From Olive Drupes to Olive Oil. an HPLC-Orbitrap-Based Qualitative and Quantitative Exploration of Olive Key Metabolites

Total Page:16

File Type:pdf, Size:1020Kb

From Olive Drupes to Olive Oil. an HPLC-Orbitrap-Based Qualitative and Quantitative Exploration of Olive Key Metabolites 1576 Original Papers From Olive Drupes to Olive Oil. An HPLC-Orbitrap-based Qualitative and Quantitative Exploration of Olive Key Metabolites Authors Periklis Kanakis1, Aikaterini Termentzi1, Thomas Michel1, Evagelos Gikas2, Maria Halabalaki 1, Alexios-Leandros Skaltsounis1 Affiliations 1 Laboratory of Pharmacognosy and Natural Products Chemistry, School of Pharmacy, University of Athens, Athens, Greece 2 Laboratory of Pharmaceutical Chemistry, School of Pharmacy, University of Athens, Athens, Greece Key words Abstract identified based on HRMS and HRMS/MS data. l" olive oil production ! Nine biologically and chemically significant me- l" olive drupes The aim of the current study was the qualitative tabolites were quantitatively determined l" ‑ ‑ HPLC Orbitrap HRMS/MS exploration and quantitative monitoring of key throughout the four production steps. Drupes l" oleocanthal olive secondary metabolites in different pro- and paste were found to be rich in several compo- l" oleacein duction steps (drupes, paste, first and final oil) nents, which are not present in the final oil. The throughout a virgin olive oil production line. The current study discloses the chemical nature of dif- Greek variety Koroneiki was selected as one of the ferent olive materials in a successive and inte- most representative olives, which is rich in bio- grated way and reveals new sources of high added logical active compounds. For the first time, an value constituents of olives. HPLC-Orbitrap platform was employed for both qualitative and quantitative purposes. Fifty-two Supporting information available online at components belonging to phenyl alcohols, secoir- http://www.thieme-connect.de/ejournals/toc/ idoids, flavonoids, triterpenes, and lactones were plantamedica Introduction thal. These compounds show antimicrobilal, anti- ! inflammatory, and hypoglycaemic effects and are In 2011, the European Food Safety Authority (EF- considered responsible for the antioxidant prop- SA) published a scientific opinion suggesting that erties of VOO [3–5]. Apart from phenols and se- virgin olive oil (VOO) could be considered as a coiridoids, triterpenes, such as maslinic and olea- Downloaded by: Ufficio Servizi Bibliotecnici. Copyrighted material. received April 29, 2013 beneficial health agent based on the numerous nolic acid, are also characteristic secondary me- revised July 1, 2013 scientific publications that underline its biologi- tabolites, abundant in VOO, and contribute to sev- accepted August 11, 2013 cal impact. Most of those studies have shown as- eral of its biological effects. l" Fig. 1 and Fig. 1S of Bibliography sociations between a VOO-rich diet and a de- the supplementary data illustrate representative DOI http://dx.doi.org/ creased cardiovascular risk, stroke incidences, secondary metabolites found in VOO with a docu- 10.1055/s-0033-1350823 and type 2 diabetes. Specifically, VOO has been mented biological impact. Published online September 26, 2013 shown to possess antiatherosclerotic effects and Despite the high significance of the olive polyphe- Planta Med 2013; 79: its consumption has been shown to decrease nols, their final concentration in the oil is really 1576–1587 © Georg Thieme plasma low-density lipoprotein (LDL) and choles- questionable, since the process during oil pro- Verlag KG Stuttgart · New York · terol levels [1]. In other studies, VOO showed po- duction can destroy, degrade, or simply remove ISSN 0032‑0943 tent antihaemostatic and anti-inflammatory to waste, large quantities of these valuable sec- Correspondence properties, as well as an improved effect on endo- ondary metabolites. The