Developing Mind, Second Edition

Total Page:16

File Type:pdf, Size:1020Kb

Developing Mind, Second Edition Praise for THE DEVELOPING MIND “A tour de force of synthesis and integration. Siegel has woven a rich tapestry that provides a compelling account of how our interpersonal worlds and neural systems form two important pillars of the mind. The second edition brings the latest neuroscientific evidence to the fore; it is a ‘must read’ for any student or professional interested in mental health, child development, and the brain.” —RICHA R D J. DAVIDSON , PhD, William James and Vilas Professor of Psychology and Psychiatry; Founder and Chair, Center for Investigating Healthy Minds, University of Wisconsin–Madison “With the original publication of The Developing Mind, the field of interpersonal neurobiology was born. Siegel’s genius for synthesizing and humanizing neu- roscience, attachment, and developmental theory made the book a bestseller and attracted thousands to this new field. The second edition benefits from over a decade’s worth of additional findings, reflections, ideas, and insights. I encourage you to take Siegel up on his offer to share this fascinating journey, whether for the first time or for a return trip. You won’t be disappointed.” —LOUIS COZO L INO , PhD, Department of Psychology, Pepperdine University “When The Developing Mind was first published, Siegel’s proposal that mind, brain, and relationships represented ‘three aspects of one reality’ essential to human well-being still seemed closer to inspired speculation than teachable scientific knowledge. Just over a decade later, the neurobiology of interpersonal experience has grown into one of the hottest areas of psychological research. Over two thousand new references surveyed for the second edition testify to just how far neuroscientists, developmental psychologists, and clinicians have brought the field as they begin to more fully chart the interplay of mind, body, and relationships. This splendid second edition—at once accessibly written and meticulously documented—provides a comprehensive guide to this emerging science.”—SA R AH BL AFFE R HR DY , PhD, Professor Emerita of Anthropology, University of California, Davis “Siegel describes his book as ‘a journey into the developing mind,’ and no one is better equipped to invite psychotherapists and other students of human impulses to share this remarkable adventure. In clear and inspired prose, he reviews facts and theories about the human brain that can be difficult to grasp. He explains how the brain differentiates and enables the creative and passionate mind of a child to share meaningful intentions, experiences, imaginative beliefs, rela- tionships, community, culture, and language. He puts this understanding in the service of a humane and respectful psychotherapy that can give integrity to young lives that have become anxious, chaotic, and rigid.” —CO L WYN T R EVA rt HEN , PhD, FRSE, Professor Emeritus of Child Psychology and Psychobiology, University of Edinburgh, United Kingdom “Fulfilled my wildest expectations. Instead of laboriously struggling to learn about neurobiology, I found myself fairly effortlessly assimilating information because 1) the author is able to present his material in the context of interper- sonal relationships in general and the treatment dyad in particular, and 2) the author is a master of lucidity, avoids pedantry, and succeeds in making his data clinically useful.”—American Journal of Psychiatry “Readable, thoughtful, and informative.”—Educational Leadership “I knew that this book was one I should keep handy when I wanted to improve my understanding of information on which the future science of psychiatry will be based.”—Journal of Clinical Psychiatry “A remarkable book. The Developing Mind boldly transcends the reduction- ism that characterizes so much of contemporary psychiatry.”—Psychiatric Times “Current, thorough, closely argued. One of Siegel’s major gifts is for pre- senting anatomical, neurological, research, and clinical information while still pointing out what remains unknown. He explores infant–parent relationships, emotions, states of mind, and how knowing about them can help one improve one’s relationships and capabilities for developing successfully.”—Booklist “Why can’t we remember what we did at age three? Why are some children unusually shy? What is the biochemistry of humiliation, and how can it be ‘toxic to the developing child’s brain’? New and plausible answers to these questions emerge from Siegel’s synthesis of neurobiology, research psychology and cognitive science. His subject—how we become the people we are— deserves to hold many readers spellbound.”—Publishers Weekly “The story Siegel tells is indeed fascinating, essentially describing the transac- tional processes that happen at the interface between developmental neurobiol- ogy and the environment of an individual. He links every level of the system from cell chemistry to brain architecture, to caregiver–infant attachments, to interpersonal relationships in adulthood. This is a book to stimulate, illu- minate, and drive our understanding of human developmental processes for- wards and I suspect that The Developing Mind will be seen as a milestone work in the future.”—Journal of Child Psychology and Psychiatry “Brilliant. It should probably not be read at one sitting, but sifted slowly as you would a 20 year old port. This is not just a book for bright psychiatric residents or child fellows, but child psychiatrists young and old, overworked or underpaid. It offers a glimpse of new horizons in the profession.”