Masterarbeit / Master's Thesis

Total Page:16

File Type:pdf, Size:1020Kb

Masterarbeit / Master's Thesis MASTERARBEIT / MASTER’S THESIS Titel der Masterarbeit / Title of the Master‘s Thesis „The role of TRIM29 in NFκB regulation“ verfasst von / submitted by Richard Wallner BSc angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of Master of Science (MSc) Wien, 2017 / Vienna 2017 Studienkennzahl lt. Studienblatt / A 066 830 degree programme code as it appears on the student record sheet: Studienrichtung lt. Studienblatt / Masterstudium Molekulare Mikrobiologie, degree programme as it appears on Mikrobielle Ökologie und Immunbiologie the student record sheet: Betreut von / Supervisor: Gijs Versteeg Ph.D. Table of Contents Abstract (deutsch).................................................................................................................................... 4 Abstract ................................................................................................................................................... 6 Introduction ............................................................................................................................................. 8 Structure of the NFκB complex ........................................................................................................... 8 The inhibitor of κB (IκB) .................................................................................................................. 11 Structure and function of the IKK complex ...................................................................................... 11 The role of NEMO ............................................................................................................................ 12 NFκB activation ................................................................................................................................ 12 NFκB in DNA damage response ....................................................................................................... 15 Regulation of NFκB activity ............................................................................................................. 19 Regulation through IκB negative feedback ....................................................................................... 19 Regulation and posttranslational modifications of NFκB ................................................................. 20 Shutting off NFκB activity ................................................................................................................ 21 The family of TRIM proteins ............................................................................................................ 21 TRIM proteins and the immune system ............................................................................................ 24 TRIM29 ............................................................................................................................................. 26 TRIM29 in the DNA damage response ............................................................................................. 27 TRIM29 and p53 ............................................................................................................................... 28 TRIM29 and the Wnt pathway .......................................................................................................... 30 Involvement of TRIM29 in the ERK and JNK pathways ................................................................. 31 TRIM29 and the NFκB pathway ....................................................................................................... 31 Hypothesis ......................................................................................................................................... 33 Results ................................................................................................................................................... 34 TRIM29 is highly expressed in the epidermis of the skin ................................................................. 34 TRIM29 and IKKα/β or NEMO do not interact upon overexpression .............................................. 35 High protein concentrations and low stringency of tested washing buffers led to co-precipitation of NEMO ............................................................................................................................................... 36 NEMO non-specifically interacts with TRIM proteins ..................................................................... 37 TRIM29 and the IKKs do not interact when overexpressed in Cos7 or HeLa cells ......................... 38 Endogenous TRIM29 and NEMO do not interact in HaCaT cells .................................................... 39 TRIM29 and IKKα/β or NEMO do not interact when overexpressed in HaCaTs or keratinocytes .. 40 TRIM29 and NEMO do not interact when stimulated with TNFα or DNA damaging reagents ....... 41 TRIM29 is localized in the cytoplasm of HaCaTs, HeLas, keratinocytes and in overexpressing HEK-293T cells ................................................................................................................................. 42 P a g e | 2 Establishing an assay to investigate NFκB activation through TRIM29 ........................................... 43 TNFα and LPS induce NFκB activation in MEFs and RAW264.7 cells .......................................... 44 None of our tested stimuli did induce NFκB activation in HaCaTs or keratinocytes ....................... 46 Trim29 is efficiently knocked-out in HaCaTs and keratinocytes using CRISPR/Cas9 ..................... 46 TRIM29 ablation did not affect survival of HaCaT cells against UV radiation ................................ 