production of oil is more Prof. Alexios-Leandros thelial function and insulin sensitivity [2]. One of dynamic than a simple extraction procedure, Skaltsounis Laboratory of Pharmacognosy the most important groups of bioactive secondary since important enzymatic functions are acti- and Natural Products Chemistry metabolites in VOO is phenolic alcohols, e.g., tyro- vated transforming initial bioactive molecules School of Pharmacy sol and hydroxytyrosol. These alcohols form es- found in drupes to other derivatives, finally con- University of Athens Panepistimioupoli Zografou ters with elenolic acid derivatives to give glycosy- sumed in oil. Furthermore, the comprehension of 15771 Athens lated secoiridoids, such as oleuropein and ligstro- the variability of crucial olive secondary metabo- Greece side, the corresponding aglycons and decarboxy- lites throughout the olive oil production proce- Phone: + 302107274598 Fax: + 302 0107274594 methyl forms with different configurations of the dure is of great importance. The synthesis of sev- [email protected] elenolic acid moiety, e.g., oleacein and oleocan- eral of these valuable components is often de- Kanakis P et al. From Olive Drupes… Planta Med 2013; 79: 1576–1587 Original Papers 1577 Fig. 1 Representative structures of olive secondary metabolites that have been quantified throughout the production steps of VOO (the numbering of compounds is in accordance with l" Table 1). manding, time consuming, and expensive, e.g., oleocanthal [6,7]. Additionally, in a modern consuming market, compounds of nat- ural origin, rather than synthetic (organic, natural materials for food supplements and cosmetics), are requested. Thus, it is crit- Fig. 2 Graphical illustration of the basic production steps of a two-phase ical to explore the entire procedure of olive oil production quali- olive oil mill. The different materials under investigation are highlighted as tatively and quantitatively, and define the chemical nature of well as the quantitative alterations of some biologically important second- each intermediate material. Along these lines, the determination ary metabolites. MFOA: monoaldehydic form of oleuropein aglycon; MFLA: monoaldehydic form of ligstroside aglycon. of new or optimum sources of key bioactives of olives is of great (Color figure available online only.) important for the isolation thereof or the creation of enriched ex- tracts. Up to now, studies are characterised by the lack of a holistic, com- plete, and successive approach that could investigate the entire Thus, the aim of the present study was the qualitative and quan- metabolic content of different materials of the olive oil pro- titative monitoring of important olive secondary metabolites, duction process. Most of the studies concern determination of throughout the whole olive oil production procedure, incorpo- Downloaded by: Ufficio Servizi Bibliotecnici. Copyrighted material. certain phenols in specific samples, such as single paste, drupes, rating an HPLC‑LTQ-Orbitrap platform. The basic steps of the or oil extracts. Consequently, this fragmented approach allows olive oil production procedure, from the drupes to final oil neither the comprehensive investigation of olive constituents (drupes, paste, first oil, final oil, waste), at a commercial two- nor their biotransformation, and therefore the quality of olive oil. phase oil mill are defined and the most important Greek variety Regarding the analytical methods used for the quantitative deter- Koroneiki, at the late ripening stage, was investigated. A detailed minations of phenols and/or secoiridoids, most of the studies HPLC-HRMS and HRMS/MS-based study for the complete charac- have been performed on the basis of the UV‑Vis absorption [8– terisation of the chemical constituents of each production step 10]. There are a limited number of studies utilising LC‑MS plat- was performed resulting in the identification