Nyssa Sylvatica Black Tupelo

Total Page:16

File Type:pdf, Size:1020Kb

Nyssa Sylvatica Black Tupelo Nyssa sylvatica H. Marshall Black Tupelo (Nyssa biflora, Nyssa multiflora, Nyssa ursina) Other Common Names: Bee Gum, Beetle-Bung, Black Gum, Cotton Gum, Hornbeam, Hornbine, Hornpine, Hornpipe, Pepperidge, Snag Tree, Sour Gum, Swamp Hornbeam, Upland Tupelo, Yellow Gum. Family: Nyssaceae (sometimes included in the Cornaceae). Cold Hardiness: USDA zones 4b to 9 (10a); appropriate provenance selection is likely to be important as the species has a large native range. Foliage: Deciduous; alternate; simple; elliptic, oblanceolate, or obovate; 2O to 5O (6O) long by 1O to 3O wide; tips acute to short acuminate; margins thickish, usually entire, or rarely toothed on the distal half; base rounded to cuneate; blades dark lustrous green above, medium green and pubscent beneath; fall color is red to burgundy, sometimes mixed with yellow and orange, and develops early in the season; petiole ¾O to 1O long; pubescent or glabrous; green or flushed red. Flower: Polygamo-dioecious, female flowers in small, one- to eight- flowered, weeping axillary clusters, while male flowers are borne in more numerous umbellate clusters; caylx disk-like and five-lobed; green; not ornamental, but utilized extensively by bees. Fruit: Blue-black oval drupes in small clusters; dO to ½O long; fruits have a thin fleshy covering over a more or less deeply ribbed stone-like seed inside; maturing in late summer to autumn; peduncles to 2Oin length; fruit can be messy on sidewalks. Stem / Bark: Stems — initially pubescent, later glabrous; more slender than those of S. aquatica; ash- gray to red-brown in color; chambered pith is present; three bundle sheath scars are nestled inside the crescent-shaped to oval leaf scars; short spur shoots often develop; Buds — terminal buds are ovoid and ¼O or less in length; lateral buds smaller, divergent, mostly dark red-brown in color with minute hairs, and most buds with five visible scales; Bark — red-brown becoming gray-brown to gray- black; blocky and reminiscent of alligator hide at maturity. Habit: Black Tupelo is a medium to large tree, 50N to 60N (140N); trees are strongly upright in growth form when young, developing a more upright oval crown at maturity, and eventually become rather flat-topped in old age; branches are borne at strong right angles and tend to be short and stout; the overall texture is medium. Cultural Requirements: A strong tap root often hinders transplant, hence air or chemically root pruned container grown transplants are preferred; this is a more upland species than N. aquatica, but plants can adapted to poor drainage and may be appropriate for poorly aerated soils; growth rates are slow to moderate; full sun to partial shade are acceptable; their foliage is prone to chlorosis on high pH soils, with plants requiring an acidic root zone for acceptable growth; somewhat tolerant of soil and atmospheric salt exposure. Pathological Problems: The species’ biggest pathological problem in landscapes are the disfiguring leaf spots from a variety of disputed causal organisms; other diseases/pests include trunk cankers, rust, tupelo leaf miner and various scale insects; in addition to this list, the trunks are prone to heart rots. Ornamental Assets: Primary landscape attributes are the rich green summer foliage and handsome early bright red fall foliage. Limitations & Liabilities: The primary limitations of this species are poor transplant survival and leaf spots that are mostly an aesthetic, but not debilitating problem; slow growth rates and intolerance to alkaline soils and very droughty conditions can be limiting in Central and West Texas. Landscape Utilization: Residential shade, street, or park tree where early fall color is desired and/or soils are acidic and wet; specimen tree; fruit are eaten by many species of wildlife and the hollow trunks serve as wildlife shelters; naturalizing. Other Comments: The timber is sometimes used commercially, but