48 Discussion ............................................................................................................................................. 52 Methods ................................................................................................................................................. 60 Cell culture ........................................................................................................................................ 60 Antibodies and reagents .................................................................................................................... 60 Keratinocyte isolation ........................................................................................................................ 60 Cloning and plasmid construction ..................................................................................................... 60 Transformation .................................................................................................................................. 61 Transfection ....................................................................................................................................... 61 Lenti-virus production and viral transduction ................................................................................... 61 Immunoprecipitation ......................................................................................................................... 61 SDS-Page and Western Blot .............................................................................................................. 62 Immunofluorescence ......................................................................................................................... 62 MTT assay ......................................................................................................................................... 62 References ............................................................................................................................................. 63 P a g e | 3 Abstract (deutsch) Das angeborene Immunsystem ist die erste Verteidigungslinie gegen eindringende Pathogene und führt seine Funktion durch eine Reihe sehr vielseitiger Funktionswege aus. Diese werden aktiviert durch das Erkennen bestimmter molekularer Strukturen, genannt „Pathogen-assoziirte molekulare Muster“, welche von vielen Pathogenen geteilt werden. Sie werden erkannt durch verschiedene membrangebundene und zytoplasmische Rezeptoren, die alle spezifisch für eine bestimmte Art von Muster sind und zur Aktivierung des angeborenen Immunsystems zur Bekämpfung der Bedrohung führen. Der NFκB Signalweg ist einer der zentralsten und wichtigsten dieser Signalwege und verbindet immunologische Funktionen, wie die Produktion von entzündlichen Zytokinen, mit anderen Funktionen wie zelluläres Überleben, Wachstum und Apoptose. Er wird ausgelöst durch die Aktivierung einiger immunrelevanter Rezeptoren, aber auch durch andere Einflüsse, wie zum Beispiel DNA-Schäden. Unter Ruhebedingungen ist der NFκB Komplex von seinem Inhibitor, dem Inhibitor von κB (IκB), gebunden, der ihn im Zytoplasma beschlagnahmt und so daran hindert seine Funktionen als Transkriptionsfaktor auszuführen. Nach Aktivierung des Signalweges wird der IκB durch den Inhibitor von κB Kinase (IKK) Komplex phosphoryliert, was zu dessen Ubiquitin abhängigen Abbau führt und dem NFκB Komplex ermöglicht in den Zellkern zu translozieren. Nach dieser Translokation arbeitet NFκB nicht bloß als Transkriptionsfaktor zur Verteidigung gegen angreifende Pathogene, sondern auch für Zell Homeostase, Wachstum und die Reparator von beschädigter DNA. Er ist daher nicht bloß während Infektionen wichtig, sondern auch bei Krebs und zur DNA Reparatur. Da eine Fehlregulation schreckliche Folgen haben kann, welche von Immunschwäche
Recommended publications
  • PARSANA-DISSERTATION-2020.Pdf
    DECIPHERING TRANSCRIPTIONAL PATTERNS OF GENE REGULATION: A COMPUTATIONAL APPROACH by Princy Parsana A dissertation submitted to The Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland July, 2020 © 2020 Princy Parsana All rights reserved Abstract With rapid advancements in sequencing technology, we now have the ability to sequence the entire human genome, and to quantify expression of tens of thousands of genes from hundreds of individuals. This provides an extraordinary opportunity to learn phenotype relevant genomic patterns that can improve our understanding of molecular and cellular processes underlying a trait. The high dimensional nature of genomic data presents a range of computational and statistical challenges. This dissertation presents a compilation of projects that were driven by the motivation to efficiently capture gene regulatory patterns in the human transcriptome, while addressing statistical and computational challenges that accompany this data. We attempt to address two major difficulties in this domain: a) artifacts and noise in transcriptomic data, andb) limited statistical power. First, we present our work on investigating the effect of artifactual variation in gene expression data and its impact on trans-eQTL discovery. Here we performed an in-depth analysis of diverse pre-recorded covariates and latent confounders to understand their contribution to heterogeneity in gene expression measurements. Next, we discovered 673 trans-eQTLs across 16 human tissues using v6 data from the Genotype Tissue Expression (GTEx) project. Finally, we characterized two trait-associated trans-eQTLs; one in Skeletal Muscle and another in Thyroid. Second, we present a principal component based residualization method to correct gene expression measurements prior to reconstruction of co-expression networks.
