Neuroimmune Axes of the Blood–Brain Barriers and Blood–Brain Interfaces: Bases for Physiological Regulation, Disease States, and Pharmacological Interventions

Total Page:16

File Type:pdf, Size:1020Kb

Neuroimmune Axes of the Blood–Brain Barriers and Blood–Brain Interfaces: Bases for Physiological Regulation, Disease States, and Pharmacological Interventions 1521-0081/70/2/278–314$35.00 https://doi.org/10.1124/pr.117.014647 PHARMACOLOGICAL REVIEWS Pharmacol Rev 70:278–314, April 2018 Copyright © 2018 by The Author(s) This is an open access article distributed under the CC BY-NC Attribution 4.0 International license. ASSOCIATE EDITOR: ROBERT DANTZER Neuroimmune Axes of the Blood–Brain Barriers and Blood–Brain Interfaces: Bases for Physiological Regulation, Disease States, and Pharmacological Interventions Michelle A. Erickson and William A. Banks Geriatric Research and Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington; and Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington Abstract. ....................................................................................279 I. Introduction. ..............................................................................280 A. The Blood–Brain Barrier and Immune Privilege .........................................280 B. Working Definitions of Brain Barriers and Interfaces ....................................280 C. Historical Work: Defining the Brain Barriers . ..........................................280 Downloaded from II. Features and Functions of the Blood–Brain Barrier and Blood–Brain Interface . .............281 A. Specialized Features That Confer Barrier Functions .....................................281 1. Tight Junctions ......................................................................281 2. Reduced Macropinocytosis............................................................282 3. Efflux Transporters ..................................................................282 by guest on September 27, 2021 4. Metabolic Enzymes ..................................................................282 B. Specialized Features That Confer Interface Functions....................................282 1. Transcellular Diffusion. ............................................................282 2. Blood–Brain Barrier Transport via Solute Carriers ...................................283 3. Blood–Brain Barrier Transport via Receptor-Mediated Transcytosis ...................283 4. Blood–Brain Barrier Transport via Adsorptive Transcytosis . .........................283 C. From Brain Barriers to Brain Interfaces: Components of the Neurovascular Unit . .......284 1. Endothelial Cells. ..................................................................284 2. Brain Pericytes ......................................................................284 3. Astrocytes . ........................................................................285 4. Neurons .............................................................................286 5. Microglia and Perivascular Macrophages . ..........................................286 6. Mast Cells . ........................................................................286 7. Extracellular Matrix .................................................................286 8. Glycocalyx . ........................................................................287 D. Arms of the Blood–Brain Barrier and Their Neuroimmune Functions. ...................287 1. The Vascular Blood–Brain Barrier . ................................................287 2. The Blood–Cerebrospinal Fluid Barrier...............................................287 3. Tanycytic/Ependymal Barriers of Circumventricular Organs . .........................288 III. The Neuroimmune Axes . ..................................................................289 A. Axis 1: Blood–Brain Barrier Disruption . ................................................289 1. Disruption of Paracellular Tight Junctions. ..........................................290 2. Transcytotic Vesicular Pathways .....................................................290 3. Endothelial Cell Damage and Hemorrhage . ..........................................291 B. Axis 2: Modulation of Barrier and Interface Functions by Immune Substances............291 Address correspondence to: Dr. William A. Banks, Veterans Affairs Puget Sound Health Care System, Room 810A/Building 1, 1660 S. Columbian Way, Seattle, WA 98108. E-mail: [email protected] This work was supported by the Department of Veterans Affairs and the National Institutes of Health National Institute on Aging [Grant R01 AG046619]. https://doi.org/10.1124/pr.117.014647. 