AMR Surveillance in Pharma: a Case-Study for Data Sharingauthor by Professor Barry Cookson

Total Page:16

File Type:pdf, Size:1020Kb

AMR Surveillance in Pharma: a Case-Study for Data Sharingauthor by Professor Barry Cookson AMR Open Data Initiative AMR Surveillance in Pharma: a case-study for data sharingauthor by Professor Barry Cookson External Consultant to Project eLibrary • Division of Infection and Immunity, Univ. College London ESCMID• Dept. of Microbiology, © St Thomas’ Hospital Background of “90 day Project” Addressed some recommendations of the first Wellcome funded multi-disciplinary workshop (included Pharma Academia & Public Health invitees: 27thauthor July 2017 (post the Davos Declaration): by 1) Review the landscape of existing Pharma AMR programmes, their protocols,eLibrary data standards and sets 2) Develop a "portal" (register/platform) to access currently available AMR Surveillance data ESCMID Important ©to emphasise that this is a COLLABORATION between Pharma and others Overview of Questionnaire Content • General information - including name,author years active, countries, antimicrobials, microorganisms.by • Methodology - including accreditation, methodology for; surveillance, isolate collection, organism identification, breakpointseLibrary used, • Dataset - including data storage methodology, management and how accessed. ESCMID © 13 Company Responses author 7 by 3 3 eLibrary ESCMID © Structure of register Companies can have different ways of referring to their activities: We had to choose a consistent framework. author Companies Companyby 1 Programmes Programme A Programme B eLibrary Antimicrobials 1 2 3 4 5 company’s product comparator company’s product antimicrobials Programmes canESCMID contain multiple studies (e.g. Pfizer has© single global programme "ATLAS" containing all studies) Open-Access Register https://amr.theodi.org/6 Structure: author by eLibrary ESCMID © author by eLibrary ESCMID © What sort of data Pharmaceutical activities: - High-quality standardised data are collected? - Large Antimicrobial panel Lab Based - Many countries Surveillance - Stored in spreadsheets or (a WHO GLASS databases (integration a massive Category) author Reported challenge) by Culture-confirmed Lab tests for organisms Specimens obtained eLibrary People who seek healthcare People who become ill People infected with AMR bacteria ESCMID AMR surveillance© ‘pyramid’ What sort of data Programmes vary in: are collected? - Infection sites - Microorganisms and - Antimicrobials tested Issues can relateauthor to: Reported - Ability to identify Hospital- versus Community-by Acquired infections Culture-confirmed as inconsistently recorded or defined Lab tests for organisms - Denominator data: usually % susceptible organisms Specimens obtained BUT many variations: eLibrary e.g . limiting % per site or People who seek healthcare organism numbers People who become ill People infected with AMR bacteria ESCMID Resonates with SUSPIRE study: AMR surveillance© ‘pyramid’ CMI, 2018;24:105-9 Surveillance targets vary considerably between companies: in aggregate…… Microorganisms Antimicrobials Infection sites Acinetobacter baumannii author Burkholderia cepacia Amikacin Blood stream Citrobacter spp. Amoxicillin/clavulanateby Intra-abdominal Enterobacter spp. Ampicillin/sulbactam Skin Enterococcus spp. Azithromycin Soft tissue Escherichia coli Aztreonam/avibactam Respiratory tract Haemophilus influenzae Bedaquiline Urinary tract Klebsiella pneumoniae BenzylpenicillineLibrary Moraxella catarrhalis Biapenem Mycobacterium tuberculosis Capreomycin Pseudomonas aeruginosa Cefaclor/Cefazolin/Cefcapene Streptococcus pneumoniae Cefdinir/Cefditoren/Cefepime Serratia spp. Cefiderocol etc. Staphylococcus aureusESCMID N.B. not comprehensive list Staphylococcus spp.