Epiphyte Communities and Indicator Species an Ecological Guide for Scotland’S Woodlands

Total Page:16

File Type:pdf, Size:1020Kb

Epiphyte Communities and Indicator Species an Ecological Guide for Scotland’S Woodlands Epiphyte Communities and Indicator Species An Ecological Guide for Scotland’s Woodlands Christopher J. Ellis I Sally Eaton I Marios Theodoropoulos I Kathryn Elliott Epiphyte Communities and Indicator Species An Ecological Guide for Scotland’s Woodlands ISBN 978-1-910877-01-2 © Royal Botanic Garden Edinburgh, 2015 Photo credits as listed in the acknowledgements. The Royal Botanic Garden Edinburgh (RBGE) is a Non Departmental Public Body (NDPB) sponsored and supported through Grant-in-Aid by the Scottish Government’s Environment and Forestry Directorate (ENFOR). The Royal Botanic Garden Edinburgh is a charity registered in Scotland (number SC007983). All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written consent of the copyright holders and publishers. Design and layout: Helen Meek Christopher J. ELLIS, Sally EATON, Marios THEODOROPOULOS and Kathryn ELLIOTT (2015) Epiphyte Communities and Indicator Species. An Ecological Guide for Scotland’s Woodlands. Royal Botanic Garden, Edinburgh. Contents Acknowledgements Preface Chapter 1 1 Introduction Chapter 2 19 Epiphyte Sampling Chapter 3 25 Woodland Habitat for Epiphytes Chapter 4 34 Epiphyte Community Classification Chapter 5 41 Exploratory Ecological Analysis Appendix 1 98 List of Species Associated with Epiphyte Community Types Appendix 2 111 Epiphyte Community Comparison with James et al. (1977) Appendix 3 116 Pro Forma for the Field Recording of Epiphyte Communities Appendix 4 121 Calculation of Habitat Heterogeneity and Biodiversity End Notes 124 References 130 Acknowledgements The work presented in this report was made possible by a grant received from the Esmée Fairbairn Foundation. The report has benefited from support provided by many people in various different ways, though in particular Dr David Bell and Dr Brian Coppins (Royal Botanic Garden Edinburgh) for help in determining some of the most difficult bryophyte and lichen specimens, respectively, Dr Rebecca Yahr (Royal Botanic Garden Edinburgh) for the identification of Usnea specimens, and Dr David Genney (Scottish Natural Heritage) for guidance in the safe sampling of rare species. We thank staff at Scottish Natural Heritage regional offices and the landowners of the field sites for advice, logistics and in providing access for epiphyte sampling. Dr Brian Coppins generously provided his expert opinion on the statistical recognition of epiphyte Community Types compared against field experience. Thanks also go to Mr Matthew Haughton for assisting with chemical analysis of bark and soil, and to Dr Toby Pennington (Royal Botanic Garden Edinburgh) and Dr Mark Watson (Royal Botanic Garden Edinburgh) for their help in sourcing images of non-British epiphytes. All photo credits belong to the authors (Sally Eaton and Christopher Ellis), with the exception of: Figure 1.2 (Mark Watson) and Figure 1.3A (Toby Pennington). We thank Rebecca Yahr for editing and proof-reading drafts of the manuscript, and Brian and Sandy Coppins, David Genney and Frances Stoakley for their helpful suggestions and improvements. Preface This report presents the variability of epiphyte communities in native British woodland, explores the environmental factors that control them, and provides a framework for their identification using indicator species. As far as is possible, the underpinning research was for epiphyte communities which remain intact, and for this reason it was concentrated in northern Scotland. This is a region for which, relatively speaking, the air quality has been less affected by industrial emissions, and land management is less intensive. On this basis, the report provides an introduction to Scotland’s internationally important epiphytes. Epiphytes are important in many ways. First, their physical presence and diversity remind us that a forest or woodland is more than the sum total of its trees, becoming an ecosystem of multi-layered complexity. This links to the growing awareness within conservation that a multitude of small organisms, including bryophyte and lichen epiphytes, contribute importantly to the structure and function of healthy ecosystems. Second, epiphytes are of immense cultural significance. They are indicators of clean air and provide a warning of the negative impacts of pollution on human health, and they provide a