278 BBB and Neuroimmune Axes 279 C. Axis 3: Transport, Penetration, and Uptake of Neuroimmune-Related Substances. .......292 D. Axis 4: Immune Cell Trafficking between Blood and Brain ...............................294 E. Axis 5: Immune Secretions of the Barrier Cells ..........................................296 IV. Physiologic Conditions, Disease States, and Pharmacologic Agents . .........................297 A. Sickness Behavior .......................................................................297 B. Perinatal Brain Ischemia ................................................................297 C. Multiple Sclerosis .......................................................................298 D. Human Immunodeficiency Virus-1 Penetration of the Blood–Brain Barrier and Consequences of Human Immunodeficiency Virus-1 Infection on Blood–Brain Barrier Function . ..............................................................................299 E. Amyloid b Peptide and Alzheimer Disease ...............................................300 F. Neuromyelitis Optica. ..................................................................301 G. Euthyroid Sick Syndrome . ............................................................301 H. Chemobrain.............................................................................301 I. Inflammation, ATP-Binding Cassette Transporters, and Central Nervous System Drug Delivery. ..............................................................................302 J. Emergence of Progressive Multifocal Leukoencephalopathy Associated with Therapies That Inhibit T-Cell Immune Surveillance ................................................303 K. IL-1ra, Febrile Infection-Related Epilepsy Syndrome, and Neonatal-Onset Multisys- tem Inflammatory Disease. ............................................................303 L. Immunomodulatory Therapies and Stroke ...............................................304 M. Methamphetamine and Blood–Brain Barrier Alterations . ...............................304 N. Cerebral Cavernous Malformations ......................................................304 O. Antibody-Associated Autoimmune Encephalitis Syndromes ...............................304 V. Conclusions and Future Directions...........................................................305 Acknowledgments . ........................................................................306 References ..................................................................................306 Abstract——Central nervous system (CNS) barriers pre- vascular blood–brain barrier (BBB), blood–cerebrospinal dominantly mediate the immune-privileged status of the fluid barrier, and tanycytic barriers that confer their brain, and are also important regulators of neuroimmune functions as neuroimmune interfaces. In section III,we communication. It is increasingly appreciated that consider BBB-mediated neuroimmune functions and communication between the brain and immune system interactions categorized as five neuroimmune axes: contributes to physiologic processes, adaptive responses, disruption, responses to immune stimuli, uptake and and disease states. In this review, we discuss the highly transport of immunoactive substances, immune cell specialized features of brain barriers that regulate trafficking, and secretions of immunoactive substances. neuroimmune communication in health and disease. In In section IV, we discuss neuroimmune functions of section I, we discuss the concept of immune privilege, CNS barriers in physiologic and disease states, as well provide working definitions of brain barriers, and outline as pharmacological interventions for CNS diseases. the historical work that contributed to the understanding of Throughout this review, we highlight many recent advances CNS barrier functions. In section II, we discuss the unique that have contributed to the modern understanding of anatomic, cellular, and molecular characteristics of the CNS barriers and their interface functions. ABBREVIATIONS: Ab, amyloid b;ABC,ATP-bindingcassette;AD,Alzheimer disease; AJ, adherens junction; ART, anti-retroviral therapy; BALT, bronchus-associated lymphoid tissue; BBB, blood–brain barrier; BCRP, breast cancer resistance protein; BCSFB, blood–CSF barrier; BEC, brain endothelial cell; BUI, brain uptake index; CCL, C-C motif chemokine ligand; CICD, chemotherapy-induced cognitive dysfunction; CMB, cerebral microbleed; CNS, central nervous system; COX, cyclooxygenase; CP, choroid plexus; CPE, choroid plexus epithelium; CSF, cerebrospinal fluid; CVO, circumventricular organ; DHA, docosahexaenoic acid; DOX, doxorubicin; EAE, experimental autoimmune encephalomyelitis; ECM, extracellular matrix; FIRES, febrile infection-related epilepsy syndrome; GRP78, glucose-regulated protein 78; HAART, highly active antiretroviral therapy; HAND, HIV- associated neurologic disorder; HIV, human immunodeficiency virus; HIVE, HIV encephalitis; IDT, indicator diffusion technique; IFN, interferon;IL, interleukin; IL-1R1, type 1 IL-1 receptor; ISF, interstitial fluid; JAM, junctional adhesion molecule; LPC, lysophosphatidylcholine; LPS, lipopolysaccharide;
