Tanycytes of the Adult Hypothalamic Third Ventricle Include Distinct Populations of FGF-Responsive Neural Progenitors

Total Page:16

File Type:pdf, Size:1020Kb

Tanycytes of the Adult Hypothalamic Third Ventricle Include Distinct Populations of FGF-Responsive Neural Progenitors ARTICLE Received 27 Nov 2012 | Accepted 23 May 2013 | Published 27 Jun 2013 DOI: 10.1038/ncomms3049 OPEN a-Tanycytes of the adult hypothalamic third ventricle include distinct populations of FGF-responsive neural progenitors S.C. Robins1,2,*, I. Stewart1,*, D.E McNay3,4,*, V. Taylor5, C. Giachino5, M. Goetz6, J. Ninkovic6, N. Briancon3,7, E. Maratos-Flier3, J.S Flier3,8, M.V Kokoeva2,3 & M. Placzek1 Emerging evidence suggests that new cells, including neurons, can be generated within the adult hypothalamus, suggesting the existence of a local neural stem/progenitor cell niche. Here, we identify a-tanycytes as key components of a hypothalamic niche in the adult mouse. Long-term lineage tracing in vivo using a GLAST::CreERT2 conditional driver indicates that a-tanycytes are self-renewing cells that constitutively give rise to new tanycytes, astrocytes and sparse numbers of neurons. In vitro studies demonstrate that a-tanycytes, but not b-tanycytes or parenchymal cells, are neurospherogenic. Distinct subpopulations of a-tanycytes exist, amongst which only GFAP-positive dorsal a2-tanycytes possess stem-like neurospherogenic activity. Fgf-10 and Fgf-18 are expressed specifically within ventral tanycyte subpopulations; a-tanycytes require fibroblast growth factor signalling to maintain their proliferation ex vivo and elevated fibroblast growth factor levels lead to enhanced proliferation of a-tanycytes in vivo. Our results suggest that a-tanycytes form the critical component of a hypothalamic stem cell niche, and that local fibroblast growth factor signalling governs their proliferation. 1 MRC Centre for Developmental and Biomedical Genetics and Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK. 2 Department of Medicine, McGill University, Royal Victoria Hospital, Montreal, Quebec, Canada H3A 1A1. 3 Beth Israel Deaconess Medical Centre, Division of Endocrinology, Diabetes and Metabolism, Centre for Life Sciences, Boston, Massachusetts 02215, USA. 4 Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB392PN, UK. 5 Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland. 6 Institute for Stem Cell Research, Helmholtz Center, Munich, Germany. 7 Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA. 8 Harvard Medical School, 25 Shattuck Street, Boston, Massachusetts 02115, USA. * These authors contributed equally to this work. Correspondence and requests for materials should be addressed to M.P. (email: m.placzek@sheffield.ac.uk). NATURE COMMUNICATIONS | 4:2049 | DOI: 10.1038/ncomms3049 | www.nature.com/naturecommunications 1 & 2013 Macmillan Publishers Limited. All rights reserved. ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms3049 dult neural stem cell niches, harbouring neural stem and migration route for newborn cells. However, the sparse numbers progenitor cells and supporting adult neurogenesis, have of neurons that we observe suggests that a-tanycytes are not Abeen well described in the subventricular zone (SVZ) of overtly neurogenic in the unchallenged adult mouse. We show, the lateral ventricles and the subgranular zone (SGZ) of the further, that defined tanycyte subpopulations have different hippocampal dentate gyrus. In addition, in vivo analyses show neural precursor characteristics: GLAST À ive b-tanycytes are constitutive proliferation, neurogenesis and astrocyte generation unable to form neurospheres, while GLAST þ ive a-tanycytes are within a third region of the adult brain, the hypothalamus1–5. neurosphere-forming. Of these, only the dorsal a2 subset have the Here, neurogenesis and gliogenesis can be attenuated through the unlimited self-renewal capacity of stem cells; other subsets appear manipulation of secreted trophic factors, de novo neurogenesis, in to represent progenitors with a more limited self-renewal particular, associated with energy balance1,2,4,6,7. capacity. Finally, through infusion of fibroblast growth factor The precise location, identity and potential of adult hypotha- (FGF)-2 in vivo and inhibition of FGF signalling ex vivo,we lamic stem/progenitor cell(s), however, remain unclear. Within demonstrate that FGF signalling