this species is more famous for the high quality honey produced from its flowers; the common name of tupelo is derived from the Creek Indian words for tree and swamp; the genus name Nyssa derives from the name of a Greek water nymph and the specific epithet means “of forest or woodland”. Native Habitat: Native to extreme Southern Ontario and the Eastern USA, including East Texas, East Oklahoma, Arkansas, and Louisiana. Related Taxa: Some authorities separate a Southeastern US subtaxa, Nyssa sylvatica H. Marsh. var. biflora (T. Walter) C.S. Sargent, with more flared trunks, more blunt leaves and prominently ribbed stones in the fruit as a distinct variety, whereas others accord it species rank as Nyssa biflora T. Walter (Black Cum, Swamp Black Cum, Swamp Black Tupelo, Swamp Tupelo, Nyssa ursina). Nyssa aquatica L. Water Tupelo (Nyssa uniflora) C Also known as Bay Poplar, Black Gum, Cotton Gum, Hornbeam, Large Tupelo, Sour Gum, Swamp Tupelo, Tupelo, Tupelo Gum, Water Gum, or Wild Olive; Water Tupelo as the common name implies is typically found in swamps and wet environments in the Southeastern US, including Southeast Texas and Louisiana; trees of this species can eventually attain heights of 100N and are often characterized by thickly swollen or buttressed bases in wet locations; these trees provide a fairly similar appearance in the landscape to N. sylvatica, with N. aquatica being a bit better for wet locations, whereas N. sylvatica is preferred on drier locations; foresters oft prefer this species over N. sylvatica as the trunks tend to be straighter, limbs self-prune more readily, creating long straight boles, and the wood is purported to be more rot resistant; the stouter twigs of N. aquatica have leaves which have longer acuminate tips, more toothed margins, and are larger, 5O to 10O long, than those of N. sylvatica. C Nyssa aquatica is more of a coastal plain and southern Mississippi River Valley species than N. sylvatica, generally being adapted to USDA zones 6 to 9 (10); this species is as equally slow growing as N. sylvatica in most landscape settings, but is more rapid growing in wet sites; Water Tupelo might be used in combination with Taxodium spp. to add diversity and additional fall color to wet sites; this tree’s transplant capability should be investigated as it is reported (Simpson, 1988) to have a wider spreading shallower root system than N. sylvatica; knees are reported to rarely develop from roots of N. aquatica under flooded conditions; the specific epithet refers to the species aquatic habitat. References: Brown, 1945; Cox and Leslie, 1988; Diggs et al., 1999; Dirr, 1998; Gilman, 1997; Grimm, 1983; Harlow et al., 1991; McCoy, 1981; Simpson, 1988; Vines, 1960. Copyrighted 2003 by Michael A. Arnold; All rights reserved, intended for publication in Landscape Plants For Texas And Environs, Third Edition..
Recommended publications
  • Trees, Shrubs and Vines of Huntley Meadows Park
    I 0 _Blueberry, Highbush----Vaccinium corymbosum Hickory, Sweet Pignut Catya ova/is (Walnut (Heath family) family) Box Elder (Ashleaf Maple) Acer negunda Holly, American----//ex opaca (Holly family) TREES, SHRUBS AND (Maple family) Honeysuckle, Bella----Lonicera be/la (Honeysuckle Buttonbush Cephalanthus occidentalis (Madder family) VINES OF HUNTLEY family) Honeysuckle, Japanese Lonicera japonica Cedar, Red----Juruperus virginiana (Pine family) (Honeysuckle family) MEADOWS PARK Cherry, Black----Prunus serotina (Rose family) Honeysuckle, Morrow----Lonicera Morrowii Cherry, Choke Prunus virginiana (Rose family) (Honeysuckle family) Huntley Meadows Park contains over 1,400 acres of Chokeberry, Purple---Pyrus floribunda (Rose Huckleberry, Black Gaylussacia baccata (Heath diverse habitat including meadows, wetlands and family) family) forests. Chokeberry, Red----Pyrus, arbutifolia (Rose Ironwood (American Hornbeam)----Carpinus This checklist is based on the observations of both family) caroliniana (Birch family) paid and volunteer staff. Special thanks to Karen Dangleberry----Gaylusaccia frondosa (Heath _Juneberry (Shadbush, Serviceberry)---- Goodlatte and Janet Meisenhelder. family) Almelanchier arborea (Rose family) Deerberry--- Vaccinium stamineum (Heath family) Lilac---Syringa vulgaris (Olive family) Alder, Smooth Alnus serrulata (Birch family) Dewberry, Prickly---Rubrus jlagellaris (Rose Locust, Black Robinia pseudo-acacia (Legume _Apple, Domestic Pyrus malus (Rose family) family) family) Arrowwood-- Viburnum dentatum (Honeysuckle Dogwood,