Recommended publications
  • The Evelyn F. and William L. Mcknight Brain Institute and the Cognitive Aging and Memory – Clinical Translational Research Program (CAM-CTRP) 2015 Annual Report
    The Evelyn F. and William L. McKnight Brain Institute and the Cognitive Aging and Memory – Clinical Translational Research Program (CAM-CTRP) 2015 Annual Report Prepared for the McKnight Brain Research Foundation by the University of Florida McKnight Brain Institute and Institute on Aging Table of Contents Letter from UF Leadership ................................................................................................................................................................................................. 3 Age-related Memory Loss (ARML) Program and the Evelyn F. McKnight Chair for Brain Research in Memory Loss...... 4-19 Cognitive Aging and Memory Clinical Translational Research Program (CAM-CTRP) and the Evelyn F. McKnight Chair for Clinical Translational Research in Cognitive Aging and Memory ................................ 20-63 William G. Luttge Lectureship in Neuroscience ...............................................................................................................64-65 Program Financials .................................................................................................................................................................. 66 Age-related Memory Loss Program .............................................................................................................................................................................67 McKnight Endowed Chair for Brain Research in Memory Loss .........................................................................................................................68
    [Show full text]
  • Tanycytes of the Adult Hypothalamic Third Ventricle Include Distinct Populations of FGF-Responsive Neural Progenitors
    ARTICLE Received 27 Nov 2012 | Accepted 23 May 2013 | Published 27 Jun 2013 DOI: 10.1038/ncomms3049 OPEN a-Tanycytes of the adult hypothalamic third ventricle include distinct populations of FGF-responsive neural progenitors S.C. Robins1,2,*, I. Stewart1,*, D.E McNay3,4,*, V. Taylor5, C. Giachino5, M. Goetz6, J. Ninkovic6, N. Briancon3,7, E. Maratos-Flier3, J.S Flier3,8, M.V Kokoeva2,3 & M. Placzek1 Emerging evidence suggests that new cells, including neurons, can be generated within the adult hypothalamus, suggesting the existence of a local neural stem/progenitor cell niche. Here, we identify a-tanycytes as key components of a hypothalamic niche in the adult mouse. Long-term lineage tracing in vivo using a GLAST::CreERT2 conditional driver indicates that a-tanycytes are self-renewing cells that constitutively give rise to new tanycytes, astrocytes and sparse numbers of neurons. In vitro studies demonstrate that a-tanycytes, but not b-tanycytes or parenchymal cells, are neurospherogenic. Distinct subpopulations of a-tanycytes exist, amongst which only GFAP-positive dorsal a2-tanycytes possess stem-like neurospherogenic activity. Fgf-10 and Fgf-18 are expressed specifically within ventral tanycyte subpopulations; a-tanycytes require fibroblast growth factor signalling to maintain their proliferation ex vivo and elevated fibroblast growth factor levels lead to enhanced proliferation of a-tanycytes in vivo. Our results suggest that a-tanycytes form the critical component of a hypothalamic stem cell niche, and that local fibroblast growth factor signalling governs their proliferation. 1 MRC Centre for Developmental and Biomedical Genetics and Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK.
    [Show full text]
  • Endocannabinoids in Body Weight Control