is necessary and sufficient for the adult hypothalamus, cells around the third ventricle form a-tanycyte proliferation. Our study raises the intriguing possibility neurospheres (a hallmark of neural stem cells (NSCs)8–10). that local FGF signalling governs cellular homeostasis within a These studies have raised the possibility that the adult hypothalamic stem cell niche. hypothalamus contains NSCs in a niche near the third ventricle. However, tanycytes, ependymocytes, subventricular Results astrocytes and parenchymal glial cells all reside near the third Distinct tanycyte subpopulations line the third ventricle.We ventricle, and each is a potential adult stem and progenitor cell first confirmed the location of hypothalamic tanycytes, examining candidate2,5–8,11–13. expression of the intermediate filament marker, Vimentin. Hypothalamic tanycytes resemble embryonic radial glia, with a Expression is restricted to tanycytes (Fig. 1a) in the central/pos- cell body at the ventricular zone and a long basally extending terior hypothalamus (Supplementary Fig. S1a) and reveals their process, their morphology well-suited to their postulated role as cardinal morphological features: a cell body located in the ven- modulators of neuroendocrine activity and homeostasis (reviewed 13–16 tricular lining, and a long basally projecting process (Fig. 1a, in ). Within the hypothalamus, tanycyte cell bodies are right-hand panels) that distinguishes them from ependymocytes. strictly localised to the central and posterior hypothalamus (level The position and projection of the Vimentin þ ive process defines of the median eminence and premammillary nucleus, classic tanycyte subsets: b-tanycytes line the median eminence; respectively). Here they constitute the main cell type lining the a2-tanycytes reside adjacent to the arcuate nucleus; a1-tanycytes ventral third of the third ventricle, interdigitating with ciliated extend from the level of the ventromedial nucleus to the dorso- ependymal cells that lack a basal process (ependymocytes) more 25,26 17–21 medial nucleus (Fig. 1) . Tanycytes express proteins associated dorsally . Morphological studies have mapped and defined with NSCs in other brain regions: all tanycytes appear to co- subpopulations of tanycytes according to their position and express Vimentin and Nestin (Fig. 1b) and many appear to b process projection. Ventral-most -tanycytes line the express SOXB1 proteins (Supplementary Fig. S1a,b)7. infundibulum and median eminence, while adjacent a-tanycytes Double-label analyses with Nestin shows expression of GFAP in line regions of the ventricular zone (VZ) that are adjacent to tanycytes lining the third ventricle (Fig. 1c). However, in contrast hypothalamic nuclei and project laterally, contacting capillaries to Vimentin/Nestin, GFAP is restricted to particular tanycyte and neurons of the arcuate and ventromedial nuclei en 14,18,19 subsets. Expression is detected, in particular, on dorsal a2-tanycytes passant . (da2) and some a1-tanycytes (Fig. 1c,d green and purple Increasing numbers of studies have focused attention on arrowheads, respectively). Little/no GFAP expression is detected tanycytes as potential adult NSCs. In the adult rat, fate-mapping on ventral-most a2-tanycytes (va2) or b-tanycytes (Fig. 1c,d blue experiments of the hypothalamic ventricular wall first showed and red arrowheads, respectively). Thus, GFAP expression that proliferating ependymal cells, including but not exclusively distinguishes da2-tanycytes from va2- and b-tanycytes. tanycytes, can give rise to progeny that migrate along tanycyte 11 Together, these observations confirm previous studies showing processes . Additional studies in the adult rat revealed an that tanycytes occupy the ventricular lining of the hypothalamus, enhanced proliferation of tanycytes in response to IGF-16. In the confirm that tanycytes express markers indicative of neural stem/ mouse, lineage-tracing studies have demonstrated that a subset of progenitor cells and reveal the presence of different tanycyte b-tanycytes, the b2-tanycytes, can proliferate and are neurogenic, subsets. contributing new neurons to hypothalamic nuclei in the postnatal/juvenile period22. Furthermore, a recent comple- mentary study suggests that ventrally located tanycytes, including GLAST::CreERT2 labels a-tanycytes.Althoughrecentstudies b-tanycytes, can proliferate in early