of more than 50 forms for quantitative analysis of components in specific olive secondary metabolites, with high confidence. Furthermore, given samples. Regarding the analysers, mostly triple quadrupoles the fact that the published data are controversial, quantitative (TQ) have been used [11,12], while recently some studies incor- monitoring of nine main components of olives with high biologi- porating TOF technology have been published [13]. cal importance (hydroxytyrosol, tyrosol, oleacein, oleocanthal, HRMS analysers such as TOF and Orbitrap have become competi- oleuropein, ligstroside, monoaldehydic form of oleuropein agly- tive tools for the characterisation of complicated components in con – MFOA, monoaldehydic form of ligstroside aglycon – MFLA, complex matrices. The latest generations of HRMS instruments, and maslinic acid) was also carried out. such as Orbitrap platforms, show improved resolution and stabil- ity of accurate mass measurements, and at the same time great quantitative potential [14]. Given these advantages, Orbitrap-MS quantitative determination is an alluring platform for confident and rapid quantitative and, simultaneously, qualitative monitor- ing of small molecules in complex mixtures. Kanakis P et al. From Olive Drupes… Planta Med 2013; 79: 1576–1587 1578 Original Papers Fig. 3 Comparative base peak chromatograms of all the extracts from each step of the olive oil pro- duction procedure. Representative secondary me- tabolites are annotated. (Color figure available online only.) Results and Discussion HPLC‑MS/MS systems for the quantitative determination of sev- ! eral major olive phenolics, such as hydroxytyrosol, tyrosol, oleur- Even if olive oil is a widely investigated product due to its nutri- opein, and others [12,22]. However, the application of HPLC‑LTQ- tional and therapeutic values, the studies regarding the constitu- Orbitrap is something that has never been applied before. Specif- ents of olive drupes as well as the intermediate materials
Recommended publications
  • Valorisation of Olea Europaea L. Olive Leaves Through the Evaluation of Their Extracts: Antioxidant and Antimicrobial Activity
    foods Article Valorisation of Olea europaea L. Olive Leaves through the Evaluation of Their Extracts: Antioxidant and Antimicrobial Activity Mónica Sánchez-Gutiérrez 1,2,* , Isabel Bascón-Villegas 1,2 , Alejandro Rodríguez 2 , Fernando Pérez-Rodríguez 1, África Fernández-Prior 3 , Antonio Rosal 4 and Elena Carrasco 1 1 Food Science and Technology Department, Universidad de Córdoba, Darwin Building, 14014 Córdoba, Spain; [email protected] (I.B.-V.); [email protected] (F.P.-R.); [email protected] (E.C.) 2 BioPrEn Group, Chemical Engineering Department, Universidad de Córdoba, Marie-Curie Building, 14014 Córdoba, Spain; [email protected] 3 Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universitario Pablo de Olavide, Edificio 46, Ctra. de Utrera, km. 1, 41013 Seville, Spain; [email protected] 4 Molecular Biology and Biochemical Engineering Department, Campus Universitario Pablo de Olavide, Edificio 46, Ctra. de Utrera, km. 1, 41013 Seville, Spain; [email protected] * Correspondence: [email protected] Abstract: Olea europaea L. leaves constitute a source of bioactive compounds with recognized benefits for both human health and technological purposes. In the present work, different extracts from olive leaves were obtained by the application of two extraction methods, Soxhlet and microwave-assisted extraction (MAE), and six solvents (distilled water, ethanolic and glycerol mixtures solvents). MAE Citation: Sánchez-Gutiérrez, M.; was applied under 40, 60 and 80 ◦C for 3, 6.5 and 10 min. The effect of the extraction method, solvent Bascón-Villegas, I.; Rodríguez, A.; and treatment factors (the latter in MAE) on the total phenol content (TPC), the antioxidant activity Pérez-Rodríguez, F.; Fernández-Prior, Á.; Rosal, A.; Carrasco, E.