    pharmaceuticals Review Endocannabinoids in Body Weight Control Henrike Horn †, Beatrice Böhme †, Laura Dietrich and Marco Koch * Institute of Anatomy, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany; [email protected] (H.H.); [email protected] (B.B.); [email protected] (L.D.) * Correspondence: [email protected]; Tel.: +49-341-97-22047 † These authors contributed equally. Received: 28 April 2018; Accepted: 28 May 2018; Published: 30 May 2018 Abstract: Maintenance of body weight is fundamental to maintain one’s health and to promote longevity. Nevertheless, it appears that the global obesity epidemic is still constantly increasing. Endocannabinoids (eCBs) are lipid messengers that are involved in overall body weight control by interfering with manifold central and peripheral regulatory circuits that orchestrate energy homeostasis. Initially, blocking of eCB signaling by first generation cannabinoid type 1 receptor (CB1) inverse agonists such as rimonabant revealed body weight-reducing effects in laboratory animals and men. Unfortunately, rimonabant also induced severe psychiatric side effects. At this point, it became clear that future cannabinoid research has to decipher more precisely the underlying central and peripheral mechanisms behind eCB-driven control of feeding behavior and whole body energy metabolism. Here, we will summarize the most recent advances in understanding how central eCBs interfere with circuits in the brain that control food intake and
    [Show full text]
  • The Dichotomous Role of Inflammation in The
    biomolecules Review The Dichotomous Role of Inflammation in the CNS: A Mitochondrial Point of View Bianca Vezzani 1,2 , Marianna Carinci 1,2 , Simone Patergnani 1,2 , Matteo P. Pasquin 1,2, Annunziata Guarino 2,3, Nimra Aziz 2,3, Paolo Pinton 1,2,4, Michele Simonato 2,3,5 and Carlotta Giorgi 1,2,* 1 Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; [email protected] (B.V.); [email protected] (M.C.); [email protected] (S.P.); [email protected] (M.P.P.); [email protected] (P.P.) 2 Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy; [email protected] (A.G.); [email protected] (N.A.); [email protected] (M.S.) 3 Department of BioMedical and Specialist Surgical Sciences, University of Ferrara, 44121 Ferrara, Italy 4 Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola (RA), Italy 5 School of Medicine, University Vita-Salute San Raffaele, 20132 Milan, Italy * Correspondence: [email protected]; Tel.: +39-0532-455803 Received: 28 August 2020; Accepted: 10 October 2020; Published: 13 October 2020 Abstract: Innate immune response is one of our primary defenses against pathogens infection, although, if dysregulated, it represents the leading cause of chronic tissue inflammation. This dualism is even more present in the central nervous system, where neuroinflammation is both important for the activation of reparatory mechanisms and, at the same time, leads to the release of detrimental factors that induce neurons loss. Key players in modulating the neuroinflammatory response are mitochondria. Indeed, they are responsible for a variety of cell mechanisms that control tissue homeostasis, such as autophagy, apoptosis, energy production, and also inflammation.
    [Show full text]
  • Diversity of Adult Neural Stem and Progenitor Cells in Physiology and Disease
    cells Review Diversity of Adult Neural Stem and Progenitor Cells in Physiology and Disease Zachary Finkel, Fatima Esteban, Brianna Rodriguez, Tianyue Fu, Xin Ai and Li Cai * Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA; [email protected] (Z.F.); [email protected] (F.E.); [email protected] (B.R.); [email protected] (T.F.); [email protected] (X.A.) * Correspondence: [email protected] Abstract: Adult neural stem and progenitor cells (NSPCs) contribute to learning, memory, main- tenance of homeostasis, energy metabolism and many other essential processes. They are highly heterogeneous populations that require input from a regionally distinct microenvironment including a mix of neurons, oligodendrocytes, astrocytes, ependymal cells, NG2+ glia, vasculature, cere- brospinal fluid (CSF), and others. The diversity of NSPCs is present in all three major parts of the CNS, i.e., the brain, spinal cord, and retina. Intrinsic and extrinsic signals, e.g., neurotrophic and growth factors, master transcription factors, and mechanical properties of the extracellular matrix (ECM), collectively regulate activities and characteristics of NSPCs: quiescence/survival, prolifer- ation, migration, differentiation, and integration. This review discusses the heterogeneous NSPC populations in the normal physiology and highlights their potentials and roles in injured/diseased states for regenerative medicine. Citation: Finkel, Z.; Esteban, F.; Keywords: central nervous system (CNS); ependymal cells; neural stem and progenitor cells (NSPC); Rodriguez, B.; Fu, T.; Ai, X.; Cai, L. NG2+ cells; neurodegenerative diseases; regenerative medicine; retina injury; spinal cord injury Diversity of Adult Neural Stem and (SCI); traumatic brain injury (TBI) Progenitor Cells in Physiology and Disease. Cells 2021, 10, 2045.