sense of place with nature. Learning to discriminate between some simple epiphyte species and communities makes it possible to orientate and understand a woodland biogeographically, for example by recognising a globally rare temperate rainforest, such as on Scotland’s west coast, or a Boreal-type system allied with Scandinavian forests, such as in the higher altitude reaches of Strathspey. It also becomes possible to recognise woodlands of special interest, such as those with long ecological continuity that are biodiversity hotspots. This report aims to have a wide appeal. In general terms, the introductory material will increase awareness of the biodiversity importance and cultural value of Scotland’s epiphytes, providing an impetus for their protection. More specific suggestions of use are provided below: l By recording species indicators for different community types the conservationist or forest/woodland manager can gather information showing the effect of habitat heteorogeneity (variability) on species diversity; more heterogeneous habitats will be represented by a greater range of community types. l For the natural historian with some basic knowledge of bryophytes and lichens, the report can suggest focal species for field recording as part of their enjoyment of the natural world, in contribution to data gathering for monitoring, and as a framework for building further knowledge. l For the ecologist it provides a summary of community-level information specific to epiphytes, and these field sampled data are the background from which to develop new questions for primary research. l For the experienced lichenologist it provides a systematic epiphyte survey and ecological analysis with which to compare and contrast tried-and-tested concepts such as the ‘Graphidion’ or ‘Lobarion’ phytosociological communities, coupled with quantitative information on the variability of environmental conditions experienced by epiphytes in Scotland in the early 21st Century. For those who wish to learn more, the Royal Botanic Garden Edinburgh provides introductory courses in bryophytes and lichens, while the Field Studies Council partners with specialist biologists to support identification training relevant to epiphytes. In addition, the British Bryological Society and British Lichen Society are the academic societies which support an interest in bryophytes (mosses and liverworts) and lichens through publications, field excursions and a programme of meetings and workshops for all abilities. It is our hope that readers of this report will either discover for the first time, or reappraise their knowledge of Scotland’s globally significant epiphytic diversity, and help to secure its future conservation. Introduction Epiphyte Communities and Indicator Species 1m CHAPTER Introduction Epiphyte: ‘A plant which uses another plant, typically a tree, for its 1 physical support, but which does not draw nourishment from it’ The Oxford Dictionary of Botany. 1.1 The Nature of Epiphytes Epiphytes grow on the bark surface of trees, taking advantage of the physical support offered by trunk, branches and twigs as these reach upwards above the ground. They are photosynthetic organisms, which means that they produce their own food using energy from sunlight and basic raw materials (carbon dioxide, water, and nutrients), and they do not parasitise the tree on which they grow. Rather, epiphytes use trees as a scaffold, and this has proven to be an ingenious and ecologically successful strategy. Forests cover approximately 30% of the global land surface (4 billion hectares)1 and an individual tree such as an oak, with a modest girth of 2 metres, has a bark surface area that is at least 74 times greater than the ground space it occupies2. Considered across forests globally, the accumulated surface area provided by a vast number of trees represents an extensive habitat to which epiphytes are adapted (Figure 1.1). Figure 1.1. A. Forests cover huge areas of the terrestrial Figure 1.1. B. Beneath the forest canopy, at the scale of land surface, as here in the densely forested southern the individual tree, an interwoven structure of trunks and Appalachian mountains of Georgia (USA). branches provides an extraordinary surface area of bark for colonisation by epiphytes. By growing on the outer surface of structurally dominant trees, epiphytes avoid competition for space and the limitations of shading in the ground layer of forests; however, epiphytes must overcome the difficulties associated with an existence away from the soil environment, including restricted access to water, leading to periods of desiccation, and limited availability of essential nutrients3. Nevertheless, a tremendous diversity of plants and fungi is adapted to the epiphytic environment and can be found in forests across the planet forming an above-ground ecosystem of awe-inspiring complexity (Figure 1.2). Epiphytes are a visible reminder that a forest is comprised of more than trees, which create the obvious structure. Forty percent of all known terrestrial species are associated with forest canopies,