    [Show full text]
  • 4-6 Weeks Old Female C57BL/6 Mice Obtained from Jackson Labs Were Used for Cell Isolation
    Methods Mice: 4-6 weeks old female C57BL/6 mice obtained from Jackson labs were used for cell isolation. Female Foxp3-IRES-GFP reporter mice (1), backcrossed to B6/C57 background for 10 generations, were used for the isolation of naïve CD4 and naïve CD8 cells for the RNAseq experiments. The mice were housed in pathogen-free animal facility in the La Jolla Institute for Allergy and Immunology and were used according to protocols approved by the Institutional Animal Care and use Committee. Preparation of cells: Subsets of thymocytes were isolated by cell sorting as previously described (2), after cell surface staining using CD4 (GK1.5), CD8 (53-6.7), CD3ε (145- 2C11), CD24 (M1/69) (all from Biolegend). DP cells: CD4+CD8 int/hi; CD4 SP cells: CD4CD3 hi, CD24 int/lo; CD8 SP cells: CD8 int/hi CD4 CD3 hi, CD24 int/lo (Fig S2). Peripheral subsets were isolated after pooling spleen and lymph nodes. T cells were enriched by negative isolation using Dynabeads (Dynabeads untouched mouse T cells, 11413D, Invitrogen). After surface staining for CD4 (GK1.5), CD8 (53-6.7), CD62L (MEL-14), CD25 (PC61) and CD44 (IM7), naïve CD4+CD62L hiCD25-CD44lo and naïve CD8+CD62L hiCD25-CD44lo were obtained by sorting (BD FACS Aria). Additionally, for the RNAseq experiments, CD4 and CD8 naïve cells were isolated by sorting T cells from the Foxp3- IRES-GFP mice: CD4+CD62LhiCD25–CD44lo GFP(FOXP3)– and CD8+CD62LhiCD25– CD44lo GFP(FOXP3)– (antibodies were from Biolegend). In some cases, naïve CD4 cells were cultured in vitro under Th1 or Th2 polarizing conditions (3, 4).
    [Show full text]
  • Investigation of the Underlying Hub Genes and Molexular Pathogensis in Gastric Cancer by Integrated Bioinformatic Analyses
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.20.423656; this version posted December 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Investigation of the underlying hub genes and molexular pathogensis in gastric cancer by integrated bioinformatic analyses Basavaraj Vastrad1, Chanabasayya Vastrad*2 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2020.12.20.423656; this version posted December 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract The high mortality rate of gastric cancer (GC) is in part due to the absence of initial disclosure of its biomarkers. The recognition of important genes associated in GC is therefore recommended to advance clinical prognosis, diagnosis and and treatment outcomes. The current investigation used the microarray dataset GSE113255 RNA seq data from the Gene Expression Omnibus database to diagnose differentially expressed genes (DEGs). Pathway and gene ontology enrichment analyses were performed, and a proteinprotein interaction network, modules, target genes - miRNA regulatory network and target genes - TF regulatory network were constructed and analyzed. Finally, validation of hub genes was performed. The 1008 DEGs identified consisted of 505 up regulated genes and 503 down regulated genes.
    [Show full text]
  • SUPPLEMENTARY NOTE Co-Activation of GR and NFKB
    SUPPLEMENTARY NOTE Co-activation of GR and NFKB alters the repertoire of their binding sites and target genes. Nagesha A.S. Rao1*, Melysia T. McCalman1,*, Panagiotis Moulos2,4, Kees-Jan Francoijs1, 2 2 3 3,5 Aristotelis Chatziioannou , Fragiskos N. Kolisis , Michael N. Alexis , Dimitra J. Mitsiou and 1,5 Hendrik G. Stunnenberg 1Department of Molecular Biology, Radboud University Nijmegen, the Netherlands 2Metabolic Engineering and Bioinformatics Group, Institute of Biological Research and Biotechnology, National Hellenic Research Foundation, Athens, Greece 3Molecular Endocrinology Programme, Institute of Biological Research and Biotechnology, National Hellenic Research Foundation, Greece 4These authors contributed equally to this work 5 Corresponding authors E-MAIL: [email protected] ; TEL: +31-24-3610524; FAX: +31-24-3610520 E-MAIL: [email protected] ; TEL: +30-210-7273741; FAX: +30-210-7273677 Running title: Global GR and NFKB crosstalk Keywords: GR, p65, genome-wide, binding sites, crosstalk SUPPLEMENTARY FIGURES/FIGURE LEGENDS AND SUPPLEMENTARY TABLES 1 Rao118042_Supplementary Fig. 1 A Primary transcript Mature mRNA TNF/DMSO TNF/DMSO 8 12 r=0.74, p< 0.001 r=0.61, p< 0.001 ) 2 ) 10 2 6 8 4 6 4 2 2 0 Fold change (mRNA) (log Fold change (primRNA) (log 0 −2 −2 −2 0 2 4 −2 0 2 4 Fold change (RNAPII) (log2) Fold change (RNAPII) (log2) B chr5: chrX: 56 _ 104 _ DMSO DMSO 1 _ 1 _ 56 _ 104 _ TA TA 1 _ 1 _ 56 _ 104 _ TNF TNF Cluster 1 1 _ Cluster 2 1 _ 56 _ 104 _ TA+TNF TA+TNF 1 _ 1 _ CCNB1 TSC22D3 chr20: chr17: 25 _ 33 _ DMSO DMSO 1 _ 1 _ 25 _ 33 _ TA TA 1 _ 1 _ 25 _ 33 _ TNF TNF Cluster 3 1 _ Cluster 4 1 _ 25 _ 33 _ TA+TNF TA+TNF 1 _ 1 _ GPCPD1 CCL2 chr6: chr22: 77 _ 35 _ DMSO DMSO 1 _ 77 _ 1 _ 35 _ TA TA 1 _ 1 _ 77 _ 35 _ TNF Cluster 5 Cluster 6 TNF 1 _ 1 _ 77 _ 35 _ TA+TNF TA+TNF 1 _ 1 _ TNFAIP3 DGCR6 2 Supplementary Figure 1.