    [Show full text]
  • The CNS and the Brain Tumor Microenvironment: Implications for Glioblastoma Immunotherapy
    International Journal of Molecular Sciences Review The CNS and the Brain Tumor Microenvironment: Implications for Glioblastoma Immunotherapy Fiona A. Desland and Adília Hormigo * Icahn School of Medicine at Mount Sinai, The Tisch Cancer Institute, Department of Neurology, Box 1137, 1 Gustave L. Levy Pl, New York, NY 10029-6574, USA; fi[email protected] * Correspondence: [email protected] Received: 28 August 2020; Accepted: 29 September 2020; Published: 5 October 2020 Abstract: Glioblastoma (GBM) is the most common and aggressive malignant primary brain tumor in adults. Its aggressive nature is attributed partly to its deeply invasive margins, its molecular and cellular heterogeneity, and uniquely tolerant site of origin—the brain. The immunosuppressive central nervous system (CNS) and GBM microenvironments are significant obstacles to generating an effective and long-lasting anti-tumoral response, as evidenced by this tumor’s reduced rate of treatment response and high probability of recurrence. Immunotherapy has revolutionized patients’ outcomes across many cancers and may open new avenues for patients with GBM. There is now a range of immunotherapeutic strategies being tested in patients with GBM that target both the innate and adaptive immune compartment. These strategies include antibodies that re-educate tumor macrophages, vaccines that introduce tumor-specific dendritic cells, checkpoint molecule inhibition, engineered T cells, and proteins that help T cells engage directly with tumor cells. Despite this, there is still much ground to be gained in improving the response rates of the various immunotherapies currently being trialed. Through historical and contemporary studies, we examine the fundamentals of CNS immunity that shape how to approach immune modulation in GBM, including the now revamped concept of CNS privilege.
    [Show full text]
  • Hypothalamic Fatty Acids and Ketone Bodies Sensing and Role of FAT/CD36 in the Regulation of Food Intake
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2019 Hypothalamic fatty acids and ketone bodies sensing and role of FAT/CD36 in the regulation of food intake Le Foll, Christelle Abstract: The obesity and type-2 diabetes epidemic is escalating and represents one of the costliest biomedical challenges confronting modern society. Moreover, the increasing consumption of high fat food is often correlated with an increase in body mass index. In people predisposed to be obese or already obese, the impaired ability of the brain to monitor and respond to alterations in fatty acid (FA) metabolism is increasingly recognized as playing a role in the pathophysiological development of these disorders. The brain senses and regulates metabolism using highly specialized nutrient-sensing neurons located mainly in the hypothalamus. The same neurons are able to detect variation in the extracellular levels of glucose, FA and ketone bodies as a way to monitor nutrient availability and to alter its own activity. In addition, glial cells such as astrocytes create major connections to neurons and form a tight relationship to closely regulate nutrient uptake and metabolism. This review will examine the different pathways by which neurons are able to detect free fatty acids (FFA) to alter its activity and how high fat diet (HFD)-astrocytes induced ketone bodies production interplays with neuronal FA sensing. The role of HFD-induced inflammation and how FA modulate the reward system will also be investigated here. DOI: https://doi.org/10.3389/fphys.2019.01036 Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-175790 Journal Article Published Version The following work is licensed under a Creative Commons: Attribution 4.0 International (CC BY 4.0) License.
    [Show full text]
  • PTSD Is Associated with Neuroimmune Suppression: Evidence from PET Imaging and Postmortem Transcriptomic Studies
    ARTICLE https://doi.org/10.1038/s41467-020-15930-5 OPEN PTSD is associated with neuroimmune suppression: evidence from PET imaging and postmortem transcriptomic studies Shivani Bhatt 1, Ansel T. Hillmer2,3,4, Matthew J. Girgenti 3,5, Aleksandra Rusowicz 3, Michael Kapinos4, Nabeel Nabulsi 2,4, Yiyun Huang2,4, David Matuskey 2,3,4, Gustavo A. Angarita3,4, Irina Esterlis1,3,4,5, Margaret T. Davis3, Steven M. Southwick3,5, Matthew J. Friedman 6, Traumatic Stress Brain Study Group*, Ronald S. Duman 3, Richard E. Carson 2,4, John H. Krystal3,5, Robert H. Pietrzak3,5 & ✉ Kelly P. Cosgrove 1,2,3,4,5 1234567890():,; Despite well-known peripheral immune activation in posttraumatic stress disorder (PTSD), there are no studies of brain immunologic regulation in individuals with PTSD. [11C]PBR28 Positron Emission Tomography brain imaging of the 18-kDa translocator protein (TSPO), a microglial biomarker, was conducted in 23 individuals with PTSD and 26 healthy individuals— with or without trauma exposure. Prefrontal-limbic TSPO availability in the PTSD group was negatively associated with PTSD symptom severity and was significantly lower than in controls. Higher C-reactive protein levels were also associated with lower prefrontal-limbic TSPO availability and PTSD severity. An independent postmortem study found no differential gene expression in 22 PTSD vs. 22 controls, but showed lower relative expression of TSPO and microglia-associated genes TNFRSF14 and TSPOAP1 in a female PTSD subgroup. These findings suggest that peripheral immune activation in PTSD is associated with deficient brain microglial activation, challenging prevailing hypotheses positing neuroimmune activation as central to stress-related pathophysiology.