Recommended publications
  • Checklist of Calicioid Lichens and Fungi for Genera with Members in Temperate Western North America Draft: 2012-03-13
    Draft: 2012-03-13 Checklist of Calicioids – E. B. Peterson Checklist of Calicioid Lichens and Fungi For Genera with Members in Temperate Western North America Draft: 2012-03-13 by E. B. Peterson Calicium abietinum, EBP#4640 1 Draft: 2012-03-13 Checklist of Calicioids – E. B. Peterson Genera Acroscyphus Lév. Brucea Rikkinen Calicium Pers. Chaenotheca Th. Fr. Chaenothecopsis Vainio Coniocybe Ach. = Chaenotheca "Cryptocalicium" – potentially undescribed genus; taxonomic placement is not known but there are resemblances both to Mycocaliciales and Onygenales Cybebe Tibell = Chaenotheca Cyphelium Ach. Microcalicium Vainio Mycocalicium Vainio Phaeocalicium A.F.W. Schmidt Sclerophora Chevall. Sphinctrina Fr. Stenocybe (Nyl.) Körber Texosporium Nádv. ex Tibell & Hofsten Thelomma A. Massal. Tholurna Norman Additional genera are primarily tropical, such as Pyrgillus, Tylophoron About the Species lists Names in bold are believed to be currently valid names. Old synonyms are indented and listed with the current name following (additional synonyms can be found in Esslinger (2011). Names in quotes are nicknames for undescribed species. Names given within tildes (~) are published, but may not be validly published. Underlined species are included in the checklist for North America north of Mexico (Esslinger 2011). Names are given with authorities and original citation date where possible, followed by a colon. Additional citations are given after the colon, followed by a series of abbreviations for states and regions where known. States and provinces use the standard two-letter abbreviation. Regions include: NAm = North America; WNA = western North America (west of the continental divide); Klam = Klamath Region (my home territory). For those not known from North America, continental distribution may be given: SAm = South America; EUR = Europe; ASIA = Asia; Afr = Africa; Aus = Australia.
    [Show full text]
  • Lichens and Associated Fungi from Glacier Bay National Park, Alaska
    The Lichenologist (2020), 52,61–181 doi:10.1017/S0024282920000079 Standard Paper Lichens and associated fungi from Glacier Bay National Park, Alaska Toby Spribille1,2,3 , Alan M. Fryday4 , Sergio Pérez-Ortega5 , Måns Svensson6, Tor Tønsberg7, Stefan Ekman6 , Håkon Holien8,9, Philipp Resl10 , Kevin Schneider11, Edith Stabentheiner2, Holger Thüs12,13 , Jan Vondrák14,15 and Lewis Sharman16 1Department of Biological Sciences, CW405, University of Alberta, Edmonton, Alberta T6G 2R3, Canada; 2Department of Plant Sciences, Institute of Biology, University of Graz, NAWI Graz, Holteigasse 6, 8010 Graz, Austria; 3Division of Biological Sciences, University of Montana, 32 Campus Drive, Missoula, Montana 59812, USA; 4Herbarium, Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA; 5Real Jardín Botánico (CSIC), Departamento de Micología, Calle Claudio Moyano 1, E-28014 Madrid, Spain; 6Museum of Evolution, Uppsala University, Norbyvägen 16, SE-75236 Uppsala, Sweden; 7Department of Natural History, University Museum of Bergen Allégt. 41, P.O. Box 7800, N-5020 Bergen, Norway; 8Faculty of Bioscience and Aquaculture, Nord University, Box 2501, NO-7729 Steinkjer, Norway; 9NTNU University Museum, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; 10Faculty of Biology, Department I, Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; 11Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; 12Botany Department, State Museum of Natural History Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany; 13Natural History Museum, Cromwell Road, London SW7 5BD, UK; 14Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43 Průhonice, Czech Republic; 15Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-370 05 České Budějovice, Czech Republic and 16Glacier Bay National Park & Preserve, P.O.