    [Show full text]
  • Targeted and Untargeted Metabolomics to Explore the Bioavailability of the Secoiridoids from a Seed/Fruit Extract (Fraxinus Angu
    Article Targeted and Untargeted Metabolomics to Explore the Bioavailability of the Secoiridoids from a Seed/Fruit Extract (Fraxinus angustifolia Vahl) in Human Healthy Volunteers: A Preliminary Study Rocío García-Villalba 1, Francisco A. Tomás-Barberán 1, Pascale Fança-Berthon 2, Marc Roller 2, Pilar Zafrilla 3, Nicolas Issaly 4 and María-Teresa García-Conesa 1,* Received: 9 November 2015 ; Accepted: 4 December 2015 ; Published: 11 December 2015 Academic Editor: Emilie Combet 1 Research Group on Quality, Safety and Bioactivity of Plant Foods, Department Food Science and Technology, Centro de Edafología y Biología Aplicada del Segura (CEBAS)–Consejo Superior de Investigaciones Científicas (CSIC), P. O. Box 164, Campus de Espinardo, Murcia 30100, Spain; [email protected] (R.G.-V.); [email protected] (F.A.T.-B.) 2 Naturex SA, Site d’AgroParc, BP 1218, 84911 Avignon Cedex 9, France; [email protected] (P.F.-B.); [email protected] (M.R.) 3 Department of Food Technology and Nutrition, Catholic University of San Antonio, Campus de los Jerónimos, N˝ 135, Guadalupe, Murcia 30107, Spain; [email protected] 4 Naturex Spain SL, Autovia A3, Salida343, Camino de Torrent s/n, Quart de Poblet, Valencia 46930, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-968-396-276; Fax: +34-968-396-102 Abstract: The bark, seeds, fruits and leaves of the genus Fraxinus (Oleaceae) which contain a wide range of phytochemicals, mostly secoiridoid glucosides, have been widely used in folk medicine against a number of ailments, yet little is known about the metabolism and uptake of the major Fraxinus components.
    [Show full text]
  • The Biological Activities of Oleocanthal from a Molecular Perspective
    nutrients Review The Biological Activities of Oleocanthal from a Molecular Perspective Kok-Lun Pang 1 and Kok-Yong Chin 2,* 1 Biomedical Science Programme, School of Diagnostic and Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; [email protected] 2 Department of Pharmacology, Universiti Kebangsaan Malaysia Medical Centre, Cheras 56000, Malaysia * Correspondence: [email protected]; Tel.: +60-16-708-2900 Received: 10 April 2018; Accepted: 3 May 2018; Published: 6 May 2018 Abstract: Oleocanthal is a minor constituent of olive oil with strong anti-inflammatory activities. Since the pathogenesis of many chronic diseases involves inflammatory and oxidative components, oleocanthal is a promising agent to prevent these conditions. This review aimed to summarise the current beneficial health effects of oleocanthal and the molecular basis of its biological actions. The anti-inflammatory, antioxidative, antimicrobial, anticancer and neuroprotective activities of oleocanthal have been examined by previous studies. Of these, studies on the anticancer effects have been the most extensive. Oleocanthal was reported to suppress melanoma, breast, liver, and colon cancer cells. Neurological studies focused on the effects of oleocanthal against Alzheimer’s disease. Oleocanthal improved clearance of the amyloid beta protein from neurons and reduced the inflammation of astrocytes. Despite the positive results, validation of the biological effects of oleocanthal in animal disease models is limited and should be emphasized in the future. As a conclusion, oleocanthal may act together with other bioactive compounds in olive oil to achieve its therapeutic potential. The use of oleocanthal alone as a single therapeutic measure awaits validation from future studies.
    [Show full text]
  • Quantitation of Oleuropein and Related Phenolics in Cured Spanish-Style Green, California- Style Black Ripe, and Greek-Style Natural Fermentation Olives
    UC Davis UC Davis Previously Published Works Title Quantitation of Oleuropein and Related Phenolics in Cured Spanish-Style Green, California- Style Black Ripe, and Greek-Style Natural Fermentation Olives. Permalink https://escholarship.org/uc/item/3t34332d Journal Journal of agricultural and food chemistry, 66(9) ISSN 0021-8561 Authors Johnson, Rebecca Melliou, Eleni Zweigenbaum, Jerry et al. Publication Date 2018-03-01 DOI 10.1021/acs.jafc.7b06025 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Article Cite This: J. Agric. Food Chem. 2018, 66, 2121−2128 pubs.acs.org/JAFC Quantitation of Oleuropein and Related Phenolics in Cured Spanish-Style Green, California-Style Black Ripe, and Greek-Style Natural Fermentation Olives † ‡ § Rebecca Johnson, Eleni Melliou, Jerry Zweigenbaum, and Alyson E. Mitchell* † Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, California 95616, United States ‡ Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, Panepistimiopolis Zografou, GR-15771 Athens, Greece § Agilent Technologies, 2850 Centerville Road, Wilmington, Delaware 19808, United States *S Supporting Information ABSTRACT: Oleuropein, ligstroside, and related hydrolysis products are key contributors to olive bitterness, and several of these phenolics are implicated in the prevention of lifestyle age-related diseases. While table olive processing methods are designed to reduce oleuropein, the impact of processing on ligstroside and related hydrolysis products (e.g., oleacein, oleocanthal, hydroxytyrosol glucoside, ligstroside aglycone, and oleuropein aglycone) is relatively unknown. Herein, levels of these com- pounds were measured in Spanish-style green (SP), Californian-style black ripe (CA), and Greek-style natural fermentation (GK) olives using rapid ultrahigh-performance liquid chromatography (UHPLC) tandem mass spectrometry (MS/MS).