adulthood, giving rise to new have focused attention on b2-tanycytes as proliferating progeni- neurons23. However, in contrast to the SVZ of the lateral ventricle tors22,23, earlier studies suggested that a-tanycytes may harbour wall24, lineage-tracing studies have not yet identified a self- neural stem/progenitor potential in the adult6,11.Toexamine renewing multipotent neural stem-like cell in the adult. It remains whether adult a-tanycytes possess neural stem/progenitor unclear, moreover, if adult tanycytes have stem-like or functions, we searched for an appropriate genetic means to label progenitor-like activity; indeed it is unknown if adult tanycytes them. Adult GLAST::CreERT2 mice27,28 were crossed with Cre are homogeneous in terms of their neural precursor status. These reporter mice that ubiquitously express either b-gal or GFP (z/EG questions, and the question of the extent of activity of adult mice) following
Recommended publications
  • Endocannabinoids in Body Weight Control
    pharmaceuticals Review Endocannabinoids in Body Weight Control Henrike Horn †, Beatrice Böhme †, Laura Dietrich and Marco Koch * Institute of Anatomy, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany; [email protected] (H.H.); [email protected] (B.B.); [email protected] (L.D.) * Correspondence: [email protected]; Tel.: +49-341-97-22047 † These authors contributed equally. Received: 28 April 2018; Accepted: 28 May 2018; Published: 30 May 2018 Abstract: Maintenance of body weight is fundamental to maintain one’s health and to promote longevity. Nevertheless, it appears that the global obesity epidemic is still constantly increasing. Endocannabinoids (eCBs) are lipid messengers that are involved in overall body weight control by interfering with manifold central and peripheral regulatory circuits that orchestrate energy homeostasis. Initially, blocking of eCB signaling by first generation cannabinoid type 1 receptor (CB1) inverse agonists such as rimonabant revealed body weight-reducing effects in laboratory animals and men. Unfortunately, rimonabant also induced severe psychiatric side effects. At this point, it became clear that future cannabinoid research has to decipher more precisely the underlying central and peripheral mechanisms behind eCB-driven control of feeding behavior and whole body energy metabolism. Here, we will summarize the most recent advances in understanding how central eCBs interfere with circuits in the brain that control food intake and
    [Show full text]
  • Diversity of Adult Neural Stem and Progenitor Cells in Physiology and Disease
    cells Review Diversity of Adult Neural Stem and Progenitor Cells in Physiology and Disease Zachary Finkel, Fatima Esteban, Brianna Rodriguez, Tianyue Fu, Xin Ai and Li Cai * Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA; [email protected] (Z.F.); [email protected] (F.E.); [email protected] (B.R.); [email protected] (T.F.); [email protected] (X.A.) * Correspondence: [email protected] Abstract: Adult neural stem and progenitor cells (NSPCs) contribute to learning, memory, main- tenance of homeostasis, energy metabolism and many other essential processes. They are highly heterogeneous populations that require input from a regionally distinct microenvironment including a mix of neurons, oligodendrocytes, astrocytes, ependymal cells, NG2+ glia, vasculature, cere- brospinal fluid (CSF), and others. The diversity of NSPCs is present in all three major parts of the CNS, i.e., the brain, spinal cord, and retina. Intrinsic and extrinsic signals, e.g., neurotrophic and growth factors, master transcription factors, and mechanical properties of the extracellular matrix (ECM), collectively regulate activities and characteristics of NSPCs: quiescence/survival, prolifer- ation, migration, differentiation, and integration. This review discusses the heterogeneous NSPC populations in the normal physiology and highlights their potentials and roles in injured/diseased states for regenerative medicine. Citation: Finkel, Z.; Esteban, F.; Keywords: central nervous system (CNS); ependymal cells; neural stem and progenitor cells (NSPC); Rodriguez, B.; Fu, T.; Ai, X.; Cai, L. NG2+ cells; neurodegenerative diseases; regenerative medicine; retina injury; spinal cord injury Diversity of Adult Neural Stem and (SCI); traumatic brain injury (TBI) Progenitor Cells in Physiology and Disease. Cells 2021, 10, 2045.
