Terrestrial Habitat Requirements of a Suite of Anuran Species Inhabiting a Semi- Arid Region of South East Queensland

Total Page:16

File Type:pdf, Size:1020Kb

Terrestrial Habitat Requirements of a Suite of Anuran Species Inhabiting a Semi- Arid Region of South East Queensland TERRESTRIAL HABITAT REQUIREMENTS OF A SUITE OF ANURAN SPECIES INHABITING A SEMI- ARID REGION OF SOUTH EAST QUEENSLAND Joanne Chambers B. App.Sc (Hons) Queensland University of Technology A thesis submitted in part fulfilment of the requirements for the degree of Doctor of Philosophy at Queensland University of Technology School of Natural Resource Sciences 2008 Key words: Amphibian, anuran, terrestrial habitat, habitat choice, burrowing frog, evaporative water loss, ground cover, soil pH, Barakula State Forest, frog conservation. i ABSTRACT Hypothesised causes of the observed world-wide decline of amphibian populations are varied and in some cases contentious. Insufficient information relating to the autecology of many amphibian species can cause erroneous speculations regarding critical habitat requirements and hence management programs designed to enhance population viability are often unsuccessful. Most amphibians display a bi-phasic life history that involves occupation of an aquatic breeding habitat and terrestrial habitats that are used for foraging, and shelter from predation and environmental stress. However, the focus of most amphibian research is centred on the breeding habitat, with limited research being conducted into the terrestrial habitat requirements of most amphibian species. Barakula State Forest is a large continuous area of open woodland situated in the semi-arid region of Queensland. The forest supports 21 species of endemic anurans, many of which use ephemeral waterbodies for breeding. This area is, therefore, an ideal location to test the relative importance of terrestrial habitat on the distribution of a suite of frogs that display different morphological and physiological characteristics. On the landscape scale, the attributes of the terrestrial environment at three survey areas within Barakula were similar. However, at the patch scale, ground truthing showed there were considerable variations in vegetation and ground cover attributes within and between each survey site. Measured properties of the soil also tended to vary within and between sites. Soil texture ranged from sandy to heavy clay, soil pH ranged from 3.9 to 6.4 and soil moisture varied considerably. Agar models, used for testing evaporative moisture loss at different microhabitats, retained significantly higher levels of moisture when positioned in the buried ii microhabitat during summer, but in winter, models that were placed under leaf litter retained higher levels of moisture. Variations in levels of moisture loss at the five different microhabitats were evident within and between the survey sites. Despite a prolonged drought, 1844 native frogs representing 17 species were pitfall trapped. Members from the family Myobatrachidae comprised 94% of these captures, and burrowing species accounted for 75% of total captures. Species were not randomly distributed within or between the survey sites. Vegetation attributes and soil properties played a significant role in influencing the catch rates and traplines that supported similar vegetation and soil attributes also tended to catch similar species. Capture rates of six of the seven burrowing species were significantly influenced by soil properties. When given a choice of four different microhabitats created in enclosures, individuals from five species showed varying responses to habitat choice during night time activity. During daylight all species tended to avoid bare areas and burrowing species tended to burrow under some form of cover. Pseudophryne bibronii metamorphs showed a significant avoidance to soils with high pH. The number of Limnodynastes ornatus metamorphs was significantly and positively correlated with moisture levels surrounding a breeding area. Limnodynastes ornatus metamorphs tended to avoid areas that did not support some form of cover. Embryos from the terrestrial egg laying P. bibronii translocated to sites with varying levels of soil pH, suffered increased mortality where the soil pH was >4.8. In the laboratory, embryonic survival was not significantly different between the four pH treatments. There was a significant influence of fungal infection on survival rates and ranked fungal infection was significantly different between the four pH treatments. iii The terrestrial environment at the three survey sites has provided sufficient protection from environmental elements to allow a large diversity of anurans to persist for long periods without access to permanent water. Management must consider the importance of the non-breeding habitat when defining buffer zones, restoration programs and conservation strategies to ensure that the complete set of ecological requirements for frog species are provided. iv Table of Contents KEY WORDS: .............................................................................................................I ABSTRACT................................................................................................................II STATEMENT OF ORIGINALITY ........................................................................... VIII ACKNOWLEDGMENTS .......................................................................................... IX CHAPTER 1: GENERAL INTRODUCTION........................................................1 1.0 INTRODUCTION ........................................................................................1 1.2 PROJECT AIMS .........................................................................................9 1.3 SUMMARY OF THESIS ...........................................................................11 CHAPTER 2: TERRESTRIAL HABITAT ASSESSMENT ..................................13 2.0 INTRODUCTION ......................................................................................13 2.1 METHODS................................................................................................15 2.1.1 STUDY AREA ......................................................................................15 2.1.2 TERRESTRIAL HABITAT ASSESSMENT ..................................................26 2.2 DATA ANALYSIS......................................................................................28 2.2.1 HABITAT ASSESSMENT ........................................................................28 2.3 RESULTS .................................................................................................29 2.3.1 HABITAT ASSESSMENT........................................................................29 2.3.2 SOIL PROPERTIES...............................................................................36 2.4 DISCUSSION ...........................................................................................38 CHAPTER 3:............................................................................................................41 EVAPORATIVE WATER LOSS IN DIFFERENT MICROHABITATS......................41 3.0 INTRODUCTION ......................................................................................41 3.1 METHODS................................................................................................44 3.1.1 MODELS .............................................................................................44 3.1.2 MICROHABITATS .................................................................................45 3.1.3 SAMPLING PERIODS................................................................................46 3.2 RESULTS ................................................................................................47 3.2.1 WINTER SAMPLING PERIOD.................................................................49 3.2.2 SUMMER SAMPLING PERIOD ...............................................................50 3.2.3 ASSOCIATIONS BETWEEN MOISTURE LOSS IN MODELS AND HABITAT VARIABLES .........................................................................................................52 3.3 DISCUSSION ...........................................................................................54 CHAPTER 4:............................................................................................................60 FROG CENSUS AND TERRESTRIAL HABITAT ASSOCIATIONS .......................60 4.0 INTRODUCTION ......................................................................................60 4.1 METHODS................................................................................................63 4.1.1 STUDY STIES...........................................................................................63 4.1.2 FROG CENSUS .......................................................................................64 4.1.3 DATA ANALYSIS.......................................................................................65 4.2 RESULTS .................................................................................................66 4.2.1 SPECIES COMPOSITION ...........................................................................66 4.2.2 SPECIES COMPOSITION AND HABITAT ASSOCIATIONS ................................73 4.2.3 INDIVIDUAL SPECIES AND HABITAT ASSOCIATIONS.....................................78 4.2.3.1 General Observations.......................................................................78 4.2.3.2 Habitat Associations .........................................................................79 4.3 DISCUSSION ...........................................................................................86 CHAPTER 5:............................................................................................................92
Recommended publications
  • Amphibian Abundance and Detection Trends During a Large Flood in a Semi-Arid Floodplain Wetland
    Herpetological Conservation and Biology 11:408–425. Submitted: 26 January 2016; Accepted: 2 September 2016; Published: 16 December 2016. Amphibian Abundance and Detection Trends During a Large Flood in a Semi-Arid Floodplain Wetland Joanne F. Ocock1,4, Richard T. Kingsford1, Trent D. Penman2, and Jodi J.L. Rowley1,3 1Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, UNSW Australia, Sydney, New South Wales, 2052, Australia 2Centre for Environmental Risk Management of Bushfires, Institute of Conservation Biology and Environmental Management, University of Wollongong, Wollongong, New South Wales 2522, Australia 3Australian Museum Research Institute, Australian Museum, 6 College St, Sydney, New South Wales 2010, Australia 4Corresponding author, email: [email protected] Abstract.—Amphibian abundance and occupancy are often reduced in regulated river systems near dams, but com- paratively little is known about how they are affected on floodplain wetlands downstream or the effects of actively managed flows. We assessed frog diversity in the Macquarie Marshes, a semi-arid floodplain wetland of conserva- tion significance, identifying environmental variables that might explain abundances and detection of species. We collected relative abundance data of 15 amphibian species at 30 sites over four months, coinciding with a large natural flood. We observed an average of 39.9 ± (SE) 4.3 (range, 0-246) individuals per site survey, over 47 survey nights. Three non-burrowing, ground-dwelling species were most abundant at temporarily flooded sites with low- growing aquatic vegetation (e.g., Limnodynastes tasmaniensis, Limnodynastes fletcheri, Crinia parinsignifera). Most arboreal species (e.g., Litoria caerulea) were more abundant in wooded habitat, regardless of water permanency.
