Ablation of Tanycytes of the Arcuate Nucleus and Median Eminence Increases Visceral Adiposity and Decreases Insulin Sensitivity in Male Mice
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Reorganization of Neural Peptidergic Eminence After Hypophysectomy
The Journal of Neuroscience, October 1994, 14(10): 59966012 Reorganization of Neural Peptidergic Systems Median Eminence after Hypophysectomy Marcel0 J. Villar, Bjiirn Meister, and Tomas Hiikfelt Department of Neuroscience, The Berzelius Laboratory, Karolinska Institutet, Stockholm, 171 77 Sweden Earlier studies have shown the formation of a novel neural crease to a final stage of a few, strongly immunoreactive lobe after hypophysectomy, an experimental manipulation fibers in the external layer at longer survival times. Vaso- that causes transection of neurohypophyseal nerve fibers active intestinal polypeptide (VIP)- and peptide histidine- and removal of pituitary hormones. The mechanisms that isoleucine (PHI)-IR fibers in hypophysectomized animals had underly this regenerative process are poorly understood. already contacted portal vessels 5 d after hypophysectomy, The localization and number of peptide-immunoreactive and from then on progressively increased in numbers. Fi- (-IR) fibers in the median eminence were studied in normal nally, most of the peptide fibers described above formed rats and in rats at different times of survival after hypophy- dense innervation patterns around the large blood vessels sectomy using indirect immunofluorescence histochemistry. along the lateral borders of the median eminence. The number of vasopressin (VP)-IR fibers increased in the The present results show that hypophysectomy induces external layer of the median eminence in 5 d hypophysec- a wide variety of changes in hypothalamic neurosecretory tomized rats. Oxytocin (OXY)-IR fibers decreased in the in- fibers. Not only is the expression of several peptides in these ternal layer and progressively extended into the external fibers modified following different survival times, but a re- layer. -
Tanycytes of the Adult Hypothalamic Third Ventricle Include Distinct Populations of FGF-Responsive Neural Progenitors
ARTICLE Received 27 Nov 2012 | Accepted 23 May 2013 | Published 27 Jun 2013 DOI: 10.1038/ncomms3049 OPEN a-Tanycytes of the adult hypothalamic third ventricle include distinct populations of FGF-responsive neural progenitors S.C. Robins1,2,*, I. Stewart1,*, D.E McNay3,4,*, V. Taylor5, C. Giachino5, M. Goetz6, J. Ninkovic6, N. Briancon3,7, E. Maratos-Flier3, J.S Flier3,8, M.V Kokoeva2,3 & M. Placzek1 Emerging evidence suggests that new cells, including neurons, can be generated within the adult hypothalamus, suggesting the existence of a local neural stem/progenitor cell niche. Here, we identify a-tanycytes as key components of a hypothalamic niche in the adult mouse. Long-term lineage tracing in vivo using a GLAST::CreERT2 conditional driver indicates that a-tanycytes are self-renewing cells that constitutively give rise to new tanycytes, astrocytes and sparse numbers of neurons. In vitro studies demonstrate that a-tanycytes, but not b-tanycytes or parenchymal cells, are neurospherogenic. Distinct subpopulations of a-tanycytes exist, amongst which only GFAP-positive dorsal a2-tanycytes possess stem-like neurospherogenic activity. Fgf-10 and Fgf-18 are expressed specifically within ventral tanycyte subpopulations; a-tanycytes require fibroblast growth factor signalling to maintain their proliferation ex vivo and elevated fibroblast growth factor levels lead to enhanced proliferation of a-tanycytes in vivo. Our results suggest that a-tanycytes form the critical component of a hypothalamic stem cell niche, and that local fibroblast growth factor signalling governs their proliferation. 1 MRC Centre for Developmental and Biomedical Genetics and Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK. -
Selective Association with Enkephalin-Containing Neurons (Peptide Processing/Carboxypeptidase/Magnoceliular Hypothalamus/Hippocampus/Proenkephalin) DAVID R