© and not all equally Stenotrophomonas maltophilia represented What is the scale of the data? author by No. of eLibrary ProgrammesESCMID in register have data on isolates from a total of © 93 countries and 85 antimicrobials. Sub Saharan Africa Poor Datasets: format, management, access Format Databases (7/12) - managed by specialised companies e.g. Micron, JMI, IHMA (via SLDN), LGC. author Spreadsheets (5/12) - managed internally by Access • Online password-protected to centre participants • Some datasets are public to some extent: ATLAS (Pfizer) - www.atlas-surveillance.comeLibrary (updated every 6-9 months) SMART (Merck) - www.globalsmartsite.com SOAR (GSK) - raw data are now available ScientificESCMID Publications - often include tabulated MIC distributions © Example of use MICs for cefuroxime against Streptococcus pneumoniae from China SOAR 114620 (GSK) • Downloaded author anonymized data from register for all isolates from India andby China N.B. this distribution ~2011-2014 was published as • Subsetted to S. Table 4 in the pneumoniae and cefuroxime in China associated GSK • Generated distribution SOAR publication: • Plotted Hu et al. (2016) JAC doi: 10.1093/jac/dkw065 % of isolates eLibrary Here Liam Shaw generated it from the raw data ESCMID © Second Workshop March 2018: Four Key Actions • Develop a public–private partnership between industry, public health organisations and other AMR initiatives for a more informative, coherent and openly accessible AMR data landscape author • Enable open innovation and catalyse databy sharing within the AMR community by encouraging reuse of shared industry AMR data with case studies (Wellcome to launch a Data Reuse prize ~Jan. 2019) • Facilitate development of commoneLibrary methodological and metadata standards and data governance frameworks so enabling the scientific and public health communities to utilise and compare data use with existing in-country datasets • Online portal ESCMIDlaunch managed and© governed by an independent party ` Collaboration Personnel (and Acknowledgements) Steering group 10 Company Nominated David Beardmore (ODI), Chair Lead Collaborators Pauline L’Henaff (ODI), Project Manager Seamus O’Brien (Pfizer now GARDP) Achaogen: Tiffany Keepers Didem Torumkuney (GSK) Allergan: author Ian Critchley Andrew Freeman (GSK) GSK: Didem Torumkuney Seamus O’Brien (Pfizer now GARDP) J&J: by Karen Grosser Najib Rehman (Pfizer now Merck: Mary Motyl, Kokoro & Farma Trust) Silas Holland Barry Cookson (Consultant: UCL) Novartis: Susana Goncalves Liam Shaw (Scientist: UCL) Pfizer: Michael Dowzicky Nandini Shetty (PHE) Roche: Claudia Zampaloni Allison Holt (Longitude 174) eLibrarySanofi: Christine Luxemburger Wellcome: Francesca Chiara, Shionogi: Yoshiri Yamano, Joanna Wiecek, Ghada Zoubiane Gareth Morgan &Tim Jinks One Data Institute technical team (IT)ESCMID Phil Lang, Olivier Thereaux & Myriam Wiesenfeld© .
Recommended publications
  • Redalyc.Patterns of Antimicrobial Therapy in Acute Tonsillitis: a Cross
    Anais da Academia Brasileira de Ciências ISSN: 0001-3765 [email protected] Academia Brasileira de Ciências Brasil JOHN, LISHA J.; CHERIAN, MEENU; SREEDHARAN, JAYADEVAN; CHERIAN, TAMBI Patterns of Antimicrobial therapy in acute tonsillitis: A cross-sectional Hospital-based study from UAE Anais da Academia Brasileira de Ciências, vol. 86, núm. 1, enero-marzo, 2014, pp. 451-457 Academia Brasileira de Ciências Rio de Janeiro, Brasil Available in: http://www.redalyc.org/articulo.oa?id=32730090032 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Anais da Academia Brasileira de Ciências (2014) 86(1): 451-457 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 http://dx.doi.org/10.1590/0001-3765201420120036 www.scielo.br/aabc Patterns of Antimicrobial therapy in acute tonsillitis: A cross-sectional Hospital-based study from UAE LISHA J. JOHN1, MEENU CHERIAN2, JAYADEVAN SREEDHARAN3 and TAMBI CHERIAN2 1Department of Pharmacology, Gulf Medical University, 4184, Ajman, United Arab Emirates 2Department of ENT, Gulf Medical College Hospital, 4184, Ajman, United Arab Emirates 3Statistical Support Facility, Centre for Advanced Biomedical Research and Innovation, Gulf Medical University, 4184, Ajman, United Arab Emirates Manuscript received on December 20, 2012; accepted for publication on October 14, 2013 ABSTRACT Background: Diseases of the ear, nose and throat (ENT) are associated with significant impairment of the daily life and a major cause for absenteeism from work.