    [Show full text]
  • Special Issue3.7 MB
    Volume Eleven Conservation Science 2016 Western Australia Review and synthesis of knowledge of insular ecology, with emphasis on the islands of Western Australia IAN ABBOTT and ALLAN WILLS i TABLE OF CONTENTS Page ABSTRACT 1 INTRODUCTION 2 METHODS 17 Data sources 17 Personal knowledge 17 Assumptions 17 Nomenclatural conventions 17 PRELIMINARY 18 Concepts and definitions 18 Island nomenclature 18 Scope 20 INSULAR FEATURES AND THE ISLAND SYNDROME 20 Physical description 20 Biological description 23 Reduced species richness 23 Occurrence of endemic species or subspecies 23 Occurrence of unique ecosystems 27 Species characteristic of WA islands 27 Hyperabundance 30 Habitat changes 31 Behavioural changes 32 Morphological changes 33 Changes in niches 35 Genetic changes 35 CONCEPTUAL FRAMEWORK 36 Degree of exposure to wave action and salt spray 36 Normal exposure 36 Extreme exposure and tidal surge 40 Substrate 41 Topographic variation 42 Maximum elevation 43 Climate 44 Number and extent of vegetation and other types of habitat present 45 Degree of isolation from the nearest source area 49 History: Time since separation (or formation) 52 Planar area 54 Presence of breeding seals, seabirds, and turtles 59 Presence of Indigenous people 60 Activities of Europeans 63 Sampling completeness and comparability 81 Ecological interactions 83 Coups de foudres 94 LINKAGES BETWEEN THE 15 FACTORS 94 ii THE TRANSITION FROM MAINLAND TO ISLAND: KNOWNS; KNOWN UNKNOWNS; AND UNKNOWN UNKNOWNS 96 SPECIES TURNOVER 99 Landbird species 100 Seabird species 108 Waterbird
    [Show full text]
  • Water Balance of Field-Excavated Aestivating Australian Desert Frogs
    3309 The Journal of Experimental Biology 209, 3309-3321 Published by The Company of Biologists 2006 doi:10.1242/jeb.02393 Water balance of field-excavated aestivating Australian desert frogs, the cocoon- forming Neobatrachus aquilonius and the non-cocooning Notaden nichollsi (Amphibia: Myobatrachidae) Victoria A. Cartledge1,*, Philip C. Withers1, Kellie A. McMaster1, Graham G. Thompson2 and S. Don Bradshaw1 1Zoology, School of Animal Biology, MO92, University of Western Australia, Crawley, Western Australia 6009, Australia and 2Centre for Ecosystem Management, Edith Cowan University, 100 Joondalup Drive, Joondalup, Western Australia 6027, Australia *Author for correspondence (e-mail: [email protected]) Accepted 19 June 2006 Summary Burrowed aestivating frogs of the cocoon-forming approaching that of the plasma. By contrast, non-cocooned species Neobatrachus aquilonius and the non-cocooning N. aquilonius from the dune swale were fully hydrated, species Notaden nichollsi were excavated in the Gibson although soil moisture levels were not as high as calculated Desert of central Australia. Their hydration state (osmotic to be necessary to maintain water balance. Both pressure of the plasma and urine) was compared to the species had similar plasma arginine vasotocin (AVT) moisture content and water potential of the surrounding concentrations ranging from 9.4 to 164·pg·ml–1, except for soil. The non-cocooning N. nichollsi was consistently found one cocooned N. aquilonius with a higher concentration of in sand dunes. While this sand had favourable water 394·pg·ml–1. For both species, AVT showed no relationship potential properties for buried frogs, the considerable with plasma osmolality over the lower range of plasma spatial and temporal variation in sand moisture meant osmolalities but was appreciably increased at the highest that frogs were not always in positive water balance with osmolality recorded.