    [Show full text]
  • E3 Ubiquitin Ligase TRIM Proteins, Cell Cycle and Mitosis
    cells Review E3 Ubiquitin Ligase TRIM Proteins, Cell Cycle and Mitosis Santina Venuto 1,2 and Giuseppe Merla 1,* 1 Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale Padre Pio, 71013 San Giovanni Rotondo, Foggia, Italy; [email protected] 2 PhD Program, Experimental and Regenerative Medicine, University of Foggia, Via A. Gramsci, 89/91, 71122 Foggia, Italy * Correspondence: [email protected] Received: 3 May 2019; Accepted: 23 May 2019; Published: 27 May 2019 Abstract: The cell cycle is a series of events by which cellular components are accurately segregated into daughter cells, principally controlled by the oscillating activities of cyclin-dependent kinases (CDKs) and their co-activators. In eukaryotes, DNA replication is confined to a discrete synthesis phase while chromosome segregation occurs during mitosis. During mitosis, the chromosomes are pulled into each of the two daughter cells by the coordination of spindle microtubules, kinetochores, centromeres, and chromatin. These four functional units tie chromosomes to the microtubules, send signals to the cells when the attachment is completed and the division can proceed, and withstand the force generated by pulling the chromosomes to either daughter cell. Protein ubiquitination is a post-translational modification that plays a central role in cellular homeostasis. E3 ubiquitin ligases mediate the transfer of ubiquitin to substrate proteins determining their fate. One of the largest subfamilies of E3 ubiquitin ligases is the family of the tripartite motif (TRIM) proteins, whose dysregulation is associated with a variety of cellular processes and directly involved in human diseases and cancer. In this review we summarize the current knowledge and emerging concepts about TRIMs and their contribution to the correct regulation of cell cycle, describing how TRIMs control the cell cycle transition phases and their involvement in the different functional units of the mitotic process, along with implications in cancer progression.
    [Show full text]
  • LJELSR: a Strengthened Version of JELSR for Feature Selection and Clustering
    Article LJELSR: A Strengthened Version of JELSR for Feature Selection and Clustering Sha-Sha Wu 1, Mi-Xiao Hou 1, Chun-Mei Feng 1,2 and Jin-Xing Liu 1,* 1 School of Information Science and Engineering, Qufu Normal University, Rizhao 276826, China; [email protected] (S.-S.W.); [email protected] (M.-X.H.); [email protected] (C.-M.F.) 2 Bio-Computing Research Center, Harbin Institute of Technology, Shenzhen 518055, China * Correspondence: [email protected]; Tel.: +086-633-3981-241 Received: 4 December 2018; Accepted: 7 February 2019; Published: 18 February 2019 Abstract: Feature selection and sample clustering play an important role in bioinformatics. Traditional feature selection methods separate sparse regression and embedding learning. Later, to effectively identify the significant features of the genomic data, Joint Embedding Learning and Sparse Regression (JELSR) is proposed. However, since there are many redundancy and noise values in genomic data, the sparseness of this method is far from enough. In this paper, we propose a strengthened version of JELSR by adding the L1-norm constraint on the regularization term based on a previous model, and call it LJELSR, to further improve the sparseness of the method. Then, we provide a new iterative algorithm to obtain the convergence solution. The experimental results show that our method achieves a state-of-the-art level both in identifying differentially expressed genes and sample clustering on different genomic data compared to previous methods. Additionally, the selected differentially expressed genes may be of great value in medical research. Keywords: differentially expressed genes; feature selection; L1-norm; sample clustering; sparse constraint 1.