    [Show full text]
  • United States Patent ( 10 ) Patent No.: US 10,561,6759 B2 Griffith Et Al
    US010561675B2 United States Patent ( 10 ) Patent No.: US 10,561,6759 B2 Griffith et al. (45 ) Date of Patent : * Feb . 18 , 2020 (54 ) CYCLIC BORONIC ACID ESTER ( 58 ) Field of Classification Search DERIVATIVES AND THERAPEUTIC USES CPC A61K 31/69 ; A61K 31/396 ; A61K 31/40 ; THEREOF A61K 31/419677 (71 ) Applicant: Rempex Pharmaceuticals , Inc. , (Continued ) Lincolnshire , IL (US ) (56 ) References Cited (72 ) Inventors : David C. Griffith , San Marcos, CA (US ) ; Michael N. Dudley , San Diego , U.S. PATENT DOCUMENTS CA (US ) ; Olga Rodny , Mill Valley , CA 4,194,047 A 3/1980 Christensen et al . ( US ) 4,260,543 A 4/1981 Miller ( 73 ) Assignee : REMPEX PHARMACEUTICALS , ( Continued ) INC . , Lincolnshire , IL (US ) FOREIGN PATENT DOCUMENTS ( * ) Notice : Subject to any disclaimer, the term of this EP 1550657 A1 7/2005 patent is extended or adjusted under 35 JP 2003-229277 A 8/2003 U.S.C. 154 ( b ) by 1129 days. (Continued ) This patent is subject to a terminal dis claimer . OTHER PUBLICATIONS Abdel -Magid et al. , “ Reductive Amination ofAldehydes and Ketones ( 21) Appl. No .: 13 /843,579 with Sodium Triacetoxyborohydride: Studies on Direct and Indirect Reductive Amination Procedures ” , J Org Chem . ( 1996 )61 ( 11 ): 3849 ( 22 ) Filed : Mar. 15 , 2013 3862 . (65 ) Prior Publication Data (Continued ) US 2013/0331355 A1 Dec. 12 , 2013 Primary Examiner — Shengjun Wang Related U.S. Application Data (74 ) Attorney, Agent, or Firm — Wilmer Cutler Pickering (60 ) Provisional application No.61 / 656,452 , filed on Jun . Hale and Dorr LLP 6 , 2012 (57 ) ABSTRACT (51 ) Int. Ci. A61K 31/69 ( 2006.01) Method of treating or ameliorating a bacterial infection A61K 31/00 ( 2006.01 ) comprising administering a composition comprising a cyclic (Continued ) boronic acid ester compound in combination with a car ( 52 ) U.S.