—Canadian Child Psychiatry Review THE DEVELOPING MIND The Developing Mind How Relationships and the Brain Interact to Shape Who We Are SECOND EDITION Daniel J. Siegel THE GUILFORD PRESS New York London © 2012 Mind Your Brain, Inc. Published by The Guilford Press A Division of Guilford Publications, Inc. 72 Spring Street, New York, NY 10012 www.guilford.com All rights reserved No part of this book may be reproduced, translated, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording, or otherwise, without written permission from the publisher. Printed in the United States of America This book is printed on acid-free paper. Last digit is print number: 9 8 7 6 5 4 3 2 1 The author has checked with sources believed to be reliable in his efforts to provide information that is complete and generally in accord with the standards of practice that are accepted at the time of publication. However, in view of the possibility of human error or changes in behavioral, mental health, or medical sciences, neither the author, nor the editor and publisher, nor any other party who has been involved in the preparation or publication of this work warrants that the information contained herein is in every respect accurate or complete, and they are not responsible for any errors or omissions or the results obtained from the use of such information. Readers are encouraged to confirm the information contained in this book with other sources. Library of Congress Cataloging-in-Publication Data Siegel, Daniel J., 1957– The developing mind : how relationships and the brain interact to shape who we are / Daniel J. Siegel. — 2nd ed. p. cm. Includes bibliographical references and index. ISBN 978-1-4625-0390-2 (hardcover: alk. paper) 1. Developmental psychology. 2. Interpersonal relations. 3. Intellect. 4. Brain—Physiological aspects. I. Title. BF713.S525 2012 155—dc23 2011052460 For Maddi About the Author Daniel J. Siegel, MD, is an internationally acclaimed author, award- winning educator, and renowned child psychiatrist. He is Clinical Professor of Psychiatry at the School of Medicine of the University of California, Los Angeles, where he serves as Co-Investigator at the Center for Culture, Brain, and Development, and Co-Director of the Mindful Awareness Research Center. He is also the Executive Director of the Mindsight Institute, an educational center devoted to promoting insight, compassion, and empathy in indi viduals, families, institutions, and communities. Dr. Siegel’s books include Mindsight, Pocket Guide to Interpersonal Neurobiology, The Mindful Ther- apist, The Mindful Brain, Parenting from the Inside Out, and The Whole-Brain Child. vii Preface to the Second Edition elcome to the fascinating world of interdisciplinary thinking. I invite W you to join me on this journey to explore the intricate intertwining of mind, brain, and relationships. Since the publication of the first edition of The Developing Mind over a dozen years ago, much has emerged from the objective study of science and the subjective knowledge of internal reflec- tion. This book honors these distinct but equally important realms of knowl- edge that will inform our travels. In this second edition, I have had the deep honor to incorporate what I’ve learned from scientists, psychotherapists, educators, philosophers, con- templative practitioners, and community leaders. The field that the first edition of this book introduced—“interpersonal neurobiology,” or simply “IPNB”—has grown in wonderful ways since then. It now has its own orga- nizations (see the Global Association for Interpersonal Neurobiology Studies, or GAINS), in-depth educational programs (see www.mindsightinstitute.com), and a professional library of over two dozen textbooks. My goal in thoroughly updating the references and revising the text for this edition is to make the ideas of IPNB and its scientific foundations as clear and concise as possible. I have had the good fortune of having 15 dedicated
Recommended publications
  • The Epistemology of Evidence in Cognitive Neuroscience1
    To appear in In R. Skipper Jr., C. Allen, R. A. Ankeny, C. F. Craver, L. Darden, G. Mikkelson, and R. Richardson (eds.), Philosophy and the Life Sciences: A Reader. Cambridge, MA: MIT Press. The Epistemology of Evidence in Cognitive Neuroscience1 William Bechtel Department of Philosophy and Science Studies University of California, San Diego 1. The Epistemology of Evidence It is no secret that scientists argue. They argue about theories. But even more, they argue about the evidence for theories. Is the evidence itself trustworthy? This is a bit surprising from the perspective of traditional empiricist accounts of scientific methodology according to which the evidence for scientific theories stems from observation, especially observation with the naked eye. These accounts portray the testing of scientific theories as a matter of comparing the predictions of the theory with the data generated by these observations, which are taken to provide an objective link to reality. One lesson philosophers of science have learned in the last 40 years is that even observation with the naked eye is not as epistemically straightforward as was once assumed. What one is able to see depends upon one’s training: a novice looking through a microscope may fail to recognize the neuron and its processes (Hanson, 1958; Kuhn, 1962/1970).2 But a second lesson is only beginning to be appreciated: evidence in science is often not procured through simple observations with the naked eye, but observations mediated by complex instruments and sophisticated research techniques. What is most important, epistemically, about these techniques is that they often radically alter the phenomena under investigation.
