United States Patent ( 10 ) Patent No.: US 10,561,6759 B2 Griffith Et Al
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Acinetobacter Baumannii in a Murine Thigh-Infection Model
RESEARCH ARTICLE Activity of Colistin in Combination with Meropenem, Tigecycline, Fosfomycin, Fusidic Acid, Rifampin or Sulbactam against Extensively Drug-Resistant Acinetobacter baumannii in a Murine Thigh-Infection Model Bing Fan1,2☯, Jie Guan3☯, Xiumei Wang4, Yulong Cong1* 1 Clinical Laboratory of South Building, Chinese People’s Liberation Army General Hospital, Beijing 100853, a11111 China, 2 Clinical Laboratory of the Second Clinical District, the General Hospital of Chinese People’s Armed Police Forces, Beijing 100039, China, 3 Department of Clinical Laboratory, Peking University First Hospital, Beijing 100034, China, 4 Department of Clinical Laboratory, the General Hospital of Chinese People’s Armed Police Forces, Beijing 100039, China ☯ These authors contributed equally to this work. * [email protected] OPEN ACCESS Citation: Fan B, Guan J, Wang X, Cong Y (2016) Abstract Activity of Colistin in Combination with Meropenem, Tigecycline, Fosfomycin, Fusidic Acid, Rifampin or Few effective therapeutic options are available for treating severe infections caused by Sulbactam against Extensively Drug-Resistant extensively drug-resistant Acinetobacter baumannii (XDR-AB). Using a murine thigh-infec- Acinetobacter baumannii in a Murine Thigh-Infection tion model, we examined the in vivo efficacy of colistin in combination with meropenem, tige- Model. PLoS ONE 11(6): e0157757. doi:10.1371/ journal.pone.0157757 cycline, fosfomycin, fusidic acid, rifampin, or sulbactam against 12 XDR-AB strains. Colistin, tigecycline, rifampin, and sulbactam monotherapy significantly decreased bacterial Editor: Digby F. Warner, University of Cape Town, SOUTH AFRICA counts in murine thigh infections compared with those observed in control mice receiving no treatment. Colistin was the most effective agent tested, displaying bactericidal activity Received: February 13, 2016 against 91.7% of strains at 48 h post-treatment. -
AMR Surveillance in Pharma: a Case-Study for Data Sharingauthor by Professor Barry Cookson
AMR Open Data Initiative AMR Surveillance in Pharma: a case-study for data sharingauthor by Professor Barry Cookson External Consultant to Project eLibrary • Division of Infection and Immunity, Univ. College London ESCMID• Dept. of Microbiology, © St Thomas’ Hospital Background of “90 day Project” Addressed some recommendations of the first Wellcome funded multi-disciplinary workshop (included Pharma Academia & Public Health invitees: 27thauthor July 2017 (post the Davos Declaration): by 1) Review the landscape of existing Pharma AMR programmes, their protocols,eLibrary data standards and sets 2) Develop a "portal" (register/platform) to access currently available AMR Surveillance data ESCMID Important ©to emphasise that this is a COLLABORATION between Pharma and others Overview of Questionnaire Content • General information - including name,author years active, countries, antimicrobials, microorganisms.by • Methodology - including accreditation, methodology for; surveillance, isolate collection, organism identification, breakpointseLibrary used, • Dataset - including data storage methodology, management and how accessed. ESCMID © 13 Company Responses author 7 by 3 3 eLibrary ESCMID © Structure of register Companies can have different ways of referring to their activities: We had to choose a consistent framework. author Companies Companyby 1 Programmes Programme A Programme B eLibrary Antimicrobials 1 2 3 4 5 company’s product comparator company’s product antimicrobials Programmes canESCMID contain multiple studies (e.g. Pfizer has© single -
WO 2018/005606 Al 04 January 2018 (04.01.2018) W !P O PCT