Proc. Natl. Acad. Sci. USA Vol. 81, pp. 6543-6547, October 1984 Neurobiology Enkephalin convertase localization by [3H]guanidinoethylmercaptosuccinic acid autoradiography: Selective association with enkephalin-containing neurons (peptide processing/carboxypeptidase/magnoceliular hypothalamus/hippocampus/proenkephalin) DAVID R. LYNCH, STEPHEN M. STRITTMATTER, AND SOLOMON H. SNYDER* Departments of Neuroscience, Pharmacology and Experimental Therapeutics, Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205 Contributed by Solomon H. Snyder, July 6, 1984 ABSTRACT Enkephalin convertase, an enkephalin-form- tioned by the method of Young and Kuhar (14) as modified ing carboxypeptidase, is potently inhibited by guanidinoethyl- by Strittmatter et al. (15). For autoradiography, sections mercaptosuccinic acid (GEMSA). We have localized enkepha- were incubated at 40C in 0.05 M sodium acetate (pH 5.6) for lin convertase in rat brain by in vitro autoradiography with 5 min and then in the same buffer with 4 nM [3H]GEMSA [3H]GEMSA. [3H]GEMSA-associated silver grains are highly and any inhibitors for 30 min. Nonspecific binding was de- concentrated in the median eminence, bed nucleus of the stria termined in the presence of 10 ,uM unlabeled GEMSA. The terminalis, lateral septum, dentate gyrus, hippocampus, cen- slides were washed twice for 1 min in sodium acetate (pH tral nucleus of the amygdala, preoptic hypothalamus, magno- 5.6) at 40C, dipped in water, and dried rapidly under a stream cellular nuclei of the hypothalamus, interpeduncular nucleus, of air. The slides were dessicated overnight and applied to dorsal parabrachial nucleus, locus coeruleus, nucleus of the LKB Ultrafilm or photographic emulsion.coated coverslips solitary tract, and the substantia gelatinosa of the spinal tri- for 12 days at 40C. -
Localization of Luteinizing Hormone-Releasing Hormone (LHRH) Neurons That Project to the Median Eminence
The Journal of Neuroscience, August 1987, 7(8): 2312-2319 Localization of Luteinizing Hormone-Releasing Hormone (LHRH) Neurons That Project to the Median Eminence Ann-Judith Silverman,’ Jack Jhamandas, and Leo P. Renaud ‘Department of Anatomy and Cell Biology, Columbia University, New York, New York 10032, and Neurosciences Unit, Montreal General Hospital and McGill University, Montreal H3G lA4, Canada The neuropeptide, luteinizing hormone-releasing hormone septal, preoptic, and hypothalamic regions,forming a loosecon- (LHRH), is released from nerve terminals in the median em- tinuum from the level of the diagonal band of Broca, including inence and carried via the hypophysial portal system to the both its vertical and horizontal limbs, the medial and triangular anterior pituitary, where it stimulates the release of gonad- septal nuclei, and periventricular, medial, and lateral preoptic otropins. LHRH-containing neurons are located in many dif- and anterior hypothalamic areas. Some LHRH cells are found ferent regions of the rodent brain, including olfactory, septal, rostra1 to the supraoptic nucleus, others in the retrochiasmatic preoptic, and hypothalamic structures. Since those LHRH zone, just medial to the optic tract. A few LHRH neuronsare neurons that project to the median eminence form the final seenwithin the circumventricular organs, i.e., the organum vas- common pathway for the regulation of the pituitary/gonadal culosum of the lamina terminalis (OVLT) and the subfomical axis, we wished to determine which of these cell groups are organ. Finally, LHRH neuronsare associatedwith the accessory afferent to this structure. A retrograde tracer, the lectin wheat olfactory bulb and other olfactory-related structures, including germ agglutinin (WGA), was placed directly on the exposed the nervus terminalis. -
Endocannabinoids in Body Weight Control
pharmaceuticals Review Endocannabinoids in Body Weight Control Henrike Horn †, Beatrice Böhme †, Laura Dietrich and Marco Koch * Institute of Anatomy, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany; [email protected] (H.H.); [email protected] (B.B.); [email protected] (L.D.) * Correspondence: [email protected]; Tel.: +49-341-97-22047 † These authors contributed equally. Received: 28 April 2018; Accepted: 28 May 2018; Published: 30 May 2018 Abstract: Maintenance of body weight is fundamental to maintain one’s health and to promote longevity. Nevertheless, it appears that the global obesity epidemic is still constantly increasing. Endocannabinoids (eCBs) are lipid messengers that are involved in overall body weight control by interfering with manifold central and peripheral regulatory circuits that orchestrate energy homeostasis. Initially, blocking of eCB signaling by first generation cannabinoid type 1 receptor (CB1) inverse agonists such as rimonabant revealed body weight-reducing effects in laboratory animals and men. Unfortunately, rimonabant also induced severe psychiatric side effects. At this point, it became clear that future cannabinoid research has to decipher more precisely the underlying central and peripheral mechanisms behind eCB-driven control of feeding behavior and whole body energy metabolism. Here, we will summarize the most recent advances in understanding how central eCBs interfere with circuits in the brain that control food intake and -