    [Show full text]
  • Outlook Magazine, Autumn 2018
    Washington University School of Medicine Digital Commons@Becker Outlook Magazine Washington University Publications 2018 Outlook Magazine, Autumn 2018 Follow this and additional works at: https://digitalcommons.wustl.edu/outlook Recommended Citation Outlook Magazine, Autumn 2018. Central Administration, Medical Public Affairs. Bernard Becker Medical Library Archives. Washington University School of Medicine, Saint Louis, Missouri. https://digitalcommons.wustl.edu/outlook/188 This Article is brought to you for free and open access by the Washington University Publications at Digital Commons@Becker. It has been accepted for inclusion in Outlook Magazine by an authorized administrator of Digital Commons@Becker. For more information, please contact [email protected]. AUTUMN 2018 Elevating performance BERNARD BECKER MEDICAL LIBRARY BECKER BERNARD outlook.wustl.edu Outlook 3 Atop the Karakoram Mountains, neurologist Marcus Raichle, MD, (center) displays a Mallinckrodt Institute of Radiology banner he created. In 1987, he and other members of a British expedition climbed 18,000 feet above sea level — and then injected radioactive xenon to see how it diffused through their brains. Raichle, 81, has been a central force for decades in the history and science of brain imaging. See page 7. FEATURES MATT MILLER MATT 7 Mysteries explored Pioneering neurologist Marcus Raichle, MD, opened up the human brain to scientific investigation. 14 Growing up transgender The Washington University Transgender Center helps families navigate the complex world of gender identity. COVER Scott Brandon, who sustained a spinal cord injury 16 years ago, said he is 21 Building independence grateful to the Program in Occupational For 100 years, the Program in Occupational Therapy has Therapy for helping him build physical and helped people engage mind and body.