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/005606 Al 04 January 2018 (04.01.2018) W !P O PCT (51) International Patent Classification: KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, A61K 38/43 (2006.01) A61K 47/36 (2006.01) MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, A61K 38/50 (2006.01) A61K 9/S0 (2006.01) OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, A61K 33/44 {2006.01) SC, SD, SE, SG, SK, SL, SM, ST, SV, SY,TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (21) International Application Number: PCT/US20 17/039672 (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (22) International Filing Date: GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, 28 June 2017 (28.06.2017) UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, (25) Filing Language: English TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, (26) Publication Langi English MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, (30) Priority Data: TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, 62/355,599 28 June 2016 (28.06.2016) US KM, ML, MR, NE, SN, TD, TG). -
(12) United States Patent (10) Patent No.: US 8,680,136 B2 Hirst Et Al
USOO868O136B2 (12) United States Patent (10) Patent No.: US 8,680,136 B2 Hirst et al. (45) Date of Patent: Mar. 25, 2014 (54) CYCLIC BORONIC ACID ESTER WO WOO3,O70714 8, 2003 DERVATIVES AND THERAPEUTCUSES WO WO 2004/039859 5, 2004 THEREOF WO WO 2005/033090 4/2005 WO WO 2007/095638 8, 2007 WO WO 2009/046098 A1 4, 2009 (75) Inventors: Gavin Hirst, San Diego, CA (US); Raja WO WO 2009/064413 A1 5, 2009 Reddy, San Diego, CA (US); Scott WO WO 2009/064414 A1 5.2009 Hecker, Del Mar, CA (US); Maxim WO WO 2009/140309 A2 11/2009 Totroy San Deigo, CA (US); David C. WO WO 2010/1307082010/075286 A1 11,T 2010 Griffith, San Marcos, CA (US): Olga WO WO 2011/O17125 A1 2/2011 Rodny, Mill Valley, CA (US); Michael N. Dudley, San Diego, CA (US); Serge OTHER PUBLICATIONS Boyer, San Diego, CA (US) Fanetal (2009): STN International HCAPLUS database, Columbus (73) Assignee: Rempex Pharmaceuticals, Inc., San (OH), accession No. 2009: 425839.* Diego, CA (US) Vasil'ev et al (1977): STN International HCAPLUS database, Columbus (OH), accession No. 1977: 72730.* (*) Notice: Subject to any disclaimer, the term of this Allen et al., “Ansel's Pharmaceutical Dosage Forms and Drug Deliv patent is extended or adjusted under 35 ery Systems', 8th Edition (2004). U.S.C. 154(b) by 9 days. Arya et al., “Advances in asymmetric enolate methodology'. Tetra hedron (2000) 56:917-947. (21) Appl. No.: 13/205,112 Biedrzycki et al., “Derivatives of tetrahedral boronic acids”. J. Organomet. Chem. -
Stems for Nonproprietary Drug Names
USAN STEM LIST STEM DEFINITION EXAMPLES -abine (see -arabine, -citabine) -ac anti-inflammatory agents (acetic acid derivatives) bromfenac dexpemedolac -acetam (see -racetam) -adol or analgesics (mixed opiate receptor agonists/ tazadolene -adol- antagonists) spiradolene levonantradol -adox antibacterials (quinoline dioxide derivatives) carbadox -afenone antiarrhythmics (propafenone derivatives) alprafenone diprafenonex -afil PDE5 inhibitors tadalafil -aj- antiarrhythmics (ajmaline derivatives) lorajmine -aldrate antacid aluminum salts magaldrate -algron alpha1 - and alpha2 - adrenoreceptor agonists dabuzalgron -alol combined alpha and beta blockers labetalol medroxalol -amidis antimyloidotics tafamidis -amivir (see -vir) -ampa ionotropic non-NMDA glutamate receptors (AMPA and/or KA receptors) subgroup: -ampanel antagonists becampanel -ampator modulators forampator -anib angiogenesis inhibitors pegaptanib cediranib 1 subgroup: -siranib siRNA bevasiranib -andr- androgens nandrolone -anserin serotonin 5-HT2 receptor antagonists altanserin tropanserin adatanserin -antel anthelmintics (undefined group) carbantel subgroup: -quantel 2-deoxoparaherquamide A derivatives derquantel -antrone antineoplastics; anthraquinone derivatives pixantrone -apsel P-selectin antagonists torapsel -arabine antineoplastics (arabinofuranosyl derivatives) fazarabine fludarabine aril-, -aril, -aril- antiviral (arildone derivatives) pleconaril arildone fosarilate -arit antirheumatics (lobenzarit type) lobenzarit clobuzarit -arol anticoagulants (dicumarol type) dicumarol -
Consideration of Antibacterial Medicines As Part Of