    [Show full text]
  • Phylogeny, Taxonomy and Diversification Events in the Caliciaceae
    Fungal Diversity DOI 10.1007/s13225-016-0372-y Phylogeny, taxonomy and diversification events in the Caliciaceae Maria Prieto1,2 & Mats Wedin1 Received: 21 December 2015 /Accepted: 19 July 2016 # The Author(s) 2016. This article is published with open access at Springerlink.com Abstract Although the high degree of non-monophyly and Calicium pinicola, Calicium trachyliodes, Pseudothelomma parallel evolution has long been acknowledged within the occidentale, Pseudothelomma ocellatum and Thelomma mazaediate Caliciaceae (Lecanoromycetes, Ascomycota), a brunneum. A key for the mazaedium-producing Caliciaceae is natural re-classification of the group has not yet been accom- included. plished. Here we constructed a multigene phylogeny of the Caliciaceae-Physciaceae clade in order to resolve the detailed Keywords Allocalicium gen. nov. Calicium fossil . relationships within the group, to propose a revised classification, Divergence time estimates . Lichens . Multigene . and to perform a dating study. The few characters present in the Pseudothelomma gen. nov available fossil and the complex character evolution of the group affects the interpretation of morphological traits and thus influ- ences the assignment of the fossil to specific nodes in the phy- Introduction logeny, when divergence time analyses are carried out. Alternative fossil assignments resulted in very different time es- Caliciaceae is one of several ascomycete groups characterized timates and the comparison with the analysis based on a second- by producing prototunicate (thin-walled and evanescent) asci ary calibration demonstrates that the most likely placement of the and a mazaedium (an accumulation of loose, maturing spores fossil is close to a terminal node rather than a basal placement in covering the ascoma surface).
    [Show full text]
  • Chaenotheca Chrysocephala Species Fact Sheet
    SPECIES FACT SHEET Common Name: yellow-headed pin lichen Scientific Name: Chaenotheca chrysocephala (Turner ex Ach.) Th. Fr. Division: Ascomycota Class: Sordariomycetes Order: Trichosphaeriales Family: Coniocybaceae Technical Description: Crustose lichen. Photosynthetic partner Trebouxia. Thallus visible on substrate, made of fine grains or small lumps or continuous, greenish yellow. Sometimes thallus completely immersed and not visible on substrate. Spore-producing structure (apothecium) pin- like, comprised of a obovoid to broadly obconical head (capitulum) 0.2-0.3 mm diameter on a slender stalk, the stalk 0.6-1.3 mm tall and 0.04 -0.8 mm diameter; black or brownish black or brown with dense yellow colored powder on the upper part. Capitulum with fine chartreuse- yellow colored powder (pruina) on the under side. Upper side with a mass of powdery brown spores (mazaedium). Spore sacs (asci) cylindrical, 14-19 x 2.0-3.5 µm and disintegrating; spores arranged in one line in the asci (uniseriate), 1-celled, 6-9 x 4-5 µm, short ellipsoidal to globose with rough ornamentation of irregular cracks. Chemistry: all spot tests negative. Thallus and powder on stalk (pruina) contain vulpinic acid, which gives them the chartreuse-yellow color. This acid also colors Letharia spp., the wolf lichens. Other descriptions and illustrations: Nordic Lichen Flora 1999, Peterson (no date), Sharnoff (no date), Stridvall (no date), Tibell 1975. Distinctive Characters: (1) bright chartreuse-yellow thallus with yellow pruina under capitulum and on the upper part of the stalk, (2) spore mass brown, (3) spores unicellular (4) thallus of small yellow lumps. Similar species: Many other pin lichens look similar to Chaenotheca chrysocephala.