    [Show full text]
  • Consideration of Antibacterial Medicines As Part Of
    Consideration of antibacterial medicines as part of the revisions to 2019 WHO Model List of Essential Medicines for adults (EML) and Model List of Essential Medicines for children (EMLc) Section 6.2 Antibacterials including Access, Watch and Reserve Lists of antibiotics This summary has been prepared by the Health Technologies and Pharmaceuticals (HTP) programme at the WHO Regional Office for Europe. It is intended to communicate changes to the 2019 WHO Model List of Essential Medicines for adults (EML) and Model List of Essential Medicines for children (EMLc) to national counterparts involved in the evidence-based selection of medicines for inclusion in national essential medicines lists (NEMLs), lists of medicines for inclusion in reimbursement programs, and medicine formularies for use in primary, secondary and tertiary care. This document does not replace the full report of the WHO Expert Committee on Selection and Use of Essential Medicines (see The selection and use of essential medicines: report of the WHO Expert Committee on Selection and Use of Essential Medicines, 2019 (including the 21st WHO Model List of Essential Medicines and the 7th WHO Model List of Essential Medicines for Children). Geneva: World Health Organization; 2019 (WHO Technical Report Series, No. 1021). Licence: CC BY-NC-SA 3.0 IGO: https://apps.who.int/iris/bitstream/handle/10665/330668/9789241210300-eng.pdf?ua=1) and Corrigenda (March 2020) – TRS1021 (https://www.who.int/medicines/publications/essentialmedicines/TRS1021_corrigenda_March2020. pdf?ua=1). Executive summary of the report: https://apps.who.int/iris/bitstream/handle/10665/325773/WHO- MVP-EMP-IAU-2019.05-eng.pdf?ua=1.
    [Show full text]
  • Cyslabdan, a New Potentiator of Imipenem Activity Against Methicillin-Resistant Staphylococcus Aureus, Produced by Streptomyces Sp
    J. Antibiot. 61(1): 7–10, 2008 THE JOURNAL OF ORIGINAL ARTICLE ANTIBIOTICS Cyslabdan, a New Potentiator of Imipenem Activity against Methicillin-resistant Staphylococcus aureus, Produced by Streptomyces sp. K04-0144 II. Biological Activities Atsushi Fukumoto, Yong-Pil Kim, Hideaki Hanaki, Kazuro Shiomi, Hiroshi Tomoda, Satoshi O¯ mura Received: October 5, 2007 / Accepted: December 4, 2007 © Japan Antibiotics Research Association Abstract Cyslabdan produced by Streptomyces sp. K04- 0144 was found to potentiate imipenem activity against methicillin-resistant Staphylococcus aureus (MRSA). The MIC value of imipenem against MRSA was reduced from 16 to 0.015 mg/ml in combination with cyslabdan. Study on anti-MRSA activity of other typical antibiotics in combination with cyslabdan showed that the potentiating activity was limited to b-lactam antibiotics. Furthermore, among b-lactam antibiotics, the activity of carbapenems Fig. 1 Structure of cyslabdan. was most remarkably poteintiated by cyslabdan. Keywords cyslabdan, imipenem potentiator, cyslabdan including potentiation of imipenem activity methicillin-resistant Staphylococcus aureus, MRSA, against MRSA are described. Streptomyces sp. K04-0144, b-lactam Materials and Methods Introduction Materials During our screening for potentiators of imipenem activity The following materials were purchased from commercial against methicillin-resistant Staphylococcus aureus sources: Cloxacillin (ICN Biomedicals), ampicillin (Wako), (MRSA) from microbial metabolites, cyslabdan (Fig. 1) cefalexin (Wako), cefazolin (Wako), ciprofloxacin (Wako), was isolated from the culture broth of Streptomyces sp. vancomycin (Wako), tetracycline (Wako), biapenem (Meiji K04-0144. The compound has a labdane-type diterpene Seika), streptomycin (Meiji Seika), meropenem (Sumitomo skeleton connecting with an N-acetylcysteine via thioether Pharmaceuticals), panipenem (Sankyo), penicillin G linkage [1]. In this study, the biological activities of (Sigma), cefotaxime (Sigma), cefmetazole (Sigma), and S.
    [Show full text]
  • WO 2010/025328 Al
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date 4 March 2010 (04.03.2010) WO 2010/025328 Al (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 31/00 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, (21) International Application Number: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, PCT/US2009/055306 DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, 28 August 2009 (28.08.2009) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (25) Filing Language: English NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, (26) Publication Language: English SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 61/092,497 28 August 2008 (28.08.2008) US (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant (for all designated States except US): FOR¬ GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, EST LABORATORIES HOLDINGS LIMITED [IE/ ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, —]; 18 Parliament Street, Milner House, Hamilton, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, Bermuda HM12 (BM).