    [Show full text]
  • ASH Newsletter 45.Pub
    THE AUSTRALIAN SOCIETY OF HERPETOLOGISTS INCORPORATED NEWSLETTER 45 2 3 History of Office Bearers Formation Committee (April 1964):- MJ Littlejohn (Convenor); State Reps IR Straughan (Qld), FJ Mitchell (SA), HG Cogger (NSW), G Storr (WA), RE Barwick (ACT), JW Warren (Vic), AK Lee (Editor). First AGM (23 August 1965):- President MJ Littlejohn, Vice-President NG Stephenson, Secretary-Treasurer AA Martin, Asst Secretary-Treasurer KJ Wilson, Ordinary Members FJ Mitchell and IR Straughan, Editor AK Lee. PRESIDENT:- MJ Littlejohn (1965-69); AK Lee (1969-70); HG Cogger (1971-73); J de Bavay (1974); H Heat- wole (1975-76); GC Grigg (1976-77); MJ Tyler (1978-79); GF Watson (1979-81); AA Martin (1981-82); RS Seymour (1982-83); R Shine (1983-84); GC Grigg (1984-86); J Coventry (1986-87); RE Barwick (1987-88); J Covacevich (1988-91); M Davies (1991-92); R Shine (1992-94); A Georges (1994-6); D Roberts (1996-98); M Bull (1998-9); R Swain (1999-2001); S Downes (2001-03); J Melville (2004-2005); J-M Hero (2005-2007); P Doherty (2007-2008); M Thompson (2008-2009); M Hutchinson (2009-) VICE-PRESIDENT:- NG Stephenson (1965-67); RE Barwick (1967-69); HG Cogger (1969-70); MJ Littlejohn (1971-72); MJ Tyler (1973); HG Cogger (1974); J de Bavay (1975-76); H Heatwole (1976-77); GC Grigg (1977 -79); MJ Tyler (1979-80); GF Watson (1981-82); AA Martin (1982-83); RS Seymour (1983-84); R Shine (1984- 86); GC Grigg (1986-87); J Coventry (1987-88); RE Barwick (1988-91); J Covacevich (1991-92); M Davies (1992-94); R Shine (1994-6); A Georges (1996-98); D Roberts (1998-99); M Bull(1999-2001); R Swain (2001- 2003); S Downes (2004-5); J Melville (2005-2007); J-M Hero (2007-2008); P Doherty (2008-2009); M Thomp- son (2009-) SECRETARY/TREASURER:- AA Martin (1965-67); GF Watson (1967-72); LA Moffatt (1973-75); J Caughley (1975-76); RWG Jenkins (1976-77); M Davies (1978-83); G Courtice (1983-87); J Wombey (1987-99); S Ke- ogh (1999-2003); N Mitchell (2004-5).