    [Show full text]
  • The Evelyn F. and William L. Mcknight Brain Institute and the Cognitive Aging and Memory – Clinical Translational Research Program (CAM-CTRP) 2015 Annual Report
    The Evelyn F. and William L. McKnight Brain Institute and the Cognitive Aging and Memory – Clinical Translational Research Program (CAM-CTRP) 2015 Annual Report Prepared for the McKnight Brain Research Foundation by the University of Florida McKnight Brain Institute and Institute on Aging Table of Contents Letter from UF Leadership ................................................................................................................................................................................................. 3 Age-related Memory Loss (ARML) Program and the Evelyn F. McKnight Chair for Brain Research in Memory Loss...... 4-19 Cognitive Aging and Memory Clinical Translational Research Program (CAM-CTRP) and the Evelyn F. McKnight Chair for Clinical Translational Research in Cognitive Aging and Memory ................................ 20-63 William G. Luttge Lectureship in Neuroscience ...............................................................................................................64-65 Program Financials .................................................................................................................................................................. 66 Age-related Memory Loss Program .............................................................................................................................................................................67 McKnight Endowed Chair for Brain Research in Memory Loss .........................................................................................................................68
    [Show full text]
  • FALL 2018 MSK Takes a Lead Role in Interventional Oncology FSFOCAL
    FOCAL SPOT FS FALL 2018 MSK Takes a Lead Role in Interventional Oncology MALLINCKRODT INSTITUTE OF RADIOLOGY // WASHINGTON UNIVERSITY // ST. LOUIS CONTENTS 10 A look at 10 MIR professors RAD who are helping lead the way for women in radiology. (From left: Geetika Khanna, MD, Pamela K. WOMEN Woodard, MD, and Farrokh Dehdashti, MD) 6 16 20 LIFE-ALTERING MYSTERIES MIR ALUMNI TREATMENT EXPLAINED WEEKEND MSK imaging chief Jack Jennings, Thirty years later, Marcus E. Raichle, Old friends, new stories and a sweet MD, provides quality-of-life improving MD, remains a central figure in the serenade from Ronald G. Evens, MD. procedures for patients with cancer. science of brain imaging. Inside MIR’s first reunion. Cover Photo: Metastatic melanoma patient Chris Plummer still works his farm every day, thanks to treatment resulting in unprecedented control of his tumors. 2 SPOT NEWS 24 ALUMNI SPOTLIGHT FOCAL SPOT MAGAZINE FALL 2018 Editor: Marie Spadoni Photography: Mickey Wynn, Daniel Drier Design: Kim Kania YI F A LOOK BACK ©2018 Mallinckrodt Institute of Radiology 26 28 mir.wustl.edu FOCAL SPOT MAGAZINE // 1 SPOT NEWS David H. Ballard, MD, a TOP-TIER participant, uses 3D printing in his translational imaging work. Training the Next Generation of Imaging Scientists by Kristin Rattini For young scientists eager to make their way to the forefront in clinical translational imaging research and bringing of translational research and precision imaging, Mallinckrodt innovation to the practice of medicine. The interdisciplinary Institute of Radiology (MIR) offers a clear path. A leader in grant provides two training slots per year in years one NIH funding, MIR is home to premier training programs and and two, and three slots in years three through five.
    [Show full text]
  • Reviewers [PDF]
    The Journal of Neuroscience, January 2013, 33(1) Acknowledgement For Reviewers 2012 The Editors depend heavily on outside reviewers in forming opinions about papers submitted to the Journal and would like to formally thank the following individuals for their help during the past year. Kjersti Aagaard Frederic Ambroggi Craig Atencio Izhar Bar-Gad Esther Aarts Céline Amiez Coleen Atkins Jose Bargas Michelle Aarts Bagrat Amirikian Lauren Atlas Steven Barger Lawrence Abbott Nurith Amitai David Attwell Cornelia Bargmann Brandon Abbs Yael Amitai Etienne Audinat Michael Barish Keiko Abe Martine Ammasari-Teule Anthony Auger Philip Barker Nobuhito Abe Katrin Amunts Vanessa Auld Neal Barmack Ted Abel Costas Anastassiou Jesús Avila Gilad Barnea Ute Abraham Beau Ances Karen Avraham Carol Barnes Wickliffe Abraham Richard Andersen Gautam Awatramani Steven Barnes Andrey Abramov Søren Andersen Edward Awh Sue Barnett Hermann Ackermann Adam Anderson Cenk Ayata Michael Barnett-Cowan David Adams Anne Anderson Anthony Azevedo Kevin Barnham Nii Addy Clare Anderson Rony Azouz Scott Barnham Arash Afraz Lucy Anderson Hiroko Baba Colin J. Barnstable Ariel Agmon Matthew Anderson Luiz Baccalá Scott Barnum Adan Aguirre Susan Anderson Stephen Baccus Ralf Baron Geoffrey Aguirre Anuska Andjelkovic Stephen A. Back Pascal Barone Ehud Ahissar Rodrigo Andrade Lars Bäckman Maureen Barr Alaa Ahmed Ole Andreassen Aldo Badiani Luis Barros James Aimone Michael Andres David Badre Andreas Bartels Cheryl Aine Michael Andresen Wolfgang Baehr David Bartés-Fas Michael Aitken Stephen Andrews Mathias Bähr Alison Barth Elias Aizenman Thomas Andrillon Bahador Bahrami Markus Barth Katerina Akassoglou Victor Anggono Richard Baines Simon Barthelme Schahram Akbarian Fabrice Ango Jaideep Bains Edward Bartlett Colin Akerman María Cecilia Angulo Wyeth Bair Timothy Bartness Huda Akil Laurent Aniksztejn Victoria Bajo-Lorenzana Marisa Bartolomei Michael Akins Lucio Annunziato David Baker Marlene Bartos Emre Aksay Daniel Ansari Harriet Baker Jason Bartz Kaat Alaerts Mark S.