    [Show full text]
  • Exploratory Analysis of Commercial Olive-Based Dietary Supplements Using Untargeted and Targeted Metabolomics
    Supplementary Material Exploratory analysis of commercial olive-based dietary supplements using untargeted and targeted metabolomics Mar Garcia-Aloy 1, Nelli Groff 1, Domenico Masuero 1, Mauro Nisi 2, Antonio Franco 3, Furio Battelini 2, Urska Vrhovsek 1 and Fulvio Mattivi 1,4,* 1 Metabolomics Unit, Food Quality and Nutrition Department, Research and Innovation Centre Fondazione Edmund Mach, San Michele all'Adige, Italy 2 Agraria Riva del Garda S.C.A., Riva del Garda, Italy 3 Ethifenol S.R.L., Bergamo, Italy 4 Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, San Michele all'Adige, Italy Garcia-Aloy et al. – Supplementary Material 2 of 34 Table S1. Unknown compounds detected in study samples. C Compound Formula RT Ions LI C203 Unknown 001 (glucoside) C12H23NO7 78 294.1551 [M+H]+ IV C204 Unknown 002 (glucoside) C14H26O8 82 323.1704 [M+H]+ IV C205 Unknown 003 (glucoside) C13H18O8 96 347.0982 [M-H+HCOOH]- IV C206 Unknown 004 glucoside C15H24O8 257 377.1453 [M-H+HCOOH]-; 333.1546 [M+H]+; 350.1812 [M+NH4]+; 153.091 [M+H-hexose-H2O]+ IV C207 Unknown 004 C9H14O3 282 171.1015 [M+H]+; 172.1049 13C[M+H]+; 188.1283 [M+NH4]+; 153.091 [M+H-H2O]+; 111.0803 [M+H-C2H4O2]+ IV C208 Unknown 005 (glucoside) C18H30O11 278 467.1769 [M-H+HCOOH]-; 468.1803 13C[M-H+HCOOH]-; 423.1862 [M+H]+; 440.2126 [M+NH4]+; 441.2163 13C[M+NH4]+; 261.1335 [M+H- IV hexose]+; 243.1228 [M+H-hexose-H2O]+ C209 Unknown 006 (glucoside) C19H30O8 287 387.2015 [M+H]+ IV C210 Unknown 007 (glucoside) C19H32O9 316 403.1974 [M-H]-; 422.2386 [M+NH4]+
    [Show full text]
  • Tyrosol and Its Metabolites As Antioxidative and Anti-Inflammatory Molecules in Human Endothelial Cells†
    Postprint of Food Funct., 2017, 8, 2905-2914 DOI: 10.1039/C7FO00641A Tyrosol and its metabolites as antioxidative and anti-inflammatory molecules in human endothelial cells† Francisco J. G. Muriana *a, Sergio Montserrat-de la Paz a, Ricardo Lucas b, Beatriz Bermudez c, Sara Jaramillo d, Juan C. Morales , Rocio Abia a and Sergio Lopez *a aLaboratory of Cellular and Molecular Nutrition, Instituto de la Grasa (CSIC), Seville, Spain. E-mail: [email protected]; [email protected]; Fax: +34954616790; Tel: +34954611550 bDepartment of Biochemistry and Molecular Pharmacology, Instituto de Parasitologia y Biomedicina (CSIC), Granada, Spain cDepartment of Cell Biology, School of Biology (University of Seville), 41012 Seville, Spain dPhytochemicals and Food Quality Group, Instituto