Consideration of antibacterial medicines as part of the revisions to 2019 WHO Model List of Essential Medicines for adults (EML) and Model List of Essential Medicines for children (EMLc) Section 6.2 Antibacterials including Access, Watch and Reserve Lists of antibiotics This summary has been prepared by the Health Technologies and Pharmaceuticals (HTP) programme at the WHO Regional Office for Europe. It is intended to communicate changes to the 2019 WHO Model List of Essential Medicines for adults (EML) and Model List of Essential Medicines for children (EMLc) to national counterparts involved in the evidence-based selection of medicines for inclusion in national essential medicines lists (NEMLs), lists of medicines for inclusion in reimbursement programs, and medicine formularies for use in primary, secondary and tertiary care. This document does not replace the full report of the WHO Expert Committee on Selection and Use of Essential Medicines (see The selection and use of essential medicines: report of the WHO Expert Committee on Selection and Use of Essential Medicines, 2019 (including the 21st WHO Model List of Essential Medicines and the 7th WHO Model List of Essential Medicines for Children). Geneva: World Health Organization; 2019 (WHO Technical Report Series, No. 1021). Licence: CC BY-NC-SA 3.0 IGO: https://apps.who.int/iris/bitstream/handle/10665/330668/9789241210300-eng.pdf?ua=1) and Corrigenda (March 2020) – TRS1021 (https://www.who.int/medicines/publications/essentialmedicines/TRS1021_corrigenda_March2020. pdf?ua=1). Executive summary of the report: https://apps.who.int/iris/bitstream/handle/10665/325773/WHO- MVP-EMP-IAU-2019.05-eng.pdf?ua=1. -
Cyslabdan, a New Potentiator of Imipenem Activity Against Methicillin-Resistant Staphylococcus Aureus, Produced by Streptomyces Sp
J. Antibiot. 61(1): 7–10, 2008 THE JOURNAL OF ORIGINAL ARTICLE ANTIBIOTICS Cyslabdan, a New Potentiator of Imipenem Activity against Methicillin-resistant Staphylococcus aureus, Produced by Streptomyces sp. K04-0144 II. Biological Activities Atsushi Fukumoto, Yong-Pil Kim, Hideaki Hanaki, Kazuro Shiomi, Hiroshi Tomoda, Satoshi O¯ mura Received: October 5, 2007 / Accepted: December 4, 2007 © Japan Antibiotics Research Association Abstract Cyslabdan produced by Streptomyces sp. K04- 0144 was found to potentiate imipenem activity against methicillin-resistant Staphylococcus aureus (MRSA). The MIC value of imipenem against MRSA was reduced from 16 to 0.015 mg/ml in combination with cyslabdan. Study on anti-MRSA activity of other typical antibiotics in combination with cyslabdan showed that the potentiating activity was limited to b-lactam antibiotics. Furthermore, among b-lactam antibiotics, the activity of carbapenems Fig. 1 Structure of cyslabdan. was most remarkably poteintiated by cyslabdan. Keywords cyslabdan, imipenem potentiator, cyslabdan including potentiation of imipenem activity methicillin-resistant Staphylococcus aureus, MRSA, against MRSA are described. Streptomyces sp. K04-0144, b-lactam Materials and Methods Introduction Materials During our screening for potentiators of imipenem activity The following materials were purchased from commercial against methicillin-resistant Staphylococcus aureus sources: Cloxacillin (ICN Biomedicals), ampicillin (Wako), (MRSA) from microbial metabolites, cyslabdan (Fig. 1) cefalexin (Wako), cefazolin (Wako), ciprofloxacin (Wako), was isolated from the culture broth of Streptomyces sp. vancomycin (Wako), tetracycline (Wako), biapenem (Meiji K04-0144. The compound has a labdane-type diterpene Seika), streptomycin (Meiji Seika), meropenem (Sumitomo skeleton connecting with an N-acetylcysteine via thioether Pharmaceuticals), panipenem (Sankyo), penicillin G linkage [1]. In this study, the biological activities of (Sigma), cefotaxime (Sigma), cefmetazole (Sigma), and S. -
WO 2010/025328 Al