    [Show full text]
  • Molecular Targeting and Enhancing Anticancer Efficacy of Oncolytic HSV-1 to Midkine Expressing Tumors
    University of Cincinnati Date: 12/20/2010 I, Arturo R Maldonado , hereby submit this original work as part of the requirements for the degree of Doctor of Philosophy in Developmental Biology. It is entitled: Molecular Targeting and Enhancing Anticancer Efficacy of Oncolytic HSV-1 to Midkine Expressing Tumors Student's name: Arturo R Maldonado This work and its defense approved by: Committee chair: Jeffrey Whitsett Committee member: Timothy Crombleholme, MD Committee member: Dan Wiginton, PhD Committee member: Rhonda Cardin, PhD Committee member: Tim Cripe 1297 Last Printed:1/11/2011 Document Of Defense Form Molecular Targeting and Enhancing Anticancer Efficacy of Oncolytic HSV-1 to Midkine Expressing Tumors A dissertation submitted to the Graduate School of the University of Cincinnati College of Medicine in partial fulfillment of the requirements for the degree of DOCTORATE OF PHILOSOPHY (PH.D.) in the Division of Molecular & Developmental Biology 2010 By Arturo Rafael Maldonado B.A., University of Miami, Coral Gables, Florida June 1993 M.D., New Jersey Medical School, Newark, New Jersey June 1999 Committee Chair: Jeffrey A. Whitsett, M.D. Advisor: Timothy M. Crombleholme, M.D. Timothy P. Cripe, M.D. Ph.D. Dan Wiginton, Ph.D. Rhonda D. Cardin, Ph.D. ABSTRACT Since 1999, cancer has surpassed heart disease as the number one cause of death in the US for people under the age of 85. Malignant Peripheral Nerve Sheath Tumor (MPNST), a common malignancy in patients with Neurofibromatosis, and colorectal cancer are midkine- producing tumors with high mortality rates. In vitro and preclinical xenograft models of MPNST were utilized in this dissertation to study the role of midkine (MDK), a tumor-specific gene over- expressed in these tumors and to test the efficacy of a MDK-transcriptionally targeted oncolytic HSV-1 (oHSV).
    [Show full text]
  • High Expression of TRIM29 (ATDC) Contributes to Poor Prognosis and Tumor Metastasis by Inducing Epithelial‑Mesenchymal Transition in Osteosarcoma
    ONCOLOGY REPORTS 38: 1645-1654, 2017 High expression of TRIM29 (ATDC) contributes to poor prognosis and tumor metastasis by inducing epithelial‑mesenchymal transition in osteosarcoma SI-XIANG ZENG1, QING-CHUN CAI1, CHI-HUA GUO1, LI-QIANG ZHI2, XING DAI1, DANG-FENG ZHANG1 and WEI MA1 1Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061; 2Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China Received January 23, 2017; Accepted July 10, 2017 DOI: 10.3892/or.2017.5842 Abstract. The association of TRIM29 overexpression with ends of femur and proximal tibia (4). Despite advances in cancer progression and poor clinical prognosis has been multimodal treatment strategies, including neoadjuvant reported in the context of several types of cancers. In the present chemotherapy and surgery, the survival rate of these patients study, we investigated the prognostic relevance of TRIM29 and remains abysmal (5). The five-year survival rate for localized its involvement in the progression of human osteosarcoma. To osteosarcoma is ~65-70%, while that for metastatic disease the best of our knowledge, this is the first study to demonstrate is a lowly 20% (6-9). Approximately one-third of all patients a major role of TRIM29 in osteosarcoma. Our results showed with osteosarcoma experience recurrent or metastatic disease; that the expression of TRIM29 in osteosarcoma tissues was the average survival time after development of metastasis much higher than that in normal bone tissues. Furthermore, or recurrence is less than 1 year (10). The development of TRIM29 expression was significantly correlated with tumor targeted therapies over the last decade has brought a paradigm size, recurrence, metastasis and overall survival time.