Variations in Number of Dopamine Neurons and Tyrosine Hydroxylase Activity in Hypothalamus of Two Mouse Strains
0270.6474/83/0304-0832$02.00/O The Journal of Neuroscience Copyright 0 Society for Neuroscience Vol. 3, No. 4, pp. 832-843 Printed in U.S.A. April 1983 VARIATIONS IN NUMBER OF DOPAMINE NEURONS AND TYROSINE HYDROXYLASE ACTIVITY IN HYPOTHALAMUS OF TWO MOUSE STRAINS HARRIET BAKER,2 TONG H. JOH, DAVID A. RUGGIERO, AND DONALD J. REIS Laboratory of Neurobiology, Cornell University Medical College, New York, New York 10021 Received May 3, 1982; Revised August 23, 1982; Accepted October 8, 1982 Abstract Mice of the BALB/cJ strain have more neurons and greater tyrosine hydroxylase (TH) activity in the midbrain than mice of the CBA/J strain (Baker, H., T. H. Joh, and D. J. Reis (1980) Proc. Natl. Acad. Sci. U. S. A. 77: 4369-4373). To determine whether the strain differences in dopamine (DA) neuron number and regional TH activity are more generalized, regional TH activity was measured and counts of neurons containing the enzyme were made in the hypothalamus of male mice of the BALB/cJ and CBA/J strains. TH activity was measured in dissections of whole hypothalamus (excluding the preoptic area), the preoptic area containing a rostral extension of the Al4 group, the mediobasal hypothalamus containing the A12 group, and the mediodorsal hypothal- amus containing neurons of the Al3 and Al4 groups. Serial sections were taken and the number of DA neurons was established by counting at 50- to 60-pm intervals all cells stained for TH through each area. In conjunction with data obtained biochemically, the average amount of TH per neuron was determined. -
Diversity of Adult Neural Stem and Progenitor Cells in Physiology and Disease
cells Review Diversity of Adult Neural Stem and Progenitor Cells in Physiology and Disease Zachary Finkel, Fatima Esteban, Brianna Rodriguez, Tianyue Fu, Xin Ai and Li Cai * Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA; [email protected] (Z.F.); [email protected] (F.E.); [email protected] (B.R.); [email protected] (T.F.); [email protected] (X.A.) * Correspondence: [email protected] Abstract: Adult neural stem and progenitor cells (NSPCs) contribute to learning, memory, main- tenance of homeostasis, energy metabolism and many other essential processes. They are highly heterogeneous populations that require input from a regionally distinct microenvironment including a mix of neurons, oligodendrocytes, astrocytes, ependymal cells, NG2+ glia, vasculature, cere- brospinal fluid (CSF), and others. The diversity of NSPCs is present in all three major parts of the CNS, i.e., the brain, spinal cord, and retina. Intrinsic and extrinsic signals, e.g., neurotrophic and growth factors, master transcription factors, and mechanical properties of the extracellular matrix (ECM), collectively regulate activities and characteristics of NSPCs: quiescence/survival, prolifer- ation, migration, differentiation, and integration. This review discusses the heterogeneous NSPC populations in the normal physiology and highlights their potentials and roles in injured/diseased states for regenerative medicine. Citation: Finkel, Z.; Esteban, F.; Keywords: central nervous system (CNS); ependymal cells; neural stem and progenitor cells (NSPC); Rodriguez, B.; Fu, T.; Ai, X.; Cai, L. NG2+ cells; neurodegenerative diseases; regenerative medicine; retina injury; spinal cord injury Diversity of Adult Neural Stem and (SCI); traumatic brain injury (TBI) Progenitor Cells in Physiology and Disease. Cells 2021, 10, 2045. -
Hypothalamic Fatty Acids and Ketone Bodies Sensing and Role of FAT/CD36 in the Regulation of Food Intake
Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2019 Hypothalamic fatty acids and ketone bodies sensing and role of FAT/CD36 in the regulation of food intake Le Foll, Christelle Abstract: The obesity and type-2 diabetes epidemic is escalating and represents one of the costliest biomedical challenges confronting modern society. Moreover, the increasing consumption of high fat food is often correlated with an increase in body mass index. In people predisposed to be obese or already obese, the impaired ability of the brain to monitor and respond to alterations in fatty acid (FA) metabolism is increasingly recognized as playing a role in the pathophysiological development of these disorders. The brain senses and regulates metabolism using highly specialized nutrient-sensing neurons located mainly in the hypothalamus. The same neurons are able to detect variation in the extracellular levels of glucose, FA and ketone bodies as a way to monitor nutrient availability and to alter its own activity. In addition, glial cells such as astrocytes create major connections to neurons and form a tight relationship to closely regulate nutrient uptake and metabolism. This review will examine the different pathways by which neurons are able to detect free fatty acids (FFA) to alter its activity and how high fat diet (HFD)-astrocytes induced ketone bodies production interplays with neuronal FA sensing. The role of HFD-induced inflammation and how FA modulate the reward system will also be investigated here. DOI: https://doi.org/10.3389/fphys.2019.01036 Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-175790 Journal Article Published Version The following work is licensed under a Creative Commons: Attribution 4.0 International (CC BY 4.0) License. -
Transcriptional Control of Hypothalamic Tanycyte
TRANSCRIPTIONAL CONTROL OF HYPOTHALAMIC TANYCYTE DEVELOPMENT By Ana Lucia Miranda-Angulo A dissertation submitted to the Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland March 2013 © 2013 Ana Lucia Miranda-Angulo All Rights Reserved Abstract The wall of the ventral third ventricle is composed of two distinct cell populations; tanycytes and ependymal cells. Tanycytes support several hypothalamic functions but little is known about the transcriptional network which regulates their development. We explored the developmental expression of multiple transcription factors by in situ hybridization and found that the retina and anterior neural fold homeobox transcription factor (Rax) was expressed in both ventricular progenitors of the hypothalamic primordium and differentiating tanycytes. Rax is known to participate in retina and hypothalamus development but nothing is known about its function in tanycytes. To explore the role of Rax in hypothalamic tanycyte development we generated Rax haploinsufficient mice. These mice appeared grossly normal, but careful examination revealed a thinning of the third ventricular wall and reduction of tanycyte and ependymal markers. These experiments show that Rax is required for tanycyte and ependymal cell progenitor proliferation and/or survival. Rax haploinsufficiency also resulted in ectopic presence of ependymal cells in the α2 tanycytic zone were few ependymal cells are normally found. Thus, the presence of ependymal cell in this zone suggests that Rax was required for α2 tanycyte differentiation. These changes in the ventricular wall were associated with reduced diffusion of Evans Blue tracer from the ventricle to the hypothalamic parenchyma. Furthermore, we have provided in vivo and in vitro evidence suggesting that RAX protein is secreted by tanycytes, and subsequently internalized by adjacent and distal cells. -
Nav2/Nag Channel Is Involved in Control of Salt-Intake Behavior in the CNS
The Journal of Neuroscience, October 15, 2000, 20(20):7743–7751 Nav2/NaG Channel Is Involved in Control of Salt-Intake Behavior in the CNS Eiji Watanabe,1,2,3 Akihiro Fujikawa,1 Haruyuki Matsunaga,1 Yasunobu Yasoshima,4 Noritaka Sako,4 Takashi Yamamoto,4 Chika Saegusa,1,3 and Masaharu Noda1,2,3 1Division of Molecular Neurobiology, and 2Center for Transgenic Animals and Plants, National Institute for Basic Biology, Myodaiji-cho, Okazaki 444-8585, 3Department of Molecular Biomechanics, The Graduate University for Advanced Studies, Myodaiji-cho, Okazaki 444–8585, Japan, and 4Department of Behavioral Physiology, Faculty of Human Sciences, Osaka University, 1–2 Yamadaoka, Suita 565–0871, Japan Nav2/NaG is a putative sodium channel, whose physiological role subfornical organ and organum vasculosum laminae terminalis has long been an enigma. We generated Nav2 gene-deficient compared with wild-type animals, suggesting a hyperactive state mice by inserting the lacZ gene. Analysis of the targeted mice in the Nav2-null mice. Moreover, the null mutants showed abnor- allowed us to identify Nav2-producing cells by examining the mal intakes of hypertonic saline under both water- and salt- lacZ expression. Besides in the lung, heart, dorsal root ganglia, depleted conditions. These findings suggest that the Nav2 chan- and Schwann cells in the peripheral nervous system, Nav2 was nel plays an important role in the central sensing of body-fluid expressed in neurons and ependymal cells in restricted areas of sodium level and regulation of salt intake behavior. the CNS, particularly in the circumventricular organs, which are involved in body-fluid homeostasis. -