    [Show full text]
  • Biosphere Consulting 14908 Tilden Road ‐ Winter Garden FL 34787 (407) 656 8277
    Biosphere Consulting 14908 Tilden Road ‐ Winter Garden FL 34787 (407) 656 8277 www.BiosphereNursery.com The following list of plants include only native wetland and transitional species used primarily in aquascaping, lakefront and wetland restoration. Biosphere also carries a large number of upland species and BIOSCAPE species, as well as wildflower seeds and plants. The nursery is open to the public on Tuesday through Saturday only from 9:00 A.M. until 5:00 P.M. Prices are F.O.B. the nursery. * Bare root plants must be ordered at least two (2) days prior to pick-up. PRICE LIST NATIVE WETLAND AND TRANSITIONAL SPECIES HERBACEOUS SPECIES *Bare Root 1 Gal. 3 Gal. Arrowhead (Sagittaria latifolia) .50 2.50 --- Bulrush (Scirpus californicus & S.validus) .50 --- 8.00 Burrmarigold (Bidens leavis) --- 2.00 --- Canna (Canna flaccida) .60 2.00 --- Crinum (Crinum americanum) 1.50 3.00 10.00 Duck Potato (Sagittaria lancifolia) .60 2.00 --- Fragrant Water Lily (Nymphaea odorata) 5.00 --- 12.00 Hibiscus (Hibiscus coccinea) --- 3.00 8.00 Horsetail (Equisetum sp.) .80 2.00 --- Iris (Iris savannarum) .60 2.00 --- Knotgrass (Paspalum distichum) .50 2.00 --- Lemon Bacopa (Bacopa caroliniana) --- 3.50 --- Lizards Tail (Saururus cernuus) .60 2.50 --- Maidencane (Panicum hemitomon) .50 2.00 --- Pickerelweed (Pontederia cordata) .50 2.00 --- Redroot (Lachnanthes carolinana) .60 2.00 --- Sand Cord Grass (Spartina bakeri) .50 3.50 --- Sawgrass (Cladium jamaicense) .60 3.00 --- Softrush (Juncus effusus) .50 2.00 --- Spikerush (Eleocharis cellulosa) .70 2.00 ---
    [Show full text]
  • Black-Gum Ridgetop Forest This Community Type Occurs on Fairly Dry Ridgetops
    Black-gum ridgetop forest This community type occurs on fairly dry ridgetops. The canopy may be somewhat open; tree growth is somewhat suppressed. These ridgetops may have been exposed to repeated fires. Nyssa sylvatica is the dominant species; Betula lenta (sweet birch), Sassafras albidum (sassafras), Acer rubrum (red maple), Quercus montana (chestnut oak), Q. velutina (black oak), and Q. rubra (red oak) are often present. The shrub layer is dominantly ericaceous; common species include Kalmia latifolia (mountain laurel), Gaylussacia baccata (black huckleberry), Vaccinium spp. (blueberry), and Hamamelis virginiana (witch- hazel). The herbaceous layer is generally sparse. Common constituents include Carex pensylvanica (Pennsylvania sedge), Carex communis (a sedge), Epigaea repens (trailing arbutus), Gaultheria procumbens (teaberry), Aralia nudicaulis (wild sarsaparilla), and Pteridium aquilinum (bracken fern). Related types: This type is fairly uniform in composition and is restricted to ridgetops and high shoulders. The "Birch (black-gum) rocky slope woodland" occurs on talus or scree slopes and boulderfields, has an open canopy, and has a wide range of possible associates depending on aspect and location. Range: Ridge and Valley. Selected references: Daniel Devlin—personal communication. [Crosswalk: none.] Vascular plant nomenclature follows Rhoads and Klein (1993). Bryophyte nomenclature follows Crum and Anderson (1981). Species not native to Pennsylvania are indicated by a superscript "I." The aggressive species Phalaris arundinacea (reed canary-grass) and Phragmites australis (common reed) are marked with a superscript "(I)", as their native status is unclear. Pennsylvania species of special concern are indicated by a superscript "S." .