    [Show full text]
  • The Dichotomous Role of Inflammation in The
    biomolecules Review The Dichotomous Role of Inflammation in the CNS: A Mitochondrial Point of View Bianca Vezzani 1,2 , Marianna Carinci 1,2 , Simone Patergnani 1,2 , Matteo P. Pasquin 1,2, Annunziata Guarino 2,3, Nimra Aziz 2,3, Paolo Pinton 1,2,4, Michele Simonato 2,3,5 and Carlotta Giorgi 1,2,* 1 Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; [email protected] (B.V.); [email protected] (M.C.); [email protected] (S.P.); [email protected] (M.P.P.); [email protected] (P.P.) 2 Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy; [email protected] (A.G.); [email protected] (N.A.); [email protected] (M.S.) 3 Department of BioMedical and Specialist Surgical Sciences, University of Ferrara, 44121 Ferrara, Italy 4 Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola (RA), Italy 5 School of Medicine, University Vita-Salute San Raffaele, 20132 Milan, Italy * Correspondence: [email protected]; Tel.: +39-0532-455803 Received: 28 August 2020; Accepted: 10 October 2020; Published: 13 October 2020 Abstract: Innate immune response is one of our primary defenses against pathogens infection, although, if dysregulated, it represents the leading cause of chronic tissue inflammation. This dualism is even more present in the central nervous system, where neuroinflammation is both important for the activation of reparatory mechanisms and, at the same time, leads to the release of detrimental factors that induce neurons loss. Key players in modulating the neuroinflammatory response are mitochondria. Indeed, they are responsible for a variety of cell mechanisms that control tissue homeostasis, such as autophagy, apoptosis, energy production, and also inflammation.
    [Show full text]
  • The CNS and the Brain Tumor Microenvironment: Implications for Glioblastoma Immunotherapy
    International Journal of Molecular Sciences Review The CNS and the Brain Tumor Microenvironment: Implications for Glioblastoma Immunotherapy Fiona A. Desland and Adília Hormigo * Icahn School of Medicine at Mount Sinai, The Tisch Cancer Institute, Department of Neurology, Box 1137, 1 Gustave L. Levy Pl, New York, NY 10029-6574, USA; fi[email protected] * Correspondence: [email protected] Received: 28 August 2020; Accepted: 29 September 2020; Published: 5 October 2020 Abstract: Glioblastoma (GBM) is the most common and aggressive malignant primary brain tumor in adults. Its aggressive nature is attributed partly to its deeply invasive margins, its molecular and cellular heterogeneity, and uniquely tolerant site of origin—the brain. The immunosuppressive central nervous system (CNS) and GBM microenvironments are significant obstacles to generating an effective and long-lasting anti-tumoral response, as evidenced by this tumor’s reduced rate of treatment response and high probability of recurrence. Immunotherapy has revolutionized patients’ outcomes across many cancers and may open new avenues for patients with GBM. There is now a range of immunotherapeutic strategies being tested in patients with GBM that target both the innate and adaptive immune compartment. These strategies include antibodies that re-educate tumor macrophages, vaccines that introduce tumor-specific dendritic cells, checkpoint molecule inhibition, engineered T cells, and proteins that help T cells engage directly with tumor cells. Despite this, there is still much ground to be gained in improving the response rates of the various immunotherapies currently being trialed. Through historical and contemporary studies, we examine the fundamentals of CNS immunity that shape how to approach immune modulation in GBM, including the now revamped concept of CNS privilege.