    [Show full text]
  • P:\Autism Cases\Dwyer 03-1202V\Opinion Segments NEW
    IN THE UNITED STATES COURT OF FEDERAL CLAIMS OFFICE OF THE SPECIAL MASTERS No. 03-1202V Filed: March 12, 2010 ******************************************************* TIMOTHY and MARIA DWYER, parents of * COLIN R. DWYER, a minor, * Omnibus Autism Proceeding; * Theory 2 Test Case; Petitioners, * Thimerosal-Containing Vaccines; * Ethylmercury; Causation; v. * “Clearly Regressive” Autism; * Oxidative Stress; Sulfur SECRETARY OF THE DEPARTMENT OF * Metabolism Disruption; HEALTH AND HUMAN SERVICES, * Excitotoxicity; Expert * Qualifications; Weight of the Respondent. * Evidence * ******************************************************* DECISION1 James Collins Ferrell, Esq., Houston, TX; Thomas B. Powers, Esq. and Michael L. Williams, Esq., Portland, OR; for petitioners. Lynn Elizabeth Ricciardella, Esq. and Voris Johnson, Esq., U.S. Department of Justice, Washington, DC, for respondent. VOWELL, Special Master: On May 14, 2003, Timothy and Maria Dwyer [“petitioners”] filed a “short form” petition for compensation under the National Vaccine Injury Compensation Program, 42 U.S.C. § 300aa-10, et seq.2 [the “Vaccine Act” or “Program”], on behalf of their minor 1 Vaccine Rule 18(b) provides the parties 14 days to request redaction of any material “(i) which is trade secret or commercial or financial information which is privileged and confidential, or (ii) which are medical files and similar files, the disclosure of which would constitute a clearly unwarranted invasion of privacy.” 42 U.S.C § 300aa12(d)(4)(B). Both parties have waived their right to request such redaction. See Petitioners’ Notice to Waive the 14-Day Waiting Period, filed February 1, 2010; Respondent’s Consent to Disclosure, filed January 13, 2010. Accordingly, this decision will be publically available upon filing. 2 National Childhood Vaccine Injury Act of 1986, Pub.
    [Show full text]
  • Autism and KIR Genes of the Human Genome: a Brief Meta-Analysis
    The Egyptian Journal of Medical Human Genetics 19 (2018) 159–164 Contents lists available at ScienceDirect The Egyptian Journal of Medical Human Genetics journal homepage: www.sciencedirect.com Review Autism and KIR genes of the human genome: A brief meta-analysis Najmeh Pirzadroozbahani a, Seyyed Amir Yasin Ahmadi b, Hamidreza Hekmat c, Golnaz Atri Roozbahani d, ⇑ Farhad Shahsavar e, a Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran b Scientific Society of Evidence-based Knowledge, Research Office for the History of Persian Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran c Department of Psychology, Islamic Azad University, Borujerd, Iran d Department of Life Science and Biotechnology, Shahid Beheshti University, Tehran, Iran e Department of Immunology, Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran article info abstract Article history: Background: Killer cell immunoglobin-like receptors (KIR) are the transmembrane glycoproteins on nat- Received 4 October 2017 ural killer (NK) cells that regulate their functions. Studies show that immune system plays roles in neu- Accepted 29 October 2017 rodevelopmental disorders like autism, and NK cell abnormality can be a risk factor in autism spectrum Available online 6 November 2017 disorders. Aim: This study aims to investigate the role of KIR genes diversity in autism. Keywords: Methods: In order to find the relevant literature, we used PubMed, Google Scholar and other search Autism engines. Association of each gene was analyzed through chi-square with Yate’s correction (or Fisher’s Neuroimmunology exact test if necessary). Software comprehensive meta-analysis was used. Both fixed and random effect KIR NK cell models were reported.