    [Show full text]
  • Hypothalamic Fatty Acids and Ketone Bodies Sensing and Role of FAT/CD36 in the Regulation of Food Intake
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2019 Hypothalamic fatty acids and ketone bodies sensing and role of FAT/CD36 in the regulation of food intake Le Foll, Christelle Abstract: The obesity and type-2 diabetes epidemic is escalating and represents one of the costliest biomedical challenges confronting modern society. Moreover, the increasing consumption of high fat food is often correlated with an increase in body mass index. In people predisposed to be obese or already obese, the impaired ability of the brain to monitor and respond to alterations in fatty acid (FA) metabolism is increasingly recognized as playing a role in the pathophysiological development of these disorders. The brain senses and regulates metabolism using highly specialized nutrient-sensing neurons located mainly in the hypothalamus. The same neurons are able to detect variation in the extracellular levels of glucose, FA and ketone bodies as a way to monitor nutrient availability and to alter its own activity. In addition, glial cells such as astrocytes create major connections to neurons and form a tight relationship to closely regulate nutrient uptake and metabolism. This review will examine the different pathways by which neurons are able to detect free fatty acids (FFA) to alter its activity and how high fat diet (HFD)-astrocytes induced ketone bodies production interplays with neuronal FA sensing. The role of HFD-induced inflammation and how FA modulate the reward system will also be investigated here. DOI: https://doi.org/10.3389/fphys.2019.01036 Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-175790 Journal Article Published Version The following work is licensed under a Creative Commons: Attribution 4.0 International (CC BY 4.0) License.
    [Show full text]
  • Transcriptional Control of Hypothalamic Tanycyte
    TRANSCRIPTIONAL CONTROL OF HYPOTHALAMIC TANYCYTE DEVELOPMENT By Ana Lucia Miranda-Angulo A dissertation submitted to the Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland March 2013 © 2013 Ana Lucia Miranda-Angulo All Rights Reserved Abstract The wall of the ventral third ventricle is composed of two distinct cell populations; tanycytes and ependymal cells. Tanycytes support several hypothalamic functions but little is known about the transcriptional network which regulates their development. We explored the developmental expression of multiple transcription factors by in situ hybridization and found that the retina and anterior neural fold homeobox transcription factor (Rax) was expressed in both ventricular progenitors of the hypothalamic primordium and differentiating tanycytes. Rax is known to participate in retina and hypothalamus development but nothing is known about its function in tanycytes. To explore the role of Rax in hypothalamic tanycyte development we generated Rax haploinsufficient mice. These mice appeared grossly normal, but careful examination revealed a thinning of the third ventricular wall and reduction of tanycyte and ependymal markers. These experiments show that Rax is required for tanycyte and ependymal cell progenitor proliferation and/or survival. Rax haploinsufficiency also resulted in ectopic presence of ependymal cells in the α2 tanycytic zone were few ependymal cells are normally found. Thus, the presence of ependymal cell in this zone suggests that Rax was required for α2 tanycyte differentiation. These changes in the ventricular wall were associated with reduced diffusion of Evans Blue tracer from the ventricle to the hypothalamic parenchyma. Furthermore, we have provided in vivo and in vitro evidence suggesting that RAX protein is secreted by tanycytes, and subsequently internalized by adjacent and distal cells.
    [Show full text]
  • Nav2/Nag Channel Is Involved in Control of Salt-Intake Behavior in the CNS
    The Journal of Neuroscience, October 15, 2000, 20(20):7743–7751 Nav2/NaG Channel Is Involved in Control of Salt-Intake Behavior in the CNS Eiji Watanabe,1,2,3 Akihiro Fujikawa,1 Haruyuki Matsunaga,1 Yasunobu Yasoshima,4 Noritaka Sako,4 Takashi Yamamoto,4 Chika Saegusa,1,3 and Masaharu Noda1,2,3 1Division of Molecular Neurobiology, and 2Center for Transgenic Animals and Plants, National Institute for Basic Biology, Myodaiji-cho, Okazaki 444-8585, 3Department of Molecular Biomechanics, The Graduate University for Advanced Studies, Myodaiji-cho, Okazaki 444–8585, Japan, and 4Department of Behavioral Physiology, Faculty of Human Sciences, Osaka University, 1–2 Yamadaoka, Suita 565–0871, Japan Nav2/NaG is a putative sodium channel, whose physiological role subfornical organ and organum vasculosum laminae terminalis has long been an enigma. We generated Nav2 gene-deficient compared with wild-type animals, suggesting a hyperactive state mice by inserting the lacZ gene. Analysis of the targeted mice in the Nav2-null mice. Moreover, the null mutants showed abnor- allowed us to identify Nav2-producing cells by examining the mal intakes of hypertonic saline under both water- and salt- lacZ expression. Besides in the lung, heart, dorsal root ganglia, depleted conditions. These findings suggest that the Nav2 chan- and Schwann cells in the peripheral nervous system, Nav2 was nel plays an important role in the central sensing of body-fluid expressed in neurons and ependymal cells in restricted areas of sodium level and regulation of salt intake behavior. the CNS, particularly in the circumventricular organs, which are involved in body-fluid homeostasis.