    [Show full text]
  • Q U a R T E R L Y N E W S L E T T E R December 2009 Volume 7 Number 2 of 4
    LOUISIANA NATURAL AREAS REGISTRY Q u a r t e r l y N e w s l e t t e r December 2009 Volume 7 Number 2 of 4 Working with landowners towards conservation of Louisiana’s ecologically sensitive lands http//www.Louisiana.gov/experience/natural heritage/naturalareasregistry/ Can you name this flower? See Page 6 for answer. NATURAL AREAS UPDATE They are considered together here due to their floristic similarity Amity Bass has joined the and/or similarity in management needs.) Louisiana Natural Cypress‐Tupelo‐Blackgum Swamps throughout the natural range are Heritage Program staff as forested alluvial swamps growing on intermittently exposed soils our new Community most commonly along rivers and streams but also occurring in back Ecologist. She is a native swamp depressions and swales. The soils are inundated or saturated of West Monroe in by surface water or ground water on a nearly permanent basis northeast Louisiana. throughout the growing season except during periods of extreme Amity received her drought. However, even deepwater swamps, with almost Bachelors in Biology from continuous flooding, experience seasonal fluctuations in water levels the University of (LNHP 1986‐2004). Baldcypress swamps generally occur on mucks Louisiana at Monroe and clays, and also silts and sands with underlying clay layers (ULM) in 2005 and her (Alfisols, Entisols, Histosols, and Inceptisols) (Conner and Buford undergraduate work 1998). focused on the nesting ecology of turtles on sandbars and Cypress‐Tupelo‐Blackgum swamps have relatively low floristic herpetofaunal (study of reptiles and amphibians) surveys on state diversity. Taxodium distichum (baldcypress) and Nyssa aquatica wildlife management areas.
    [Show full text]
  • Nyssa Aquatica, Water Tupelo1 Michael G
    FOR 262 Nyssa aquatica, Water Tupelo1 Michael G. Andreu, Melissa H. Friedman, Mary McKenzie, and Heather V. Quintana2 Family entire or smooth margins that sometimes have serrations (teeth). The thick leaves are shiny dark green on the topside Cornaceae, dogwood family. and paler and pubescent on the underside. The trunk is buttressed at the base and its bark is dark brown or dark Genus gray and splits into finely scaled ridges. In the spring, green Nyssa was the name of an ancient Greek mythological water flowers appear in clusters on long stalks. Male and female goddess. flowers appear on separate trees. The male flowers are about ¼ inch long and appear in clusters, while the female flowers Species are about ¾ inch long and are solitary. Oblong shaped drupes (fleshy fruits that usually contain one seed) about ½ The species name, aquatica, stems from Latin and means inch to 1½ inches long ripen in early fall and are dark blue “of water.” to dark purple. Common Name Water Tupelo, Cotton Gum The word “tupelo” is said to have stemmed from the language of the Creek tribe and means “swamp tree.” The other common name, “cotton gum,” is thought to come from the cottony feeling one gets in one’s mouth after eating the bitter fruits. Description This native deciduous tree is found in the bottomlands, floodplains, and swamps of southern Virginia, south to northwest Florida, west to southeastern Texas, and north Figure 1. Leaves and fruit of Nyssa aquatica. through the Mississippi River Valley. Mature trees grow Credits: SJQuinney, CC BY-NC-SA 2.0 best in full sunlight and can reach heights of approximately 100 feet.
    [Show full text]
  • De Novo Genome Assembly of Camptotheca Acuminata, a Natural Source of the Anti-Cancer Compound Camptothecin Dongyan Zhao1, John
    Manuscript Click here to download Manuscript Camptotheca_Ms_v15_GigaSci.docx 1 2 3 4 1 De novo genome assembly of Camptotheca acuminata, a natural source of the anti-cancer 5 6 7 2 compound camptothecin 8 9 10 3 Dongyan Zhao1, John P. Hamilton1, Gina M. Pham1, Emily Crisovan1, Krystle Wiegert-Rininger1, 11 12 13 4 Brieanne Vaillancourt1, Dean DellaPenna2, and C. Robin Buell1* 14 15 16 5 1Department of Plant Biology, Michigan State University, East Lansing, MI 48824 USA 17 18 19 20 6 2Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 21 22 23 7 48824 USA 24 25 26 8 Email addresses: Dongyan Zhao <[email protected]>, John P. Hamilton <[email protected]>, 27 28 29 9 Gina M. Pham <[email protected]>, Emily Crisovan <[email protected]>, Krystle Wiegert- 30 31 10 Rininger <[email protected]>, Brieanne Vaillancourt <[email protected]>, Dean Dellapenna 32 33 34 11 <[email protected]>, C Robin Buell <[email protected]> 35 36 37 12 *Correspondence should be addressed to: C. Robin Buell, [email protected] 38 39 40 41 13 42 43 44 14 Manuscript type: Data note 45 46 47 48 15 49 50 51 16 Note: Reviewers can access the genome sequence and annotation using the following 52 53 54 17 temporary URL: http://datadryad.org/review?doi=doi:10.5061/dryad.nc8qr. 55 56 57 58 59 60 61 62 63 1 64 65 1 2 3 4 18 Abstract 5 6 7 8 19 Background: Camptotheca acuminata is one of a limited number of species that produce 9 10 20 camptothecin, a pentacyclic quinoline alkaloid with anti-cancer activity due to its ability to 11 12 13 21 inhibit DNA topoisomerase.