Obligatory Role of Hypothalamic Neuroestradiol During the Estrogen-Induced LH Surge in Female Ovariectomized Rhesus Monkeys
Obligatory role of hypothalamic neuroestradiol during the estrogen-induced LH surge in female ovariectomized rhesus monkeys Brian P. Kenealya, Kim L. Keena, James P. Garciaa, Lucille K. Kohlenberga, and Ei Terasawaa,b,1 aWisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI 53715; and bDepartment of Pediatrics, University of Wisconsin–Madison, Madison, WI 53715 Edited by Bruce S. McEwen, The Rockefeller University, New York, NY, and approved November 21, 2017 (received for review September 12, 2017) Negative and positive feedback effects of ovarian 17β-estradiol positive feedback effects on the release of GnRH, kisspeptin, and (E2) regulating release of gonadotropin releasing hormone (GnRH) LH in OVX female rhesus monkeys. and luteinizing hormone (LH) are pivotal events in female repro- ductive function. While ovarian feedback on hypothalamo–pitui- Results tary function is a well-established concept, the present study Letrozole Attenuates the Estrogen-Induced LH Surge (Experiment 1). shows that neuroestradiol, locally synthesized in the hypothala- The effects of letrozole or vehicle on the E2-induced LH surge mus, is a part of estrogen’s positive feedback loop. In experiment were examined with a protocol schematically shown in Fig. S1A. 1, E2 benzoate-induced LH surges in ovariectomized female mon- All animals received s.c. implantation of an E2 capsule 14 d before keys were severely attenuated by systemic administration of the systemic EB (day 0, the day of EB injection), and the E2 capsule aromatase inhibitor, letrozole. Aromatase is the enzyme responsi- remained throughout the entire experiment. As shown previously ble for synthesis of E2 from androgens. In experiment 2, using (6), E2 capsule implantation in OVX female monkeys suppresses microdialysis, GnRH and kisspeptin surges induced by E2 benzoate LH levels within a week (compare day −14 to day −7, Fig. -
The Type 2 Iodothyronine Deiodinase Is Expressed Primarily in Glial Cells in the Neonatal Rat Brain
Proc. Natl. Acad. Sci. USA Vol. 94, pp. 10391–10396, September 1997 Neurobiology The type 2 iodothyronine deiodinase is expressed primarily in glial cells in the neonatal rat brain ANA GUADAN˜O-FERRAZ*, MARIA JESUS OBREGO´N*, DONALD L. ST.GERMAIN†, AND JUAN BERNAL*‡ *Instituto de Investigaciones Biome´dicas,Consejo Superior de Investigaciones Cientı´ficas 28029 Madrid, Spain; and †Departments of Medicine and Physiology, Dartmouth Medical School, Lebanon, NH 03756 Communicated by Donald D. Brown, Carnegie Institution of Washington, Baltimore, MD, July 14, 1997 (received for review May 13, 1997) ABSTRACT Thyroid hormone plays an essential role in brain in the face of limiting amounts of the prohormone T4 mammalian brain maturation and function, in large part by (16). Brain T3 levels thus appear to be protected to a consid- regulating the expression of specific neuronal genes. In this erable extent by alterations in circulating thyroid hormone tissue, the type 2 deiodinase (D2) appears to be essential for levels (12, 16). A second important factor in this regard is a providing adequate levels of the active thyroid hormone decrease in the clearance rate of T3 in the hypothyroid brain 3,5,3*-triiodothyronine (T3) during the developmental period. effected by a decrease in the activity of the type 3 deiodinase We have studied the regional and cellular localization of D2 (D3) (11). This enzyme converts T4 and T3 to inactive mRNA in the brain of 15-day-old neonatal rats. D2 is ex- metabolites by 5-deiodination (17). The coordinated regula- pressed in the cerebral cortex, olfactory bulb, hippocampus, tion of D2 and D3 activity appears to be critical for thyroid caudate, thalamus, hypothalamus, and cerebellum and was hormone homeostasis in this tissue.