    [Show full text]
  • BLS Bulletin 108 Summer 2011.Pdf
    BRITISH LICHEN SOCIETY OFFICERS AND CONTACTS 2011 PRESIDENT S.D. Ward, 14 Green Road, Ballyvaghan, Co. Clare, Ireland, email [email protected]. VICE-PRESIDENT B.P. Hilton, Beauregard, 5 Alscott Gardens, Alverdiscott, Barnstaple, Devon EX31 3QJ; e-mail [email protected] SECRETARY C. Ellis, Royal Botanic Garden, 20A Inverleith Row, Edinburgh EH3 5LR; email [email protected] TREASURER J.F. Skinner, 28 Parkanaur Avenue, Southend-on-Sea, Essex SS1 3HY, email [email protected] ASSISTANT TREASURER AND MEMBERSHIP SECRETARY H. Döring, Mycology Section, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, email [email protected] REGIONAL TREASURER (Americas) J.W. Hinds, 254 Forest Avenue, Orono, Maine 04473-3202, USA; email [email protected]. CHAIR OF THE DATA COMMITTEE D.J. Hill, Yew Tree Cottage, Yew Tree Lane, Compton Martin, Bristol BS40 6JS, email [email protected] MAPPING RECORDER AND ARCHIVIST M.R.D. Seaward, Department of Archaeological, Geographical & Environmental Sciences, University of Bradford, West Yorkshire BD7 1DP, email [email protected] DATA MANAGER J. Simkin, 41 North Road, Ponteland, Newcastle upon Tyne NE20 9UN, email [email protected] SENIOR EDITOR (LICHENOLOGIST) P.D. Crittenden, School of Life Science, The University, Nottingham NG7 2RD, email [email protected] BULLETIN EDITOR P.F. Cannon, CABI and Royal Botanic Gardens Kew; postal address Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, email [email protected] CHAIR OF CONSERVATION COMMITTEE & CONSERVATION OFFICER B.W. Edwards, DERC, Library Headquarters, Colliton Park, Dorchester, Dorset DT1 1XJ, email [email protected] CHAIR OF THE EDUCATION AND PROMOTION COMMITTEE: E.
    [Show full text]
  • The Identity of Calicium Corynellum (Ach.) Ach
    The Lichenologist (2020), 52, 333–335 doi:10.1017/S0024282920000250 Short Communication The identity of Calicium corynellum (Ach.) Ach. Maria Prieto1,3 , Ibai Olariaga1 , Sergio Pérez-Ortega2 and Mats Wedin3 1Department of Biology and Geology, Physics and Inorganic Chemistry, Rey Juan Carlos University, C/ Tulipán s/n, 28933, Móstoles, Madrid, Spain; 2Real Jardín Botánico (CSIC), C/ Claudio Moyano 1, 28014 Madrid, Spain and 3Department of Botany, Swedish Museum of Natural History, P.O. Box 50007, 10405, Stockholm, Sweden (Accepted 21 April 2020) Recently, Yahr (2015) studied British populations of Calicium corynellum (Ach.) Ach. to test whether these were distinct from C. viride Pers. As C. corynellum had the highest conservation priority in Britain, and was apparently declining rather dramatic- ally, it was important to clarify its taxonomic status. Yahr (2015) used both genetic (ITS rDNA) and morphological data from two British Calicium aff. corynellum populations and could not find differences with C. viride, suggesting that the British material represented saxicolous populations of the otherwise epiphytic or lignicolous C. viride. Although this study focused on British material, it introduced serious doubts about the identity and rela- tionships of these two species in other parts of the distribution area of C. corynellum. Interestingly, the British material that Yahr (2015) investigated was morphologically very similar to C. viride, but the latter was described as differing rather substantially from C. corynellum in other parts of its distribution area. Thus, C. corynellum differs from C. viride in its Fig. 1. Calicium corynellum habitus (M. Prieto C4 (ARAN-Fungi 8454)). Scale = 1 mm. In short-stalked, greyish white pruinose ascomata (C.