    [Show full text]
  • Natural Vegetation of the Carolinas: Classification and Description of Plant Communities of the Lumber (Little Pee Dee) and Waccamaw Rivers
    Natural vegetation of the Carolinas: Classification and Description of Plant Communities of the Lumber (Little Pee Dee) and Waccamaw Rivers A report prepared for the Ecosystem Enhancement Program, North Carolina Department of Environment and Natural Resources in partial fulfillments of contract D07042. By M. Forbes Boyle, Robert K. Peet, Thomas R. Wentworth, Michael P. Schafale, and Michael Lee Carolina Vegetation Survey Curriculum in Ecology, CB#3275 University of North Carolina Chapel Hill, NC 27599‐3275 Version 1. May 19, 2009 1 INTRODUCTION The riverine and associated vegetation of the Waccamaw, Lumber, and Little Pee Rivers of North and South Carolina are ecologically significant and floristically unique components of the southeastern Atlantic Coastal Plain. Stretching from northern Scotland County, NC to western Brunswick County, NC, the Lumber and northern Waccamaw Rivers influence a vast amount of landscape in the southeastern corner of NC. Not far south across the interstate border, the Lumber River meets the Little Pee Dee River, influencing a large portion of western Horry County and southern Marion County, SC before flowing into the Great Pee Dee River. The Waccamaw River, an oddity among Atlantic Coastal Plain rivers in that its significant flow direction is southwest rather that southeast, influences a significant portion of the eastern Horry and eastern Georgetown Counties, SC before draining into Winyah Bay along with the Great Pee Dee and several other SC blackwater rivers. The Waccamaw River originates from Lake Waccamaw in Columbus County, NC and flows ~225 km parallel to the ocean before abrubtly turning southeast in Georgetown County, SC and dumping into Winyah Bay.
    [Show full text]
  • National List of Vascular Plant Species That Occur in Wetlands 1996
    National List of Vascular Plant Species that Occur in Wetlands: 1996 National Summary Indicator by Region and Subregion Scientific Name/ North North Central South Inter- National Subregion Northeast Southeast Central Plains Plains Plains Southwest mountain Northwest California Alaska Caribbean Hawaii Indicator Range Abies amabilis (Dougl. ex Loud.) Dougl. ex Forbes FACU FACU UPL UPL,FACU Abies balsamea (L.) P. Mill. FAC FACW FAC,FACW Abies concolor (Gord. & Glend.) Lindl. ex Hildebr. NI NI NI NI NI UPL UPL Abies fraseri (Pursh) Poir. FACU FACU FACU Abies grandis (Dougl. ex D. Don) Lindl. FACU-* NI FACU-* Abies lasiocarpa (Hook.) Nutt. NI NI FACU+ FACU- FACU FAC UPL UPL,FAC Abies magnifica A. Murr. NI UPL NI FACU UPL,FACU Abildgaardia ovata (Burm. f.) Kral FACW+ FAC+ FAC+,FACW+ Abutilon theophrasti Medik. UPL FACU- FACU- UPL UPL UPL UPL UPL NI NI UPL,FACU- Acacia choriophylla Benth. FAC* FAC* Acacia farnesiana (L.) Willd. FACU NI NI* NI NI FACU Acacia greggii Gray UPL UPL FACU FACU UPL,FACU Acacia macracantha Humb. & Bonpl. ex Willd. NI FAC FAC Acacia minuta ssp. minuta (M.E. Jones) Beauchamp FACU FACU Acaena exigua Gray OBL OBL Acalypha bisetosa Bertol. ex Spreng. FACW FACW Acalypha virginica L. FACU- FACU- FAC- FACU- FACU- FACU* FACU-,FAC- Acalypha virginica var. rhomboidea (Raf.) Cooperrider FACU- FAC- FACU FACU- FACU- FACU* FACU-,FAC- Acanthocereus tetragonus (L.) Humm. FAC* NI NI FAC* Acanthomintha ilicifolia (Gray) Gray FAC* FAC* Acanthus ebracteatus Vahl OBL OBL Acer circinatum Pursh FAC- FAC NI FAC-,FAC Acer glabrum Torr. FAC FAC FAC FACU FACU* FAC FACU FACU*,FAC Acer grandidentatum Nutt.