de la Grasa (CSIC), Seville, Spain Received 28th April 2017 , Accepted 3rd July 2017 First published on 4th July 2017 Tyrosol (Tyr) is a phenolic compound found in virgin olive oil. After ingestion, Tyr undergoes extensive first pass intestinal/hepatic metabolism. However, knowledge about the biological effects of Tyr metabolites is scarce. We chemically synthesized Tyr glucuronate (Tyr-GLU) and sulphate (Tyr-SUL) metabolites and explored their properties against oxidative stress and inflammation in TNF-α-treated human umbilical vein endothelial cells (hECs). Tyr and Tyr-SUL prevented the rise of reactive oxygen species, the depletion of glutathione, and the down-regulation of glutathione peroxidase 1, glutamate-cysteine ligase catalytic subunit, and heme oxygenase-1 genes. Tyr-SUL and to a lower extent Tyr and Tyr-GLU prevented the phosphorylation of NF-κB signaling proteins. Tyr-GLU and Tyr-SUL also prevented the over-expression of adhesion molecules at gene, protein, and secretory levels, and the adhesion (Tyr-SUL > Tyr-GLU) of human monocytes to hECs.
    [Show full text]
  • Oleuropein Hydrolysis in Natural Green Olives: Importance of the Endogenous Enzymes
    Accepted Manuscript Oleuropein Hydrolysis in Natural Green Olives: Importance of the Endogenous Enzymes Eva Ramírez, Manuel Brenes, Pedro García, Eduardo Medina, Concepción Romero PII: S0308-8146(16)30433-2 DOI: http://dx.doi.org/10.1016/j.foodchem.2016.03.061 Reference: FOCH 18945 To appear in: Food Chemistry Received Date: 5 January 2016 Revised Date: 11 March 2016 Accepted Date: 17 March 2016 Please cite this article as: Ramírez, E., Brenes, M., García, P., Medina, E., Romero, C., Oleuropein Hydrolysis in Natural Green Olives: Importance of the Endogenous Enzymes, Food Chemistry (2016), doi: http://dx.doi.org/ 10.1016/j.foodchem.2016.03.061 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Oleuropein Hydrolysis in Natural Green Olives: Importance of the Endogenous Enzymes Eva Ramírez, Manuel Brenes, Pedro García, Eduardo Medina, Concepción Romero* Food Biotechnology Department, Instituto de la Grasa (IG-CSIC), Universidad Pablo de Olavide - Edificio 46 Ctra. de Utrera, km. 1- 41013, Seville (Spain) *Corresponding author. Tel.: +34 954611550; Fax: +34 954616790; E-mail address: [email protected] Running title: Oleuropein Hydrolysis: Importance of the Endogenous Enzymes 1 ABSTRACT The bitter taste of olives is mainly caused by the phenolic compound named oleuropein and the mechanism of its hydrolysis during the processing of natural green olives was studied.