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date 4 March 2010 (04.03.2010) WO 2010/025328 Al (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 31/00 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, (21) International Application Number: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, PCT/US2009/055306 DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, 28 August 2009 (28.08.2009) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (25) Filing Language: English NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, (26) Publication Language: English SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 61/092,497 28 August 2008 (28.08.2008) US (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant (for all designated States except US): FOR¬ GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, EST LABORATORIES HOLDINGS LIMITED [IE/ ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, —]; 18 Parliament Street, Milner House, Hamilton, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, Bermuda HM12 (BM). -
Quantitative Structure-Pharmacokinetic
Acta Pharm. 62 (2012) 305–323 Original research paper DOI: 10.2478/v10007-012-0024-z Quantitative structure-pharmacokinetic relationship (QSPkR) analysis of the volume of distribution values of anti-infective agents from J group of the ATC classification in humans BRUNO LOUIS1 In this study, a quantitative structure-pharmacokinetic 2 VIJAY K. AGRAWAL * relationship (QSPkR) model for the volume of distribu- tion (V ) values of 126 anti-infective drugs in humans was 1 Department of Pharmacy, Sultan d developed employing multiple linear regression (MLR), Qaboos University Hospital artificial neural network (ANN) and support vector re- PO Box 38, Al Khod, Muscat 123 gression (SVM) using theoretical molecular structural des- Oman criptors. A correlation-based feature selection (CFS) was 2 QSAR and Computer Chemical employed to select the relevant descriptors for modeling. Laboratories, A.P.S. University The model results show that the main factors governing Rewa-486003, India Vd of anti-infective drugs are 3D molecular representa- tions of atomic van der Waals volumes and Sanderson ele- ctronegativities, number of aliphatic and aromatic amino groups, number of beta-lactam rings and topological 2D shape of the molecule. Model predictivity was evaluated by external validation, using a variety of statistical tests and the SVM model demonstrated better performance compared to other models. The developed models can be used to predict the Vd values of anti-infective drugs. Keywords: QSPkR, QSPR, structure pharmacokinetic rela- Accepted June 12, 2012 tionship, volume of distribution, ANN, SVM, CFS There is a constant need to develop new anti-infective drug molecules because the antibiotics and antiviral drugs always face a threat of resistance development, which may eventually lead to therapeutic failure. -
Chemical Properties Biological Description Solubility Information
Data Sheet (Cat.No.T6411) Biapenem Chemical Properties CAS No.: 120410-24-4 Formula: C15H18N4O4S Molecular Weight: 350.39 Appearance: N/A Storage: 0-4℃ for short term (days to weeks), or -20℃ for long term (months). Biological Description Description Biapenem is a 1-beta-methylcarbapenem antibiotic with a wide range of antibacterial activity. Biapenem has similar antibacterial activity to that of imipenem, but is more stable against human renal dehydropeptidase-I and with less neurotoxicity. Targets(IC50) Others: None In vitro Biapenem has activity comparable to those of Imipenem and Meropenem against all groups of anaerobes with MICs for 90% of the strains tested of 0.06 to 2 mg/mL. Biapenem is more active than ampicillin-sulbactam, ticarcillin-clavulanate, piperacillin, cefoxitin, cefotaxime, and ceftriaxone. Biapenem is also active against all of the B. capillosus, Prevotella, Clostridium, and Eubacterium strains and anaerobic cocci tested. [1] Biapenem shows broad antibacterial activity against both Gram-positive and Gram-negative clinical isolates. [2] Biapenem is found to be approximately as active as imipenem, inhibiting 90% of isolates of most species at concentrations within one dilution of the MIC of imipenem for 90% of the isolates. [3] In vivo Biapenem results in significantly fewer viable bacteria than in the lungs of control mice. Biapenem prevents the progression of lung inflammation, including alveolar neutrophil infiltration and hemorrhage. Biapenem significantly prolongs survival and reduces the number of viable bacteria -