    [Show full text]
  • Computational Antibiotics Book
    Andrew V DeLong, Jared C Harris, Brittany S Larcart, Chandler B Massey, Chelsie D Northcutt, Somuayiro N Nwokike, Oscar A Otieno, Harsh M Patel, Mehulkumar P Patel, Pratik Pravin Patel, Eugene I Rowell, Brandon M Rush, Marc-Edwin G Saint-Louis, Amy M Vardeman, Felicia N Woods, Giso Abadi, Thomas J. Manning Computational Antibiotics Valdosta State University is located in South Georgia. Computational Antibiotics Index • Computational Details and Website Access (p. 8) • Acknowledgements (p. 9) • Dedications (p. 11) • Antibiotic Historical Introduction (p. 13) Introduction to Antibiotic groups • Penicillin’s (p. 21) • Carbapenems (p. 22) • Oxazolidines (p. 23) • Rifamycin (p. 24) • Lincosamides (p. 25) • Quinolones (p. 26) • Polypeptides antibiotics (p. 27) • Glycopeptide Antibiotics (p. 28) • Sulfonamides (p. 29) • Lipoglycopeptides (p. 30) • First Generation Cephalosporins (p. 31) • Cephalosporin Third Generation (p. 32) • Fourth-Generation Cephalosporins (p. 33) • Fifth Generation Cephalosporin’s (p. 34) • Tetracycline antibiotics (p. 35) Computational Antibiotics Antibiotics Covered (in alphabetical order) Amikacin (p. 36) Cefempidone (p. 98) Ceftizoxime (p. 159) Amoxicillin (p. 38) Cefepime (p. 100) Ceftobiprole (p. 161) Ampicillin (p. 40) Cefetamet (p. 102) Ceftoxide (p. 163) Arsphenamine (p. 42) Cefetrizole (p. 104) Ceftriaxone (p. 165) Azithromycin (p.44) Cefivitril (p. 106) Cefuracetime (p. 167) Aziocillin (p. 46) Cefixime (p. 108) Cefuroxime (p. 169) Aztreonam (p.48) Cefmatilen ( p. 110) Cefuzonam (p. 171) Bacampicillin (p. 50) Cefmetazole (p. 112) Cefalexin (p. 173) Bacitracin (p. 52) Cefodizime (p. 114) Chloramphenicol (p.175) Balofloxacin (p. 54) Cefonicid (p. 116) Cilastatin (p. 177) Carbenicillin (p. 56) Cefoperazone (p. 118) Ciprofloxacin (p. 179) Cefacetrile (p. 58) Cefoselis (p. 120) Clarithromycin (p. 181) Cefaclor (p.
    [Show full text]
  • Different Antibiotic Treatments for Group a Streptococcal Pharyngitis (Review)
    Different antibiotic treatments for group A streptococcal pharyngitis (Review) van Driel ML, De Sutter AIM, Keber N, Habraken H, Christiaens T This is a reprint of a Cochrane review, prepared and maintained by The Cochrane Collaboration and published in The Cochrane Library 2010, Issue 10 http://www.thecochranelibrary.com Different antibiotic treatments for group A streptococcal pharyngitis (Review) Copyright © 2011 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd. TABLE OF CONTENTS HEADER....................................... 1 ABSTRACT ...................................... 1 PLAINLANGUAGESUMMARY . 2 BACKGROUND .................................... 2 OBJECTIVES ..................................... 3 METHODS ...................................... 3 RESULTS....................................... 5 DISCUSSION ..................................... 8 AUTHORS’CONCLUSIONS . 11 ACKNOWLEDGEMENTS . 11 REFERENCES ..................................... 12 CHARACTERISTICSOFSTUDIES . 16 DATAANDANALYSES. 43 Analysis 1.1. Comparison 1 Cephalosporin versus penicillin, Outcome 1 Resolution of symptoms post-treatment (ITT analysis). ................................... 45 Analysis 1.2. Comparison 1 Cephalosporin versus penicillin, Outcome 2 Resolution of symptoms post-treatment (evaluable participants)................................... 46 Analysis 1.3. Comparison 1 Cephalosporin versus penicillin, Outcome 3 Resolution of symptoms within 24 hours of treatment(ITTanalysis).. 47 Analysis 1.4. Comparison 1 Cephalosporin versus penicillin, Outcome
    [Show full text]
  • Antibiotics Therapy for Acute Bacterial Tonsillitis