    [Show full text]
  • OLEUROPEIN and OLEUROPEIN AGLYCONE 1469 of These Compounds Might Help to Confer Those Health 4
    468/0LEOCANTHAL PDR FOR NUTRITIONAL SUPPLEMENTS INDICATIONS AND USAGE premium extra-virgin olive oil contains about nine milli- Olecocanthal, an olive polyphenol, has reported antioxida- grams of oleocanthal. The potency of oleocanthal and tive and antiinflammatory activity. One report stirred wide ibuprofen is approximately the same. Therefore, nine milli- interest in the substance by claiming it has ibuprofen-like grams of oleocanthal is approximately equal to nine milli- activity. In common with what has been claimed for other grams of ibuprofen, which is about 10% percent of a low olive polyphenols (see Hydroxytyrosol and Oleuropein), it dose (l00 milligrams) of ibuprofen. may have some cardioprotective and anticancer activity, as Dietary supplements of oleocanthal are currently well, although clinical evidence for this is lacking. unavailable. RESEARCH SUMMARY LITERATURE A brief communication in the journal Nature excited interest Andrewes p, Busch JL, de Joode T, et al. Sensory properties of in oleocanthal when researchers reported that this substance, virgin olive oil polyphenols: identification of deacetoxy- derived from newly pressed extra-virgin olive oil, has some ligstroside aglycon as a key contributor to pungency. Agric characteristics in common with the anti-inflammatory drug Food Chem. 2003;51(5):1415-1420. ibuprofen. They noted that both induce very similar stinging Beauchamp GK, Keast RS, Morel D, et al. Phytochemistry: sensations in the throat and thereafter determined that the ibuprofen-like activity in extra-virgin olive oil. Nature. two substances have structural and pharmacological similari- 2005;437(7055):45-46. ties. They found that oleocanthal, like ibuprofen, is an Fini L, Hotchkiss E, Fogliano V, et al.
    [Show full text]
  • Effect of Hydroxytyrosol and Olive Leaf Extract on 1,2-Dicarbonyl
    Food Chemistry 217 (2017) 602–609 Contents lists available at ScienceDirect Food Chemistry journal homepage: www.elsevier.com/locate/foodchem Effect of hydroxytyrosol and olive leaf extract on 1,2-dicarbonyl compounds, hydroxymethylfurfural and advanced glycation endproducts in a biscuit model ⇑ Marta Navarro, Francisco J. Morales Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Madrid, Spain article info abstract Article history: The antiglycative activity of hydroxytyrosol (HT) and olive leaf extract (OLE) was investigated in Received 7 May 2016 wheat-flour biscuits. Quercetin (QE) and gallic acid (GA) were used as reference of antiglycative activity Received in revised form 5 September 2016 of phenolic compounds. HT, OLE, QE and GA were added in the range of 0.25–0.75% (w/w). Samples were Accepted 6 September 2016 compared against a control recipe baked at 180 °C/20 min. HT biscuit was able to inhibit efficiently the Available online 7 September 2016 formation of hydroxymethylfurfural (HMF) and 3-deoxyglucosone (3-DG), as well as reduced the forma- tion of overall free fluorescent AGEs and pentosidine. The inhibition of the 3-DG and HMF formation was Chemical compounds: directly and significantly correlated under controlled baking conditions. However, samples formulated Methylglyoxal (PubChem CID: 880) with OLE exerted similar antiglycative capacity against pentosidine and Ne-carboxyethyl-lysine, Glyoxal (PubChem CID: 7860) 3-deoxyglucosone (PubChem CID: 114839) although the amount of HT in the biscuit was 100-fold lower than the biscuit formulated with HT. Hydroxymethylfurfural (PubChem CID: Methylglyoxal, 3-DG, and glyoxal were the predominant 1,2-dicarbonyl compounds after baking but only 237332) 3-DG was significantly reduced by HT.