    [Show full text]
  • The Identity of Calicium Corynellum (Ach.) Ach
    The Lichenologist (2020), 52, 333–335 doi:10.1017/S0024282920000250 Short Communication The identity of Calicium corynellum (Ach.) Ach. Maria Prieto1,3 , Ibai Olariaga1 , Sergio Pérez-Ortega2 and Mats Wedin3 1Department of Biology and Geology, Physics and Inorganic Chemistry, Rey Juan Carlos University, C/ Tulipán s/n, 28933, Móstoles, Madrid, Spain; 2Real Jardín Botánico (CSIC), C/ Claudio Moyano 1, 28014 Madrid, Spain and 3Department of Botany, Swedish Museum of Natural History, P.O. Box 50007, 10405, Stockholm, Sweden (Accepted 21 April 2020) Recently, Yahr (2015) studied British populations of Calicium corynellum (Ach.) Ach. to test whether these were distinct from C. viride Pers. As C. corynellum had the highest conservation priority in Britain, and was apparently declining rather dramatic- ally, it was important to clarify its taxonomic status. Yahr (2015) used both genetic (ITS rDNA) and morphological data from two British Calicium aff. corynellum populations and could not find differences with C. viride, suggesting that the British material represented saxicolous populations of the otherwise epiphytic or lignicolous C. viride. Although this study focused on British material, it introduced serious doubts about the identity and rela- tionships of these two species in other parts of the distribution area of C. corynellum. Interestingly, the British material that Yahr (2015) investigated was morphologically very similar to C. viride, but the latter was described as differing rather substantially from C. corynellum in other parts of its distribution area. Thus, C. corynellum differs from C. viride in its Fig. 1. Calicium corynellum habitus (M. Prieto C4 (ARAN-Fungi 8454)). Scale = 1 mm. In short-stalked, greyish white pruinose ascomata (C.
    [Show full text]
  • Phylogeny, Taxonomy and Diversification Events in the Caliciaceae
    http://www.diva-portal.org This is the published version of a paper published in Fungal diversity. Citation for the original published paper (version of record): Prieto, M., Wedin, M. (2016) Phylogeny, taxonomy and diversification events in the Caliciaceae.. Fungal diversity https://doi.org/10.1007/s13225-016-0372-y Access to the published version may require subscription. N.B. When citing this work, cite the original published paper. Permanent link to this version: http://urn.kb.se/resolve?urn=urn:nbn:se:nrm:diva-2031 Fungal Diversity (2017) 82:221–238 DOI 10.1007/s13225-016-0372-y Phylogeny, taxonomy and diversification events in the Caliciaceae Maria Prieto1,2 & Mats Wedin1 Received: 21 December 2015 /Accepted: 19 July 2016 /Published online: 1 August 2016 # The Author(s) 2016. This article is published with open access at Springerlink.com Abstract Although the high degree of non-monophyly and Calicium pinicola, Calicium trachyliodes, Pseudothelomma parallel evolution has long been acknowledged within the occidentale, Pseudothelomma ocellatum and Thelomma mazaediate Caliciaceae (Lecanoromycetes, Ascomycota), a brunneum. A key for the mazaedium-producing Caliciaceae is natural re-classification of the group has not yet been accom- included. plished. Here we constructed a multigene phylogeny of the Caliciaceae-Physciaceae clade in order to resolve the detailed Keywords Allocalicium gen. nov. Calicium fossil . relationships within the group, to propose a revised classification, Divergence time estimates . Lichens . Multigene . and to perform a dating study. The few characters present in the Pseudothelomma gen. nov available fossil and the complex character evolution of the group affects the interpretation of morphological traits and thus influ- ences the assignment of the fossil to specific nodes in the phy- Introduction logeny, when divergence time analyses are carried out.