    Pract Otol(Kyoto) 96:11;983~987, 2003 983 Antibiotics Therapy for Acute Bacterial Tonsillitis Shinya Takano and Hideki Kurihara Tokyo Women's Medical University Daini Hospital We reviewed the treatment of 96 patients with acute bacterial tonsillitis. Using multivariate analysis, we examined whether oral or intravenous administration of antibiotics (cephems, penicillin, other ƒÀ-lactams, tetracycline, clindamycin, new quinolones, and macrorides) had an influence on the treatment period. We found that the best class of oral antibiotics for acute bacterial tonsillitis was cefcapene pivoxil (CFPN-PI) and the best intravenous agent was sulbactum/cefoperazone (SBT/CPZ). Key words:retrospective study, acute bacterial tonsillitis, antibiotics, oral administration, intravenous injection Introduction tis such as infectious mononucleosis were excluded by Acute bacterial tonsillitis is one form of upper respira- blood tests. tory tract infection, in which bacteria invade the palatine We selected the administration of antibiotics at ran- tonsil and cause fever, sore throat, pus, and pain on swal- dom. lowing. The day when symptoms resolved and the WBC and In Europe and The United States, the drug of first CRP were normalized was defined as a "the day of cure" choice for acute bacterial tonsillitis is penicillin. How- and the treatment period defined as the interval between ever, there have been no reports on the first line treat- the first examination and this day. Using multivariate ment for acute tonsillitis in Japan, and only new analysis, we examined whether oral administration antibiotics have been examined for effectiveness against (levofloxacin (LVFX), clarithromycin (CAM), minocy- acute tonsillitis. cline (MIND), cefcapene pivoxil (CFPN-PI), ampicillin Penicillin is contraindicated in patients with infectious (ABPC), faropenem (FRPM), and no medication) or mononucleosis because it causes an exacerbation of their intravenous administration (cefepirome (CPR), clinda- rash1).
    [Show full text]
  • BMJ Open Is Committed to Open Peer Review. As Part of This Commitment We Make the Peer Review History of Every Article We Publish Publicly Available
    BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available. When an article is published we post the peer reviewers’ comments and the authors’ responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to. The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript. BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (http://bmjopen.bmj.com). If you have any questions on BMJ Open’s open peer review process please email [email protected] BMJ Open Pediatric drug utilization in the Western Pacific region: Australia, Japan, South Korea, Hong Kong and Taiwan Journal: BMJ Open ManuscriptFor ID peerbmjopen-2019-032426 review only Article Type: Research Date Submitted by the 27-Jun-2019 Author: Complete List of Authors: Brauer, Ruth; University College London, Research Department of Practice and Policy, School of Pharmacy Wong, Ian; University College London, Research Department of Practice and Policy, School of Pharmacy; University of Hong Kong, Centre for Safe Medication Practice and Research, Department
    [Show full text]
  • Chemical Properties Biological Description Solubility Information
    Data Sheet (Cat.No.T6411) Biapenem Chemical Properties CAS No.: 120410-24-4 Formula: C15H18N4O4S Molecular Weight: 350.39 Appearance: N/A Storage: 0-4℃ for short term (days to weeks), or -20℃ for long term (months). Biological Description Description Biapenem is a 1-beta-methylcarbapenem antibiotic with a wide range of antibacterial activity. Biapenem has similar antibacterial activity to that of imipenem, but is more stable against human renal dehydropeptidase-I and with less neurotoxicity. Targets(IC50) Others: None In vitro Biapenem has activity comparable to those of Imipenem and Meropenem against all groups of anaerobes with MICs for 90% of the strains tested of 0.06 to 2 mg/mL. Biapenem is more active than ampicillin-sulbactam, ticarcillin-clavulanate, piperacillin, cefoxitin, cefotaxime, and ceftriaxone. Biapenem is also active against all of the B. capillosus, Prevotella, Clostridium, and Eubacterium strains and