    [Show full text]
  • The Type 2 Iodothyronine Deiodinase Is Expressed Primarily in Glial Cells in the Neonatal Rat Brain
    Proc. Natl. Acad. Sci. USA Vol. 94, pp. 10391–10396, September 1997 Neurobiology The type 2 iodothyronine deiodinase is expressed primarily in glial cells in the neonatal rat brain ANA GUADAN˜O-FERRAZ*, MARIA JESUS OBREGO´N*, DONALD L. ST.GERMAIN†, AND JUAN BERNAL*‡ *Instituto de Investigaciones Biome´dicas,Consejo Superior de Investigaciones Cientı´ficas 28029 Madrid, Spain; and †Departments of Medicine and Physiology, Dartmouth Medical School, Lebanon, NH 03756 Communicated by Donald D. Brown, Carnegie Institution of Washington, Baltimore, MD, July 14, 1997 (received for review May 13, 1997) ABSTRACT Thyroid hormone plays an essential role in brain in the face of limiting amounts of the prohormone T4 mammalian brain maturation and function, in large part by (16). Brain T3 levels thus appear to be protected to a consid- regulating the expression of specific neuronal genes. In this erable extent by alterations in circulating thyroid hormone tissue, the type 2 deiodinase (D2) appears to be essential for levels (12, 16). A second important factor in this regard is a providing adequate levels of the active thyroid hormone decrease in the clearance rate of T3 in the hypothyroid brain 3,5,3*-triiodothyronine (T3) during the developmental period. effected by a decrease in the activity of the type 3 deiodinase We have studied the regional and cellular localization of D2 (D3) (11). This enzyme converts T4 and T3 to inactive mRNA in the brain of 15-day-old neonatal rats. D2 is ex- metabolites by 5-deiodination (17). The coordinated regula- pressed in the cerebral cortex, olfactory bulb, hippocampus, tion of D2 and D3 activity appears to be critical for thyroid caudate, thalamus, hypothalamus, and cerebellum and was hormone homeostasis in this tissue.
    [Show full text]
  • Tanycytic Networks Mediate Energy Balance by Feeding Lactate to Glucose-Insensitive POMC Neurons
    The Journal of Clinical Investigation RESEARCH ARTICLE Tanycytic networks mediate energy balance by feeding lactate to glucose-insensitive POMC neurons Tori Lhomme,1 Jerome Clasadonte,1 Monica Imbernon,1 Daniela Fernandois,1 Florent Sauve,1 Emilie Caron,1 Natalia da Silva Lima,2,3 Violeta Heras,2,3 Ines Martinez-Corral,1 Helge Mueller-Fielitz,4 Sowmyalakshmi Rasika,1 Markus Schwaninger,4 Ruben Nogueiras,2,3 and Vincent Prevot1 1University Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, European Genomic Institute of Diabetes (EGID) and Development of Innovative Strategies for a Transdisciplinary Approach to Alzheimer’s Disease (DISTALZ), Lille, France. 2CIMUS, Universidade de Santiago de Compostela–Instituto de Investigación Sanitaria, Santiago de Compostela, Spain. 3CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain. 4Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany. Hypothalamic glucose sensing enables an organism to match energy expenditure and food intake to circulating levels of glucose, the main energy source of the brain. Here, we established that tanycytes of the arcuate nucleus of the hypothalamus, specialized glia that line the wall of the third ventricle, convert brain glucose supplies into lactate that they transmit through monocarboxylate transporters to arcuate proopiomelanocortin neurons, which integrate this signal to drive their activity and to adapt the metabolic response to meet physiological demands. Furthermore, this transmission required the formation of extensive connexin-43 gap junction–mediated metabolic networks by arcuate tanycytes. Selective suppression of either tanycytic monocarboxylate transporters or gap junctions resulted in altered feeding behavior and energy metabolism.