    [Show full text]
  • Developing Mind, Second Edition
    Praise for THE DEVELOPING MIND “A tour de force of synthesis and integration. Siegel has woven a rich tapestry that provides a compelling account of how our interpersonal worlds and neural systems form two important pillars of the mind. The second edition brings the latest neuroscientific evidence to the fore; it is a ‘must read’ for any student or professional interested in mental health, child development, and the brain.” —RICHA R D J. DAVIDSON , PhD, William James and Vilas Professor of Psychology and Psychiatry; Founder and Chair, Center for Investigating Healthy Minds, University of Wisconsin–Madison “With the original publication of The Developing Mind, the field of interpersonal neurobiology was born. Siegel’s genius for synthesizing and humanizing neu- roscience, attachment, and developmental theory made the book a bestseller and attracted thousands to this new field. The second edition benefits from over a decade’s worth of additional findings, reflections, ideas, and insights. I encourage you to take Siegel up on his offer to share this fascinating journey, whether for the first time or for a return trip. You won’t be disappointed.” —LOUIS COZO L INO , PhD, Department of Psychology, Pepperdine University “When The Developing Mind was first published, Siegel’s proposal that mind, brain, and relationships represented ‘three aspects of one reality’ essential to human well-being still seemed closer to inspired speculation than teachable scientific knowledge. Just over a decade later, the neurobiology of interpersonal experience has grown into one of the hottest areas of psychological research. Over two thousand new references surveyed for the second edition testify to just how far neuroscientists, developmental psychologists, and clinicians have brought the field as they begin to more fully chart the interplay of mind, body, and relationships.
    [Show full text]
  • Microbiota Gut-Brain Axis and Neurodegenerative Disease. a Systematic Review on Alzheimer’S Disease, Amyotrophic Lateral Sclerosis and Parkinson Disease
    Microbiota Gut-Brain Axis and Neurodegenerative Disease. A systematic review on Alzheimer’s disease, Amyotrophic lateral sclerosis and Parkinson Disease Poluyi Edward Oluwatobi, Imaguezegie Grace Ese, Poluyi Abigail Oluwatumininu, Morgan Eghosa DOI: 10.33962/roneuro-2020-016 Romanian Neurosurgery (2020) XXXIV (1): pp. 116-122 DOI: 10.33962/roneuro-2020-016 www.journals.lapub.co.uk/index.php/roneurosurgery Microbiota Gut-Brain Axis and Neurodegenerative Disease. A systematic review on Alzheimer’s disease, Amyotrophic lateral sclerosis and Parkinson Disease Poluyi Edward Oluwatobi1, Imaguezegie Grace Keywords 2 3 Ese , Poluyi Abigail Oluwatumininu , Morgan gut dysbiosis, Eghosa4 central nervous system, gastrointestinal tract, enteric nervous system, 1 Department of Life Science, Clinical Neuroscience, University of neuroimmune system, Roehampton, London, UNITED KINGDOM neuroendocrine system, 2 Lagos University Teaching Hospital, Idi-araba, Surulere, Lagos, autonomic nervous system NIGERIA (ANS) 3 College of Medicine, University of Lagos, NIGERIA 4 Ambrose Alli University, Ekpoma, Edo, NIGERIA Corresponding author: ABSTRACT Poluyi Edward This review highlights the microbiota gut-brain axis and neurodegenerative diseases excluding studies on animal models. Gut microbiota is capable of modulating some Department of Life Science, Clinical brain activities via the microbiota gut-brain axis. A bidirectional communication exists Neuroscience, University of Roehampton, London, between the gastrointestinal (GI) tract and the central nervous system (CNS) in the United Kingdom microbiota gut-brain axis. Gut dysbiosis has been linked to neurodegenerative diseases as a result of the imbalance in the composition of its microbiota, which has [email protected] a damaging effect on the host’s health. The association between the role and mechanism of CNS disease and gut microbial is yet to be fully explored.
    [Show full text]