    [Show full text]
  • Biogeomorphic Characterization of Floodplain Forest Change in Response to Reduced Flows Along the Apalachicola River, Florida
    RIVER RESEARCH AND APPLICATIONS River. Res. Applic. (2009) Published online in Wiley InterScience (www.interscience.wiley.com) DOI: 10.1002/rra.1251 BIOGEOMORPHIC CHARACTERIZATION OF FLOODPLAIN FOREST CHANGE IN RESPONSE TO REDUCED FLOWS ALONG THE APALACHICOLA RIVER, FLORIDA J. ANTHONY STALLINS,a* MICHAEL NESIUS,b MATT SMITH b and KELLY WATSON b a Department of Geography, Florida State University, Tallahassee, Florida 32308, USA b Graduate Program in Geography, Florida State University, Tallahassee, Florida 32308, USA ABSTRACT The Apalachicola–Chattahoochee–Flint (ACF) River basin is an important ecological and economic component of a three-state region (Florida, Alabama and Georgia) in the southeastern U.S. Along the Apalachicola River in northwest Florida, the duration of floodplain inundation has decreased as a result of declining river levels. Spring and summer flows have diminished in volume because of water use, storage and evaporation in reservoirs, and other anthropogenic and climatic changes in the basin upstream. Channel erosion from dam construction and navigation improvements also caused river levels to decline in an earlier period. In this paper, we document trends in floodplain forest tree species composition for the interval spanning these influences. Historic tree inventories from the 1970s were compared to present-day forests through non-metric multidimensional scaling, indicator species analysis (ISA) and outlier detection. Forests are compositionally drier today than in the 1970s. Overstory to understory compositional differences within habitats (levees, high/low bottomland forest and backswamps) are as large as the species contrasts between habitats. Present-day forests are also compositionally noisier with fewer indicator species. The largest individual declines in species density and dominance were in backswamps, particularly for Fraxinus caroliniana Nyssa ogeche and Nyssa aquatica.
    [Show full text]
  • Plant Palette - Trees 50’-0”
    50’-0” 40’-0” 30’-0” 20’-0” 10’-0” Zelkova Serrata “Greenvase” Metasequoia glyptostroboides Cladrastis kentukea Chamaecyparis obtusa ‘Gracilis’ Ulmus parvifolia “Emer I” Green Vase Zelkova Dawn Redwood American Yellowwood Slender Hinoki Falsecypress Athena Classic Elm • Vase shape with upright arching branches • Narrow, conical shape • Horizontally layered, spreading form • Narrow conical shape • Broadly rounded, pendulous branches • Green foliage • Medium green, deciduous conifer foliage • Dark green foliage • Evergreen, light green foliage • Medium green, toothed leaves • Orange Fall foliage • Rusty orange Fall foliage • Orange to red Fall foliage • Evergreen, no Fall foliage change • Yellowish fall foliage Plant Palette - Trees 50’-0” 40’-0” 30’-0” 20’-0” 10’-0” Quercus coccinea Acer freemanii Cercidiphyllum japonicum Taxodium distichum Thuja plicata Scarlet Oak Autumn Blaze Maple Katsura Tree Bald Cyprus Western Red Cedar • Pyramidal, horizontal branches • Upright, broad oval shape • Pyramidal shape • Pyramidal shape, develops large flares at base • Pyramidal, buttressed base with lower branches • Long glossy green leaves • Medium green fall foliage • Bluish-green, heart-shaped foliage • Leaves are needle-like, green • Leaves green and scale-like • Scarlet red Fall foliage • Brilliant orange-red, long lasting Fall foliage • Soft apricot Fall foliage • Rich brown Fall foliage • Sharp-pointed cone scales Plant Palette - Trees 50’-0” 40’-0” 30’-0” 20’-0” 10’-0” Thuja plicata “Fastigiata” Sequoia sempervirens Davidia involucrata Hogan