    [Show full text]
  • Open Moore Sarah P53network.Pdf
    THE PENNSYLVANIA STATE UNIVERSITY SCHREYER HONORS COLLEGE DEPARTMENT OF BIOCHEMISTRY AND MOLECULAR BIOLOGY A SYSTEMATIC METHOD FOR ANALYZING STIMULUS-DEPENDENT ACTIVATION OF THE p53 TRANSCRIPTION NETWORK SARAH L. MOORE SPRING 2013 A thesis submitted in partial fulfillment of the requirements for a baccalaureate degree in Biochemistry and Molecular Biology with honors in Biochemistry and Molecular Biology Reviewed and approved* by the following: Dr. Yanming Wang Associate Professor of Biochemistry and Molecular Biology Thesis Supervisor Dr. Ming Tien Professor of Biochemistry and Molecular Biology Honors Advisor Dr. Scott Selleck Professor and Head, Department of Biochemistry and Molecular Biology * Signatures are on file in the Schreyer Honors College. i ABSTRACT The p53 protein responds to cellular stress, like DNA damage and nutrient depravation, by activating cell-cycle arrest, initiating apoptosis, or triggering autophagy (i.e., self eating). p53 also regulates a range of physiological functions, such as immune and inflammatory responses, metabolism, and cell motility. These diverse roles create the need for developing systematic methods to analyze which p53 pathways will be triggered or inhibited under certain conditions. To determine the expression patterns of p53 modifiers and target genes in response to various stresses, an extensive literature review was conducted to compile a quantitative reverse transcription polymerase chain reaction (qRT-PCR) primer library consisting of 350 genes involved in apoptosis, immune and inflammatory responses, metabolism, cell cycle control, autophagy, motility, DNA repair, and differentiation as part of the p53 network. Using this library, qRT-PCR was performed in cells with inducible p53 over-expression, DNA-damage, cancer drug treatment, serum starvation, and serum stimulation.
    [Show full text]
  • Lupus Nephritis Supp Table 5
    Supplementary Table 5 : Transcripts and DAVID pathways correlating with the expression of CD4 in lupus kidney biopsies Positive correlation Negative correlation Transcripts Pathways Transcripts Pathways Identifier Gene Symbol Correlation coefficient with CD4 Annotation Cluster 1 Enrichment Score: 26.47 Count P_Value Benjamini Identifier Gene Symbol Correlation coefficient with CD4 Annotation Cluster 1 Enrichment Score: 3.16 Count P_Value Benjamini ILMN_1727284 CD4 1 GOTERM_BP_FAT translational elongation 74 2.50E-42 1.00E-38 ILMN_1681389 C2H2 zinc finger protein-0.40001984 INTERPRO Ubiquitin-conjugating enzyme/RWD-like 17 2.00E-05 4.20E-02 ILMN_1772218 HLA-DPA1 0.934229063 SP_PIR_KEYWORDS ribosome 60 2.00E-41 4.60E-39 ILMN_1768954 RIBC1 -0.400186083 SMART UBCc 14 1.00E-04 3.50E-02 ILMN_1778977 TYROBP 0.933302249 KEGG_PATHWAY Ribosome 65 3.80E-35 6.60E-33 ILMN_1699190 SORCS1 -0.400223681 SP_PIR_KEYWORDS ubl conjugation pathway 81 1.30E-04 2.30E-02 ILMN_1689655 HLA-DRA 0.915891173 SP_PIR_KEYWORDS protein biosynthesis 91 4.10E-34 7.20E-32 ILMN_3249088 LOC93432 -0.400285215 GOTERM_MF_FAT small conjugating protein ligase activity 35 1.40E-04 4.40E-02 ILMN_3228688 HLA-DRB1 0.906190291 SP_PIR_KEYWORDS ribonucleoprotein 114 4.80E-34 6.70E-32 ILMN_1680436 CSH2 -0.400299744 SP_PIR_KEYWORDS ligase 54 1.50E-04 2.00E-02 ILMN_2157441 HLA-DRA 0.902996561 GOTERM_CC_FAT cytosolic ribosome 59 3.20E-33 2.30E-30 ILMN_1722755 KRTAP6-2 -0.400334007 GOTERM_MF_FAT acid-amino acid ligase activity 40 1.60E-04 4.00E-02 ILMN_2066066 HLA-DRB6 0.901531942 SP_PIR_KEYWORDS
