The Cryosphere, 9, 2219–2235, 2015 www.the-cryosphere.net/9/2219/2015/ doi:10.5194/tc-9-2219-2015 © Author(s) 2015. CC Attribution 3.0 License. Observations of seasonal and diurnal glacier velocities at Mount Rainier, Washington, using terrestrial radar interferometry K. E. Allstadt1,a, D. E. Shean1,2, A. Campbell1, M. Fahnestock3, and S. D. Malone1 1University of Washington, Department of Earth and Space Sciences, Washington, USA 2University of Washington, Applied Physics Lab Polar Science Center, Washington, USA 3University of Alaska Fairbanks, Geophysical Institute, Fairbanks, Alaska, USA anow at: USGS Geologic Hazards Science Center, Golden, CO, USA Correspondence to: K. E. Allstadt (
[email protected]) Received: 16 June 2015 – Published in The Cryosphere Discuss.: 31 July 2015 Revised: 11 November 2015 – Accepted: 16 November 2015 – Published: 1 December 2015 Abstract. We present surface velocity maps derived from re- 1 Introduction peat terrestrial radar interferometry (TRI) measurements and use these time series to examine seasonal and diurnal dy- namics of alpine glaciers at Mount Rainier, Washington. We Direct observations of alpine glacier velocity can help im- show that the Nisqually and Emmons glaciers have small prove our understanding of ice dynamics. Alpine glacier slope-parallel velocities near the summit (< 0.2 m day−1), surface velocities are typically dominated by basal sliding, high velocities over their upper and central regions (1.0– which is tightly coupled to subglacial hydrology (Anderson 1.5 m day−1), and stagnant debris-covered regions near the et al., 2014; Bartholomaus et al., 2007). However, the spatial terminus (< 0.05 m day−1).