    [Show full text]
  • Appendix 6.8-A
    Appendix 6.8-A Terrestrial Wildlife and Vegetation Baseline Report AJAX PROJECT Environmental Assessment Certificate Application / Environmental Impact Statement for a Comprehensive Study Ajax Mine Terrestrial Wildlife and Vegetation Baseline Report Prepared for KGHM Ajax Mining Inc. Prepared by This image cannot currently be displayed. Keystone Wildlife Research Ltd. #112, 9547 152 St. Surrey, BC V3R 5Y5 July 2015 Ajax Mine Terrestrial Wildlife and Vegetation Baseline Keystone Wildlife Research Ltd. DISCLAIMER This report was prepared exclusively for KGHM Ajax Mining Inc. by Keystone Wildlife Research Ltd. The quality of information, conclusions and estimates contained herein is consistent with the level of effort expended and is based on: i) information available at the time of preparation; ii) data collected by Keystone Wildlife Research Ltd. and/or supplied by outside sources; and iii) the assumptions, conditions and qualifications set forth in this report. This report is intended for use by KGHM Ajax Mining Inc. only, subject to the terms and conditions of its contract with Keystone Wildlife Research Ltd. Any other use, or reliance on this report by any third party, is at that party’s sole risk. 2 Ajax Mine Terrestrial Wildlife and Vegetation Baseline Keystone Wildlife Research Ltd. EXECUTIVE SUMMARY Baseline wildlife and habitat surveys were initiated in 2007 to support a future impact assessment for the redevelopment of two existing, but currently inactive, open pit mines southwest of Kamloops. Detailed Project plans were not available at that time, so the general areas of activity were buffered to define a study area. The two general Project areas at the time were New Afton, an open pit just south of Highway 1, and Ajax, east of Jacko Lake.
    [Show full text]
  • Phylogeny, Taxonomy and Diversification Events in the Caliciaceae
    Fungal Diversity (2017) 82:221–238 DOI 10.1007/s13225-016-0372-y Phylogeny, taxonomy and diversification events in the Caliciaceae Maria Prieto1,2 & Mats Wedin1 Received: 21 December 2015 /Accepted: 19 July 2016 /Published online: 1 August 2016 # The Author(s) 2016. This article is published with open access at Springerlink.com Abstract Although the high degree of non-monophyly and Calicium pinicola, Calicium trachyliodes, Pseudothelomma parallel evolution has long been acknowledged within the occidentale, Pseudothelomma ocellatum and Thelomma mazaediate Caliciaceae (Lecanoromycetes, Ascomycota), a brunneum. A key for the mazaedium-producing Caliciaceae is natural re-classification of the group has not yet been accom- included. plished. Here we constructed a multigene phylogeny of the Caliciaceae-Physciaceae clade in order to resolve the detailed Keywords Allocalicium gen. nov. Calicium fossil . relationships within the group, to propose a revised classification, Divergence time estimates . Lichens . Multigene . and to perform a dating study. The few characters present in the Pseudothelomma gen. nov available fossil and the complex character evolution of the group affects the interpretation of morphological traits and thus influ- ences the assignment of the fossil to specific nodes in the phy- Introduction logeny, when divergence time analyses are carried out. Alternative fossil assignments resulted in very different time es- Caliciaceae is one of several ascomycete groups characterized timates and the comparison with the analysis based on a second- by producing prototunicate (thin-walled and evanescent) asci ary calibration demonstrates that the most likely placement of the and a mazaedium (an accumulation of loose, maturing spores fossil is close to a terminal node rather than a basal placement in covering the ascoma surface).