    [Show full text]
  • PTSD Is Associated with Neuroimmune Suppression: Evidence from PET Imaging and Postmortem Transcriptomic Studies
    ARTICLE https://doi.org/10.1038/s41467-020-15930-5 OPEN PTSD is associated with neuroimmune suppression: evidence from PET imaging and postmortem transcriptomic studies Shivani Bhatt 1, Ansel T. Hillmer2,3,4, Matthew J. Girgenti 3,5, Aleksandra Rusowicz 3, Michael Kapinos4, Nabeel Nabulsi 2,4, Yiyun Huang2,4, David Matuskey 2,3,4, Gustavo A. Angarita3,4, Irina Esterlis1,3,4,5, Margaret T. Davis3, Steven M. Southwick3,5, Matthew J. Friedman 6, Traumatic Stress Brain Study Group*, Ronald S. Duman 3, Richard E. Carson 2,4, John H. Krystal3,5, Robert H. Pietrzak3,5 & ✉ Kelly P. Cosgrove 1,2,3,4,5 1234567890():,; Despite well-known peripheral immune activation in posttraumatic stress disorder (PTSD), there are no studies of brain immunologic regulation in individuals with PTSD. [11C]PBR28 Positron Emission Tomography brain imaging of the 18-kDa translocator protein (TSPO), a microglial biomarker, was conducted in 23 individuals with PTSD and 26 healthy individuals— with or without trauma exposure. Prefrontal-limbic TSPO availability in the PTSD group was negatively associated with PTSD symptom severity and was significantly lower than in controls. Higher C-reactive protein levels were also associated with lower prefrontal-limbic TSPO availability and PTSD severity. An independent postmortem study found no differential gene expression in 22 PTSD vs. 22 controls, but showed lower relative expression of TSPO and microglia-associated genes TNFRSF14 and TSPOAP1 in a female PTSD subgroup. These findings suggest that peripheral immune activation in PTSD is associated with deficient brain microglial activation, challenging prevailing hypotheses positing neuroimmune activation as central to stress-related pathophysiology.
    [Show full text]
  • P:\Autism Cases\Dwyer 03-1202V\Opinion Segments NEW
    IN THE UNITED STATES COURT OF FEDERAL CLAIMS OFFICE OF THE SPECIAL MASTERS No. 03-1202V Filed: March 12, 2010 ******************************************************* TIMOTHY and MARIA DWYER, parents of * COLIN R. DWYER, a minor, * Omnibus Autism Proceeding; * Theory 2 Test Case; Petitioners, * Thimerosal-Containing Vaccines; * Ethylmercury; Causation; v. * “Clearly Regressive” Autism; * Oxidative Stress; Sulfur SECRETARY OF THE DEPARTMENT OF * Metabolism Disruption; HEALTH AND HUMAN SERVICES, * Excitotoxicity; Expert * Qualifications; Weight of the Respondent. * Evidence * ******************************************************* DECISION1 James Collins Ferrell, Esq., Houston, TX; Thomas B. Powers, Esq. and Michael L. Williams, Esq., Portland, OR; for petitioners. Lynn Elizabeth Ricciardella, Esq. and Voris Johnson, Esq., U.S. Department of Justice, Washington, DC, for respondent. VOWELL, Special Master: On May 14, 2003, Timothy and Maria Dwyer [“petitioners”] filed a “short form” petition for compensation under the National Vaccine Injury Compensation Program, 42 U.S.C. § 300aa-10, et seq.2 [the “Vaccine Act” or “Program”], on behalf of their minor 1 Vaccine Rule 18(b) provides the parties 14 days to request redaction of any material “(i) which is trade secret or commercial or financial information which is privileged and confidential, or (ii) which are medical files and similar files, the disclosure of which would constitute a clearly unwarranted invasion of privacy.” 42 U.S.C § 300aa12(d)(4)(B). Both parties have waived their right to request such redaction. See Petitioners’ Notice to Waive the 14-Day Waiting Period, filed February 1, 2010; Respondent’s Consent to Disclosure, filed January 13, 2010. Accordingly, this decision will be publically available upon filing. 2 National Childhood Vaccine Injury Act of 1986, Pub.