    [Show full text]
  • Correlated Electrophysiology and Morphology of the Ependyma in Rat Hypothalamus
    The Journal of Neuroscience, October 1988, 8(10): 3691-3702 Correlated Electrophysiology and Morphology of the Ependyma in Rat Hypothalamus C. R. Jarvisa and Ft. D. Andrew Department of Anatomy, Queen’s University, Kingston, Ontario, Canada K7L 3N6 The ependyma lines the ventricular system of the vertebrate and may therefore have similar functions. In the hypothal- brain and spinal cord. Although its embryology and mor- amus, ependyma probably take up K+ released from adja- phology have been studied extensively, little is known of its cent endocrine neurons and shunt it to the ventricular space. physiological properties, particularly in mammals. Tany- cytes are modified ependymal cells that are found predom- The ventricular system of the brain and spinal cord is lined by inantly lining the floor of the third ventricle, overlying the the ependyma, a singlelayer of squamous,cuboidal, or columnar median eminence. Their processes accompany and enwrap epithelial cells. Some ependymal cells, termed tanycytes, have neuroendocrine axons that course from hypothalamic nuclei long basal processesextending into the underlying neuropil. to terminals in the median eminence, but the significance of Tanycytes form the ependymal lining over the circumventricu- this interaction is not yet understood. Intracellular recording lar organs and are found scattered within the ependymal layer and injection techniques were used to study ependymal cells of the ventricles and spinal canal. Most cells lining the third and tanycytes of the rat in the hypothalamic slice preparation ventricle are cuboidal (common ependyma), although tanycytes after differentiating their respective regions morphologically. are clustered along the lateroventral wall and in the floor over- With extracellular [K+] = 6.24 mM, the mean membrane po- lying the median eminence.Tanycyte processesaccompany and tential (*SD) for common ependyma was -79.9 + 1.40 mV enwrap neuroendocrine axons that course from hypothalamic and for tanycytes, -79.5 f 1.77 mV.
    [Show full text]
  • The Hypothalamus As a Hub for SARS-Cov-2 Brain Infection and Pathogenesis
    bioRxiv preprint doi: https://doi.org/10.1101/2020.06.08.139329; this version posted June 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. The hypothalamus as a hub for SARS-CoV-2 brain infection and pathogenesis Sreekala Nampoothiri1,2#, Florent Sauve1,2#, Gaëtan Ternier1,2ƒ, Daniela Fernandois1,2 ƒ, Caio Coelho1,2, Monica ImBernon1,2, Eleonora Deligia1,2, Romain PerBet1, Vincent Florent1,2,3, Marc Baroncini1,2, Florence Pasquier1,4, François Trottein5, Claude-Alain Maurage1,2, Virginie Mattot1,2‡, Paolo GiacoBini1,2‡, S. Rasika1,2‡*, Vincent Prevot1,2‡* 1 Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, DistAlz, UMR-S 1172, Lille, France 2 LaBoratorY of Development and PlasticitY of the Neuroendocrine Brain, FHU 1000 daYs for health, EGID, School of Medicine, Lille, France 3 Nutrition, Arras General Hospital, Arras, France 4 Centre mémoire ressources et recherche, CHU Lille, LiCEND, Lille, France 5 Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and ImmunitY of Lille (CIIL), Lille, France. # and ƒ These authors contriButed equallY to this work. ‡ These authors directed this work *Correspondence to: [email protected] and [email protected] Short title: Covid-19: the hypothalamic hypothesis 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.06.08.139329; this version posted June 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Hypothalamic Tanycytes Generate Acute Hyperphagia Through Activation of the Arcuate Neuronal Network
    Hypothalamic tanycytes generate acute hyperphagia through activation of the arcuate neuronal network Matei Bolboreaa,1, Eric Pollatzeka, Heather Benforda, Tamara Sotelo-Hitschfelda, and Nicholas Dalea,1 aSchool of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom Edited by Huda Y. Zoghbi, Baylor College of Medicine, Houston, TX, and approved April 29, 2020 (received for review November 12, 2019) Hypothalamic tanycytes are chemosensitive glial cells that contact of ATP that acts on tanycytes and close cells via purinergic re- the cerebrospinal fluid in the third ventricle and send processes ceptors (19–23). In addition to this, β2 tanycytes release FGF21 into the hypothalamic parenchyma. To test whether they can in response to circulating free fatty acids to regulate lipolysis in activate neurons of the arcuate nucleus, we targeted expression of peripheral fat stores (24–27). An increasing body of evidence aCa2+-permeable channelrhodopsin (CatCh) specifically to tany- therefore supports the hypothesis that tanycytes convey in- cytes. Activation of tanycytes ex vivo depolarized orexigenic (neu- formation on peripheral nutrient levels to the effector neurons in ropeptide Y/agouti-related protein; NPY/AgRP) and anorexigenic the hypothalamic network to alter energy balance. However, (proopiomelanocortin; POMC) neurons via an ATP-dependent direct evidence for these cells communicating with the central mechanism. In vivo, activation of tanycytes triggered acute hyper- primary effectors of feeding (arcuate AgRP/NPY and POMC phagia only in the fed state during the inactive phase of the neurons) to influence food intake is lacking. – light dark cycle. We have addressed this question by targeting expression of a Ca2+-permeable version of channelrhodopsin2 (CatCh) via a tanycyte | hypothalamus | food intake | arcuate nucleus | ATP cell-specific promoter to tanycytes to permit their specific acti- vation by light.