    [Show full text]
  • Rare Plants of Louisiana
    Rare Plants of Louisiana Agalinis filicaulis - purple false-foxglove Figwort Family (Scrophulariaceae) Rarity Rank: S2/G3G4 Range: AL, FL, LA, MS Recognition: Photo by John Hays • Short annual, 10 to 50 cm tall, with stems finely wiry, spindly • Stems simple to few-branched • Leaves opposite, scale-like, about 1mm long, barely perceptible to the unaided eye • Flowers few in number, mostly born singly or in pairs from the highest node of a branchlet • Pedicels filiform, 5 to 10 mm long, subtending bracts minute • Calyx 2 mm long, lobes short-deltoid, with broad shallow sinuses between lobes • Corolla lavender-pink, without lines or spots within, 10 to 13 mm long, exterior glabrous • Capsule globe-like, nearly half exerted from calyx Flowering Time: September to November Light Requirement: Full sun to partial shade Wetland Indicator Status: FAC – similar likelihood of occurring in both wetlands and non-wetlands Habitat: Wet longleaf pine flatwoods savannahs and hillside seepage bogs. Threats: • Conversion of habitat to pine plantations (bedding, dense tree spacing, etc.) • Residential and commercial development • Fire exclusion, allowing invasion of habitat by woody species • Hydrologic alteration directly (e.g. ditching) and indirectly (fire suppression allowing higher tree density and more large-diameter trees) Beneficial Management Practices: • Thinning (during very dry periods), targeting off-site species such as loblolly and slash pines for removal • Prescribed burning, establishing a regime consisting of mostly growing season (May-June) burns Rare Plants of Louisiana LA River Basins: Pearl, Pontchartrain, Mermentau, Calcasieu, Sabine Side view of flower. Photo by John Hays References: Godfrey, R. K. and J. W. Wooten.
    [Show full text]
  • Systematics, Climate, and Ecology of Fossil and Extant Nyssa (Nyssaceae, Cornales) and Implications of Nyssa Grayensis Sp
    East Tennessee State University Digital Commons @ East Tennessee State University Electronic Theses and Dissertations Student Works 8-2013 Systematics, Climate, and Ecology of Fossil and Extant Nyssa (Nyssaceae, Cornales) and Implications of Nyssa grayensis sp. nov. from the Gray Fossil Site, Northeast Tennessee Nathan R. Noll East Tennessee State University Follow this and additional works at: https://dc.etsu.edu/etd Part of the Biodiversity Commons, Climate Commons, Paleontology Commons, and the Plant Biology Commons Recommended Citation Noll, Nathan R., "Systematics, Climate, and Ecology of Fossil and Extant Nyssa (Nyssaceae, Cornales) and Implications of Nyssa grayensis sp. nov. from the Gray Fossil Site, Northeast Tennessee" (2013). Electronic Theses and Dissertations. Paper 1204. https://dc.etsu.edu/etd/1204 This Thesis - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ East Tennessee State University. For more information, please contact [email protected]. Systematics, Climate, and Ecology of Fossil and Extant Nyssa (Nyssaceae, Cornales) and Implications of Nyssa grayensis sp. nov. from the Gray Fossil Site, Northeast Tennessee ___________________________ A thesis presented to the faculty of the Department of Biological Sciences East Tennessee State University In partial fulfillment of the requirements for the degree Master of Science in Biology ___________________________ by Nathan R. Noll August 2013 ___________________________ Dr. Yu-Sheng (Christopher) Liu, Chair Dr. Tim McDowell Dr. Foster Levy Keywords: Nyssa, Endocarp, Gray Fossil Site, Miocene, Pliocene, Karst ABSTRACT Systematics, Climate, and Ecology of Fossil and Extant Nyssa (Nyssaceae, Cornales) and Implications of Nyssa grayensis sp.
    [Show full text]