    [Show full text]
  • The Identity of Calicium Corynellum (Ach.) Ach
    The Lichenologist (2020), 52, 333–335 doi:10.1017/S0024282920000250 Short Communication The identity of Calicium corynellum (Ach.) Ach. Maria Prieto1,3 , Ibai Olariaga1 , Sergio Pérez-Ortega2 and Mats Wedin3 1Department of Biology and Geology, Physics and Inorganic Chemistry, Rey Juan Carlos University, C/ Tulipán s/n, 28933, Móstoles, Madrid, Spain; 2Real Jardín Botánico (CSIC), C/ Claudio Moyano 1, 28014 Madrid, Spain and 3Department of Botany, Swedish Museum of Natural History, P.O. Box 50007, 10405, Stockholm, Sweden (Accepted 21 April 2020) Recently, Yahr (2015) studied British populations of Calicium corynellum (Ach.) Ach. to test whether these were distinct from C. viride Pers. As C. corynellum had the highest conservation priority in Britain, and was apparently declining rather dramatic- ally, it was important to clarify its taxonomic status. Yahr (2015) used both genetic (ITS rDNA) and morphological data from two British Calicium aff. corynellum populations and could not find differences with C. viride, suggesting that the British material represented saxicolous populations of the otherwise epiphytic or lignicolous C. viride. Although this study focused on British material, it introduced serious doubts about the identity and rela- tionships of these two species in other parts of the distribution area of C. corynellum. Interestingly, the British material that Yahr (2015) investigated was morphologically very similar to C. viride, but the latter was described as differing rather substantially from C. corynellum in other parts of its distribution area. Thus, C. corynellum differs from C. viride in its Fig. 1. Calicium corynellum habitus (M. Prieto C4 (ARAN-Fungi 8454)). Scale = 1 mm. In short-stalked, greyish white pruinose ascomata (C.
    [Show full text]
  • Lichens and Allied Fungi of Southeast Alaska
    LICHENOGRAPHlA THOMSONIANA: NORTH AMERICAN LICHENOLOGY IN HONOR OF JOHN W. THOMSON. Eds: M. G. GLENN, R. C. HARRIS, R. DIRIG & M. S. COLE. MYCOTAXON, LTD., ITHACA, NY. 1998. LICHENS AND ALLIED FUNGI OF SOUTHEAST ALASKA LINDA H. GEISER Siuslaw National Forest, P.O. Box 1148, Corvallis, Oregon 97339, USA KAREN L. DlLLMAN Tongass National Forest/Stikine Area, P.O. Box 309, Petersburg, Alaska 99833, USA CHISKA C. DERR Gifford Pinchot National Forest, Mount St. Helens National Volcanic Monument, 42218 N.E. Yale Bridge Road, Amboy, Washington 98601, USA MARY C. STENSVOLD Alaska Region, USDA Forest Service, 204 Siginaka Way, Sitka, Alaska 99835, USA ABSTRACT A checklist of 508 lichen and allied fungal species with regional habitat, distribution and abundance information has been compiled for southeastern Alaska. The lichen flora of this region is a rich mixture of Pacific Northwest temperate rain forest and Arctic components, and is enhanced by topographic and habitat variations within the region. Great expanses of old-growth forests and excellent air quality provide habitat for many lichens elsewhere rare or imperiled. New to Alaska are: Biatora cuprea, Biatoropsis usnearum, Calicium adaequatum, Candelaria concolor, Cetraria islandica ssp. orientalis, Chaenotheca brunneola, Chaenothecopsis pusilla, Cladonia dahliana, Cystocoleus ebeneus, Erioderma sorediatum, Gyalidea hyalinescens, Hydrotheria venosa, Hypocenomyce sorophora, Ionaspis lacustris, Lecanora cateilea, Lecidea albofuscescens, Leptogium brebissonii, Mycoblastus caesius, Nephroma occultum, N. sylvae-veteris, Trapeliopsis pseudogranulosa, Usnea chaetophora, U. cornuta, and U. fragilescens. New to the US are: Calicium lenticulare, Heterodermia sitchensis, Leptogium subtile, and Tremella hypogymniae. INTRODUCTION For this special volume of papers we present an updated checklist of lichens and their habitats in the southeastern region of Alaska, a state long favored by Dr.
    [Show full text]