    [Show full text]
  • Uva-DARE (Digital Academic Repository)
    UvA-DARE (Digital Academic Repository) The space inside the skull : digital representations, brain mapping and cognitive neuroscience in the decade of the brain Beaulieu, J.A. Publication date 2000 Link to publication Citation for published version (APA): Beaulieu, J. A. (2000). The space inside the skull : digital representations, brain mapping and cognitive neuroscience in the decade of the brain. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:30 Sep 2021 Workss Cited Ahhot.. Allison 19922 Confusion about form and function clouds launch of EC's Decade of ihe Brain. Nature. 24 September.. 359: 260. Ackerman.. Sandra 19922 The Role of the Brain in Mental Illness. !n Discovering the Brain. 46-66. Washington. DC:: National Academy Press.
    [Show full text]
  • Giovanni Berlucchi
    BK-SFN-NEUROSCIENCE-131211-03_Berlucchi.indd 96 16/04/14 5:21 PM Giovanni Berlucchi BORN: Pavia, Italy May 25, 1935 EDUCATION: Liceo Classico Statale Ugo Foscolo, Pavia, Maturità (1953) Medical School, University of Pavia, MD (1959) California Institute of Technology, Postdoctoral Fellowship (1964–1965) APPOINTMENTS: University of Pennsylvania (1968) University of Siena (1974) University of Pisa (1976) University of Verona (1983) HONORS AND AWARDS: Academia Europaea (1990) Accademia Nazionale dei Lincei (1992) Honorary PhD in Psychology, University of Pavia (2007) After working initially on the neurophysiology of the sleep-wake cycle, Giovanni Berlucchi did pioneering electrophysiological investigations on the corpus callosum and its functional contribution to the interhemispheric transfer of visual information and to the representation of the visual field in the cerebral cortex and the superior colliculus. He was among the first to use reaction times for analyzing hemispheric specializations and interactions in intact and split brain humans. His latest research interests include visual spatial attention and the representation of the body in the brain. BK-SFN-NEUROSCIENCE-131211-03_Berlucchi.indd 97 16/04/14 5:21 PM Giovanni Berlucchi Family and Early Years A man’s deepest roots are where he has spent the enchanted days of his childhood, usually where he was born. My deepest roots lie in the ancient Lombard city of Pavia, where I was born 78 years ago, on May 25, 1935, and in that part of the province of Pavia that lies to the south of the Po River and is called the Oltrepò Pavese. The hilly part of the Oltrepò is covered with beautiful vineyards that according to archaeological and historical evidence have been used to produce good wines for millennia.
    [Show full text]
  • Analysis for Science Librarians of the 2014 Nobel Prize in Physiology Or Medicine: the Life and Work of John O’Keefe, Edvard Moser, and May-Britt Moser
    Analysis for Science Librarians of the 2014 Nobel Prize in Physiology or Medicine: The Life and Work of John O’Keefe, Edvard Moser, and May-Britt Moser Neyda V. Gilman Colorado State University, Fort Collins, CO Navigation and awareness of space is a complicated cognitive process that requires sensory input and calculation, as well as spatial memory. The 2014 Nobel Laureates in Physiology or Medicine, John O’Keefe, Edvard Moser, and May-Britt Moser, have worked to explain how an environmental map forms and is used in the brain (Nobelprize.org 2014b). O’Keefe discovered place cells that allow the brain to learn and remember specific locations. The Mosers added the second part of the “positioning system in the brain” with their discovery of grid cells, which provide the brain with a navigational coordinate system (Nobelprize.org 2014b). Introduction Alfred Nobel dictated in his will that his millions were to be used to create the Nobel Foundation in order to fund Nobel Prizes, the first of which was awarded in 1901 (Nobelprize.org 2014g). The Prize for Physiology or Medicine is given to those who are found to have made a major discovery that changes scientific thinking and benefits mankind. Between 1901 and 1953 there were over 5,000 individuals nominated for the Physiology or Medicine prize, less than seventy of which eventually became Laureates. For the 2014 Prize alone, 263 scientists were nominated (Nobelprize.org 2014h). The prize is not meant to honor those who are seen as leaders in the scientific community or those who have made many achievements over their lifetime.
    [Show full text]