Antimicrobial Resistance Pattern of Clinical Isolates of Pseudomonas Aeruginosa and Escherichia Coli on Carbapenems
ORIGINAL ARTICLE AFRICAN JOURNAL OF CLINICAL AND EXPERIMENTAL MICROBIOLOGY ISBN 1595-689X JULY 2018 VOL19 No.3 AJCEM/1822 http://www.ajol.info/journals/ajcem COPYRIGHT 2018 https://dx.doi.org/10.4314/ajcem.v19i3.1 AFR. J. CLN. EXPER. MICROBIOL. 19 (3): 159-164 ANTIMICROBIAL RESISTANCE PATTERN OF CLINICAL ISOLATES OF PSEUDOMONAS AERUGINOSA AND ESCHERICHIA COLI ON CARBAPENEMS Oladipo E.K. 1, 2 , Ajibade O.A. 1, 2* , Adeosun I.J 1, Awoyelu E. H. 2, Akinade S.B. 2, Alabi O.A. 2 and Ayilara O. A. 2,3 1Department of Microbiology, Adeleke University, P.M.B 250, Ede, Osun State, Nigeria; 2Department of Pure and Applied Biology (Microbiology/Virology Unit), Ladoke Akintola University, P.M.B 4000, Ogbomoso, Nigeria; 3Department of Medical Microbiology and Parasitology, Ladoke Akintola University Teaching Hospital , Oshogbo, , Osun State, Nigeria Correspondence: O.A Ajibade. Adeleke University, P.M.B 250 Ede, Osun State E – Mail: [email protected] ABSTRACT Background: Carbapenems are the most effective and important therapeutic options to serious infections caused by Enterobacteriaceae and Pseudomonas aeruginosa isolates. However, Carbepenems resistant isolates of Enterobacteriaceae and Pseudomonas aeroginosa are increasing worldwide. This study, therefore, was carried out to determine the resistance pattern of clinical isolates of Pseudomonas aeruginosa and Escherichia coli to Carbapenems . Methods: Fifty (50) E. coli and forty seven (47) Pseudomonas aeruginosa isolates were studied. Antibiotic Susceptibility test was performed as recommended by the CLSI. The antibiotics used were Ertapenem, Imipenem, Colistin Sulphate, Levofloxacin, and Piperacillin/Tazobactam. Results: Out of 97 clinical isolates subjected to drug susceptibilities test, Pseudomonas aeruginosa showed resistance to Ertapenem (87.2%); followed by Levofloxacin (19.1%), Colistin sulphate (12.8%), Piperacillin/tazobactan (4.3%) and Imipenem (2.1%) while E.coli displayed resistance to Ertapenem (30%), Levofloxacin (20%) and Colistin sulphate (4%). -
Antibiotics Currently in Clinical Development
A data table from Feb 2014 Antibiotics Currently in Clinical Development As of February 2014, there are at least 45 new antibiotics1 with the potential to treat serious bacterial infections in clinical development for the U.S. market. The success rate for drug development is low; at best, only 1 in 5 candidates that enter human testing will be approved for patients.* This snapshot of the antibiotic pipeline will be updated periodically as products advance or are known to drop out of development. Please contact Rachel Zetts at [email protected] or 202-540-6557 with additions or updates. Cited for Potential Development Known QIDP4 Drug Name Company Drug Class Activity Against Gram- Potential Indication(s)5 Phase2 Designation? Negative Pathogens?3 New Drug Application Acute bacterial skin and skin structure Oritavancin The Medicines Company Glycopeptide Yes (NDA) submitted infections New Drug Application Acute bacterial skin and skin structure Dalbavancin Durata Therapeutics Lipoglycopeptide Yes (NDA) submitted infections NDA submitted (for Acute bacterial skin and skin structure acute bacterial skin infections, hospital acquired bacterial Tedizolid Cubist Pharmaceuticals Oxazolidinone Yes and skin structure pneumonia/ventilator acquired bacterial infection indication) pneumonia ACHN-975 Phase 1 Achaogen LpxC inhibitor Yes Bacterial infections Acute bacterial skin and skin structure infections6, methicillin-resistant Fabl inhibitor (AFN-1252 AFN-1720 Phase 1 Affinium Pharmaceuticals Staphylococcus aureus (MRSA) pulmonary pro-drug) infections