    [Show full text]
  • Type of the Paper (Article
    Supplementary Materials Evaluating Quality Parameters, the Metabolic Profile, and Other Typical Features of Selected Commercial Extra Virgin Olive Oils from Brazil Aline Gabrielle Alves de Carvalho 1, Lucía Olmo-García 2, Bruna Rachel Antunes Gaspar 1, Alegría Carrasco-Pancorbo 2,*,†, Vanessa Naciuk Castelo-Branco 3,† and Alexandre Guedes Torres 1, † 1 Laboratory of Nutritional Biochemistry and Food Science, Lipid Biochemistry and Lipidomics Laboratory, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; [email protected] (A.G.A.d.C.); [email protected] (B.R.A.G.); [email protected] (A.G.T.) 2 Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Ave. Fuentenueva s/n, E-18071 Granada, Spain; [email protected] (L.O.-G.); [email protected] (A.C.-P.) 3 Laboratory of Food Biotechnology, Fluminense Federal University, Niteroi 24230-340, RJ, Brazil; [email protected] (V.N.C.-B) * Correspondence: [email protected]; Tel.: +34-958-242-785 † These authors contributed equally to this work. 1 Figure S1a. Representative extracted ion chromatograms (EIC) of the studied EVOOs determined by RP-LC-MS. 1. Quinic acid; 2. Hydroxytyrosol; 3. Eudesmic acid; 4. Tyrosol; 5. Vanillic acid; 6. Decarboxymethyl elenolic acid; 7. p-Coumaric acid; 8. Vanillin; 9. Ferulic acid; 10. Desoxy elenolic acid; 11. Hydroxy elenolic acid; 12. Hydroxytyrosol acetate; 13. Elenolic acid; 14. Hydroxy decarboxymethyl oleuropein aglycone; 15. Decarboxymethyl oleuropein aglycone (isomer 1); 16. Luteolin; 17. Decarboxymethyl oleuropein aglycone (isomer 2); 18. Syringaresinol; 19. Oleuropein aglycone (isomer 1); 20. Pinoresinol; 21. 10-Hydroxy oleuropein aglycone 1; 22.
    [Show full text]
  • Olea Europaea L., Folium
    22 November 2011 EMA/HMPC/430506/2009 Committee on Herbal Medicinal Products (HMPC) Assessment report on Olea europaea L., folium Based on Article 16d(1), Article 16f and Article 16h of Directive 2001/83/EC as amended (traditional use) Final Herbal substance(s) (binomial scientific Olea europaea L. folium (olive leaf) name of the plant, including plant part) Herbal preparation(s) Herbal substance Fresh or dried leaves Herbal preparations Comminuted herbal substance (dried leaves) Powdered herbal substance (dried leaves) Pharmaceutical forms Herbal substance and comminuted herbal substance as herbal tea for oral use. Herbal preparation in solid dosage form for oral use. Rapporteur Dr Ioanna Chinou 7 Westferry Circus ● Canary Wharf ● London E14 4HB ● United Kingdom Telephone +44 (0)20 7418 8400 Facsimile +44 (0)20 7523 7051 E -mail [email protected] Website www.ema.europa.eu An agency of the European Union © European Medicines Agency, 2012. Reproduction is authorised provided the source is acknowledged. Table of contents Table of contents ................................................................................................................... 2 1. Introduction ....................................................................................................................... 3 1.1. Description of the herbal substance(s), herbal preparation(s) or combinations thereof .. 3 1.2. Information about products on the market in the Member States ............................... 6 1.3. Search and assessment methodology ....................................................................
    [Show full text]
  • Olea Europaea L
    Bruno et al. BMC Plant Biology (2019) 19:428 https://doi.org/10.1186/s12870-019-1969-6 RESEARCH ARTICLE Open Access Changes in gene expression and metabolic profile of drupes of Olea europaea L. cv Carolea in relation to maturation stage and cultivation area Leonardo Bruno1, Ernesto Picardi2,3, Marianna Pacenza1, Adriana Chiappetta1, Antonella Muto1, Olimpia Gagliardi1, Innocenzo Muzzalupo4, Graziano Pesole2,3 and Maria Beatrice Bitonti1* Abstract Background: Olive (Olea europaea L.) is an emblematic oil tree crop in the Mediterranean basin. Currently, despite olive features as a moderately thermophilic species, its cultivation is worldwide spreading due to the health-related impact of olive products on human nutrition. A point of concern for the expanding olive cultivation is related to the influence that, in addition to genotype, environmental factors exerts on drupe development and metabolism with consequent impact on fruit key traits. In this context, the aim of the present work was to gain further information on the genetic networks controlling drupe maturation phase and, mainly, on their modulation in response to environmental cues. Results: To achieve this goal, a comparative transcriptome-wide investigation was carried out on drupes of Olea europaea cultivar Carolea, collected from plants growing in areas at different altitude level and therefore experiencing different climatic conditions. Two maturation stages of drupe were analysed: green mature and turning-purple. Metabolic characterization of drupe was also performed. At both
    [Show full text]