    [Show full text]
  • Predation by Introduced Cats Felis Catus on Australian Frogs: Compilation of Species Records and Estimation of Numbers Killed
    Predation by introduced cats Felis catus on Australian frogs: compilation of species records and estimation of numbers killed J. C. Z. WoinarskiA,M, S. M. LeggeB,C, L. A. WoolleyA,L, R. PalmerD, C. R. DickmanE, J. AugusteynF, T. S. DohertyG, G. EdwardsH, H. GeyleA, H. McGregorI, J. RileyJ, J. TurpinK and B. P. MurphyA ANESP Threatened Species Recovery Hub, Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT 0909, Australia. BNESP Threatened Species Recovery Hub, Centre for Biodiversity and Conservation Research, University of Queensland, St Lucia, Qld 4072, Australia. CFenner School of the Environment and Society, Linnaeus Way, The Australian National University, Canberra, ACT 2602, Australia. DWestern Australian Department of Biodiversity, Conservation and Attractions, Bentley, WA 6983, Australia. ENESP Threatened Species Recovery Hub, Desert Ecology Research Group, School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia. FQueensland Parks and Wildlife Service, Red Hill, Qld 4701, Australia. GCentre for Integrative Ecology, School of Life and Environmental Sciences (Burwood campus), Deakin University, Geelong, Vic. 3216, Australia. HNorthern Territory Department of Land Resource Management, PO Box 1120, Alice Springs, NT 0871, Australia. INESP Threatened Species Recovery Hub, School of Biological Sciences, University of Tasmania, Hobart, Tas. 7001, Australia. JSchool of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, United Kingdom. KDepartment of Terrestrial Zoology, Western Australian Museum, 49 Kew Street, Welshpool, WA 6106, Australia. LPresent address: WWF-Australia, 3 Broome Lotteries House, Cable Beach Road, Broome, WA 6276, Australia. MCorresponding author. Email: [email protected] Table S1. Data sources used in compilation of cat predation on frogs.
    [Show full text]
  • Water Relations of the Burrowing Sandhill Frog, Arenophryne Rotunda (Myobatrachidae)
    J Comp Physiol B (2005) DOI 10.1007/s00360-005-0051-x ORIGINAL PAPER V. A. Cartledge Æ P. C. Withers Æ G. G. Thompson K. A. McMaster Water relations of the burrowing sandhill frog, Arenophryne rotunda (Myobatrachidae) Received: 24 July 2005 / Revised: 17 October 2005 / Accepted: 26 October 2005 Ó Springer-Verlag 2005 Abstract Arenophryne rotunda is a small (2–8 g) terres- Keywords Arid Æ Dehydration Æ Osmolality Æ trial frog that inhabits the coastal sand dunes of central Rehydration Æ Soil water potential Western Australia. While sand burrowing is a strategy employed by many frog species inhabiting Australia’s Abbreviations EWL: Evaporative water loss semi-arid and arid zones, A. rotunda is unique among burrowing species because it lives independently of free water and can be found nocturnally active on the dune Introduction surface for relatively extended periods. Consequently, we examined the physiological factors that enable this Despite the low and irregular rainfall, frogs are found in unique frog to maintain water balance. A. rotunda was most Australian desert regions and are often the most not found to have any special adaptation to reduce EWL abundant vertebrate species in a given area (Main 1968; (being equivalent to a free water surface) or rehydrate Read 1999). Most frogs inhabiting Australia’s semi-arid from water (having the lowest rehydration rate mea- and arid regions burrow into the soil to reduce desic- sured for 15 Western Australian frog species), but it was cation. Some of these burrowing frogs (Neobatrachus able to maintain water balance in sand of very low and Cyclorana spp.) form a cocoon by accumulating moisture (1–2%).