anaerobic cocci tested. [1] Biapenem shows broad antibacterial activity against both Gram-positive and Gram-negative clinical isolates. [2] Biapenem is found to be approximately as active as imipenem, inhibiting 90% of isolates of most species at concentrations within one dilution of the MIC of imipenem for 90% of the isolates. [3] In vivo Biapenem results in significantly fewer viable bacteria than in the lungs of control mice. Biapenem prevents the progression of lung inflammation, including alveolar neutrophil infiltration and hemorrhage. Biapenem significantly prolongs survival and reduces the number of viable bacteria
    [Show full text]
  • Revision of Precautions
    Published by Translated by Ministry of Health, Labour and Welfare Pharmaceuticals and Medical Devices Agency This English version is intended to be a reference material to provide convenience for users. In the event of inconsistency between the Japanese original and this English translation, the former shall prevail. Revision of Precautions Cefmenoxime hydrochloride (preparations for otic and nasal use), chloramphenicol (solution for topical use, oral dosage form), tetracycline hydrochloride (powders, capsules), polymixin B sulfate (powders), clindamycin hydrochloride, clindamycin phosphate (injections), benzylpenicillin potassium, benzylpenicillin benzathine hydrate, lincomycin hydrochloride hydrate, aztreonam, amoxicillin hydrate, ampicillin hydrate, ampicillin sodium, potassium clavulanate/amoxicillin hydrate, dibekacin sulfate (injections), sultamicillin tosilate hydrate, cefaclor, cefazolin sodium, cefazolin sodium hydrate, cephalexin (oral dosage form with indications for otitis media), cefalotin sodium, cefixime hydrate, cefepime dihydrochloride hydrate, cefozopran hydrochloride, cefotiam hydrochloride (intravenous injections), cefcapene pivoxil hydrochloride hydrate, cefditoren pivoxil, cefdinir, ceftazidime hydrate, cefteram pivoxil, ceftriaxone sodium hydrate, cefpodoxime proxetil, cefroxadine hydrate, cefuroxime axetil, tebipenem pivoxil, doripenem hydrate, bacampicillin hydrochloride, panipenem/betamipron, faropenem sodium hydrate, flomoxef sodium, fosfomycin calcium hydrate, meropenem hydrate, chloramphenicol sodium succinate,
    [Show full text]
  • European Surveillance of Healthcare-Associated Infections in Intensive Care Units
    TECHNICAL DOCUMENT European surveillance of healthcare-associated infections in intensive care units HAI-Net ICU protocol Protocol version 1.02 www.ecdc.europa.eu ECDC TECHNICAL DOCUMENT European surveillance of healthcare- associated infections in intensive care units HAI-Net ICU protocol, version 1.02 This technical document of the European Centre for Disease Prevention and Control (ECDC) was coordinated by Carl Suetens. In accordance with the Staff Regulations for Officials and Conditions of Employment of Other Servants of the European Union and the ECDC Independence Policy, ECDC staff members shall not, in the performance of their duties, deal with a matter in which, directly or indirectly, they have any personal interest such as to impair their independence. This is version 1.02 of the HAI-Net ICU protocol. Differences between versions 1.01 (December 2010) and 1.02 are purely editorial. Suggested citation: European Centre for Disease Prevention and Control. European surveillance of healthcare- associated infections in intensive care units – HAI-Net ICU protocol, version 1.02. Stockholm: ECDC; 2015. Stockholm, March 2015 ISBN 978-92-9193-627-4 doi 10.2900/371526 Catalogue number TQ-04-15-186-EN-N © European Centre for Disease Prevention and Control, 2015 Reproduction is authorised, provided the source is acknowledged. TECHNICAL DOCUMENT HAI-Net ICU protocol, version 1.02 Table of contents Abbreviations ...............................................................................................................................................
    [Show full text]