    [Show full text]
  • Nutritional Signals Rapidly Activate Oligodendrocyte Differentiation in the Adult Hypothalamic Median Eminence
    bioRxiv preprint doi: https://doi.org/10.1101/751198; this version posted September 1, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Nutritional signals rapidly activate oligodendrocyte differentiation in the adult hypothalamic median eminence Sara Kohnke1, Brian Lam1, Sophie Buller1, Chao Zhao2, Danae Nuzzaci1, John Tadross1, Staffan Holmqvist2, Katherine Ridley2, Hannah Hathaway3, Wendy Macklin3, Giles SH Yeo1, Robin JM Franklin2, David H Rowitch4, Clemence Blouet 1 1 MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, WT-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 OQQ, UK 2 Wellcome -MRC Cambridge Stem Cell Institute and department of Clinical Neurosciences, - University of Cambridge, Cambridge, UK. 3Department of Cell & Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA; Program in Neuroscience, University of Colorado School of Medicine, Aurora, CO, USA 4Department of Paediatrics and Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK Dr Clémence Blouet, Metabolic Research laboratories, IMS level 4, Box 289, Addenbrookes Hospital, Hills Road, Cambridge, CB2 0QQ, UK. [email protected], Phone : +441223769037, 1 bioRxiv preprint doi: https://doi.org/10.1101/751198; this version posted September 1, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.
    [Show full text]
  • Flipping the Tanycyte Switch: How Circulating Signals Gain Direct Access to the Metabolic Brain
    www.impactaging.com AGING, May 2013, Vol. 5 No 5 Editorial Flipping the tanycyte switch: how circulating signals gain direct access to the metabolic brain Vincent Prevot, Fanny Langlet, and Benedicte Dehouck The survival of an organism relies on its ability to being fenestrated and their permeability allows for the promptly, effectively and reproducibly communicate passive and rapid extravasation of the majority of with brain networks that control food intake and energy nutrients and metabolic hormones circulating in the homeostasis [1, 2]. Although the access of most pituitary portal blood (i.e., with molecular sizes bellow circulating factors to the brain requires transcellular 20 kDa) [5]. However, the restriction of this capillary transport across the blood-brain barrier, certain fenestration to the median eminence [4] together with hypothalamic areas that play a critical role in the control the occurrence of tight junction complexes between of appetite and body weight, such as the arcuate nucleus adjacent tanycytes that act as a physical barrier [4], of the hypothalamus (ARH), might require direct access sequesters these molecules within the median eminence to peripheral homeostatic signals by a privileged route and prevents their diffusion to the rest of the brain via that bypasses brain barriers. The question as to whether the CSF in animals fed ad libitum [4] (Figure 1). In such a route exists and can be modulated to meet contrast, in fasting mice, dips in blood glucose levels, physiological demands in response to changes in likely perceived by tanycytes themselves thanks to their feeding status is largely unexplored, and represents an glucosensing properties [6], trigger VEGFA expression issue central to our understanding of the mechanisms in these cells, and VEGF accumulation in the median controlling energy balance and metabolism [3].
    [Show full text]