    [Show full text]
  • CRAVAT and Mupit Interacsve: Web Tools for Cancer Mutason Analysis
    CRAVAT and MuPIT Interac2ve: Web Tools for Cancer Mutaon Analysis Rachel Karchin, Ph.D. Department of Biomedical Engineering Ins2tute for Computaonal Medicine Johns Hopkins University The Cancer Genome Atlas’ 2nd Annual Scien2fic Symposium November 27-28, 2012 Need for computaonal tools to analyze large-scale cancer mutaon data 2 Goal is to provide an end-to-end mutaon analysis workflow List of mutaons from tumor sequencing Iden2fy type of Iden2fy known Map to transcripts change (missense, variants and nonsense, silent) mutaons Analysis Predict driver vs. Predict func2onal Visualize Find significantly random impact of mutaons on mutated genes mutaons mutaons ter2ary structure and pathways 3 The majority of somac mutaons in tumor exomes are missense Sjoblom et al 2006 Hunter et al 2005 Davies et al 2005 Stephens et al 2005 Sjoblom et al 2006 Missense Nonsense Silent Splice Other Colorectal Breast Greenman et al 2007 Jones et al 2008 Parsons et al 2008 McLendon et al 2008 Ding et al 2008 Parsons et al 2011 Jones et al 2010 TCGA 2010 Stransky et al 2011 Li et al 2011 4 hfp://www.cravat.us Tools for evaluang missense mutaons – CHASM: cancer driver analysis hfp://mupit.icm.jhu.edu – VEST: Func2onal effect analysis – Annotaons (1000g, ESP6500, COSMIC, GeneCards, PubMed) Interac2ve visualizaon on 3D protein structure – Automac mapping onto available structures – Simple interac2ve interface – UniProtKB feature table annotaons provided – Publicaon quality figures 5 Outline • Introduc2on to CRAVAT • Introduc2on to MuPIT • Future plans • Your input 6
    [Show full text]
  • TRIM29 (Lung Squamous Cell Carcinoma Marker) Mouse Monoclonal Antibody [Clone TRIM29/1041]
    NeoBiotechnologies, Inc. 2 Union Square Union City, CA 94587 Tel: 510-376-5603 Email: [email protected] , [email protected] Website: www.NeoBiotechnologies.com TRIM29 (Lung Squamous Cell Carcinoma Marker) Mouse Monoclonal Antibody [Clone TRIM29/1041] Catalog No Format Size Price (USD) 23650-MSM1-P0 Purified Ab with BSA and Azide at 200ug/ml 20 ug 199.00 23650-MSM1-P1 Purified Ab with BSA and Azide at 200ug/ml 100 ug 459.00 23650-MSM1-P1ABX Purified Ab WITHOUT BSA and Azide at 1.0mg/ml 100 ug 459.00 Human Entrez Gene ID 23650 Immunogen Recombinant fragment (126 Amino acid residues between aa 1-200) of human TRIM29 protein Human SwissProt Q14134 Host / Ig Isotype Mouse / IgG2a, kappa Human Unigene 504115 Mol. Weight of Antigen 66kDa Human Gene Symbol TRIM29 Cellular Localization Cytoplasmic and Cell Surface Human Chromosome 11q23.3 Location Species Reactivity Human. Synonyms Ataxia telangiectasia group D complementing gene (ATDC); Positive Control Human tonsil or squamous cell carcinoma. Tripartite motif-containing protein 29 (TRIM29); Formalin-fixed, paraffin-embedded human Esophageal carcinoma stained with TRIM29 Mouse Monoclonal Antibody (TRIM29/1041). Specificity & Comments Supplied As It recognizes a 66kDa protein, which is identified as Tripartite 200ug/ml of Ab Purified from Bioreactor Concentrate by Protein A/G. motif-containing protein 29 (TRIM29). It interacts with the intermediate Prepared in 10mM PBS with 0.05% BSA & 0.05% azide. Also available filament protein vimentin, a substrate for the PKC family of protein kinases, WITHOUT BSA & azide at 1.0mg/ml. and with hPKCI-1, an inhibitor of the PKCs.
    [Show full text]