    [Show full text]
  • ARAZPA YOTF Infopack.Pdf
    ARAZPA 2008 Year of the Frog Campaign Information pack ARAZPA 2008 Year of the Frog Campaign Printing: The ARAZPA 2008 Year of the Frog Campaign pack was generously supported by Madman Printing Phone: +61 3 9244 0100 Email: [email protected] Front cover design: Patrick Crawley, www.creepycrawleycartoons.com Mobile: 0401 316 827 Email: [email protected] Front cover photo: Pseudophryne pengilleyi, Northern Corroboree Frog. Photo courtesy of Lydia Fucsko. Printed on 100% recycled stock 2 ARAZPA 2008 Year of the Frog Campaign Contents Foreword.........................................................................................................................................5 Foreword part II ………………………………………………………………………………………… ...6 Introduction.....................................................................................................................................9 Section 1: Why A Campaign?....................................................................................................11 The Connection Between Man and Nature........................................................................11 Man’s Effect on Nature ......................................................................................................11 Frogs Matter ......................................................................................................................11 The Problem ......................................................................................................................12 The Reason
    [Show full text]
  • Volume 22 Part 1
    Records of the Western Australian Museum 24: 121–131 (2008). A new species of Arenophryne (Anura: Myobatrachidae) from the central coast of Western Australia Paul Doughty1 and Danielle Edwards2 1Department of Terrestrial Zoology, Western Australian Museum, 49 Kew Street, Welshpool, Western Australia 6106, Australia. Email: [email protected] 2School of Animal Biology, University of Western Australia, Crawley, Western Australia 6009, Australia Abstract – The sandhill frog, Arenophyrne rotunda, belongs to a monotypic genus that occurs on the central coast of Western Australia. It has a highly modified body shape with a small head and large front limbs. Members of this species burrows forwards through sand substrates. Here we describe a new species of Arenophyrne from the Geraldton sandplain that occurs to the south of the populations of the type species A. rotunda at Shark Bay. Relative to A. rotunda, the new taxon has a more pointed snout, smaller face and eyes, larger hands, rougher dorsal surface and darker colouration that matches the background colour of the sands on which it occurs. Molecular evidence indicates divergence of the two taxa in the late Miocene to early Pliocene, approximately 5–6 mya. The western coast of Australia has a complex biogeographic history owing to geological activity and changes in sea level interacting with extensive sandy areas. Speciation within Arenophyrne on the coastal dunes of Western Australia indicates that levels of diversity in subterranean groups there may be underestimated owing to conservative fusiform morphology of burrowing animals. Keywords: cryptic species, frog, fossorial, Geraldton sandplain INTRODUCTION Biju and Bossuyt, 2003 of India.
    [Show full text]
  • Bevezetés És Célkitűzések 2
