellamand Marc Mendelson Margareth Ndomondo-Sigonda Kevin Outterson Katarina Nedog Sarah Paulin (Observer) Editorial Team Andrew Singer Anna Massey Deirdre Cogan ACCESS TO MEDICINE FOUNDATION Rachel Jones The Access to Medicine Foundation is an independent Emma Ross non-profit organisation based in the Netherlands. It aims to advance access to medicine in low- and middle-income Additional contributors countries by stimulating and guiding the pharmaceutical Thomas Collin-Lefebvre industry to play a greater role in improving access to Alex Kong medicine. Nestor Papanikolaou Address Contact Naritaweg 227-A For more information about this publication, please contact 1043 CB, Amsterdam Jayasree K. Iyer, Executive Director The Netherlands [email protected] +31 (0) 20 215 35 35 www.amrbenchmark.org 1 This acknowledgement is not intended to imply that the individuals and institutions referred to above endorse About the cover: Young woman from the Antimicrobial Resistance Benchmark methodology, Brazil, where 40%-60% of infections are analyses or results.
    [Show full text]