    AZ IHARKÚTI KÉSŐ-KRÉTA KÉTÉLTŰ FAUNA VIZSGÁLATA TAXONÓMIAI, FUNKCIONÁLIS ANATÓMIAI, PALEOÖKOLÓGIAI ÉS PALEOBIOGEOGRÁFIAI SZEMPONTBÓL SZENTESI ZOLTÁN FÖLDTUDOMÁNYI DOKTORI ISKOLA Dr. Gábris Gyula egyetemi tanár, PhD FÖLDTAN – GEOFIZIKA PROGRAM Prof. Dr. Mindszenty Andrea, PhD Témavezető: Dr. Görög Ágnes, egyetemi docens, PhD Konzulensek: Dr. Venczel Márton, tudományos főkutató, PhD Dr. Ősi Attila, kutatócsoport vezető, PhD EÖTVÖS LORÁND TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI KAR ŐSLÉNYTANI TANSZÉK Tartalomjegyzék Bevezetés és célkitűzések 2. Az iharkúti felső-kréta gerinces lelőhely földrajzi elhelyezkedése és földtani háttere 4. A magyarországi mezozoós gerinces lelőhelyek kutatástörténete 11. A modern kétéltűek (Lissamphibia) kutatásának rövid története 12. A vizsgált anyag és munkamódszerek 20. Az iharkúti kétéltű leletek leírása és összehasonlítása 37. A Bakonybatrachus és a Hungarobatrachus izomzatának és mozgásmódjának rekonstrukciója 71. A leletek értelmezése paleobiológiai szempontból 95. Az iharkúti lelőhelyről előkerült kétéltű csontok tafonómiai jellemzői, és a leletek értelmezése paleoökológiai szempontból 97. A leletek értelmezése paleobiogeográfiai szempontból 102. Összefoglalás 113. Abstract 114. Köszönetnyilvánítás 115. Hivatkozott irodalom 116. 2 Bevezetés és célkitűzések A mikrogerinces lelőhelyek fontos forrásai a paleontológiai információknak, ezért fontos a vizsgált rétegek üledékeinek leiszapolása és az iszapolási maradék gondos átvizsgálása. Nagymennyiségű fosszília nyerhető általa, mely sokkal több információt nyújthat
    [Show full text]
  • Mechanisms Underlying Inhibition of Muscle Disuse Atrophy During Aestivation in the Green-Striped Burrowing Frog, Cyclorana Alboguttata
    Mechanisms underlying inhibition of muscle disuse atrophy during aestivation in the green-striped burrowing frog, Cyclorana alboguttata Beau Daniel Reilly Bachelor of Marine Studies (Hons.) A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2014 School of Biological Sciences Abstract In most mammals, extended inactivity or immobilisation of skeletal muscle (e.g. bed- rest, limb-casting or hindlimb unloading) results in muscle disuse atrophy, a process which is characterised by the loss of skeletal muscle mass and function. In stark contrast, animals that experience natural bouts of prolonged muscle inactivity, such as hibernating mammals and aestivating frogs, consistently exhibit limited or no change in either skeletal muscle size or contractile performance. While many of the factors regulating skeletal muscle mass are known, little information exists as to what mechanisms protect against muscle atrophy in some species. Green-striped burrowing frogs (Cyclorana alboguttata) survive in arid environments by burrowing underground and entering into a deep, prolonged metabolic depression known as aestivation. Throughout aestivation, C. alboguttata is immobilised within a cast-like cocoon of shed skin and ceases feeding and moving. Remarkably, these frogs exhibit very little muscle atrophy despite extended disuse and fasting. The overall aim of the current research study was to gain a better understanding of the physiological, cellular and molecular basis underlying resistance to muscle disuse atrophy in C. alboguttata. The first aim of this study was to develop a genomic resource for C. alboguttata by sequencing and functionally characterising its skeletal muscle transcriptome, and to conduct gene expression profiling to identify transcriptional pathways associated with metabolic depression and maintenance of muscle function in aestivating burrowing frogs.
    [Show full text]
  • Digital File
    การกระจายในแนวดิ่งและอาหารของอึ่งอางกนขีด Kaloula mediolineata (Smith, 1917) ในอําเภอสามเงา จังหวัดตาก นายกันย นิติโรจน วิทยานิพนธนี้เปนสวนหนงของการศึ่ ึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบณฑั ิต สาขาวิชาสัตววิทยา ภาควชาชิ ีววิทยา คณะวิทยาศาสตร จุฬาลงกรณมหาวิทยาลัย ปการศึกษา 2550 ลิขสิทธิ์ของจุฬาลงกรณมหาวิทยาลัย VERTICAL DISTRIBUTION AND DIETS OF MEDIAN-STRIPED BULLFROGS Kaloula mediolineata (SMITH, 1917) IN SAM NGAO DISTRICT, TAK PROVINCE Mr. Kan Nitiroj A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science Program in Zoology Department of Biology Faculty of Science Chulalongkorn University Academic Year 2007 Copyright of Chulalongkorn University ฉ กิตติกรรมประกาศ วิทยานิพนธฉบับนี้จะไมสามารถสําเร็จลุลวงไปไดดวยดีหากขาดความชวยเหลืออยางดียิ่งของ ผูชวยศาสตราจารย ดร.วิเชฏฐ คนซื่อ อาจารยที่ปรึกษาวิทยานิพนธ ซึ่งไดใหคําแนะนํา ขอเสนอแนะตางๆ ตลอดจนใหความสนับสนุนและใหกําลังใจดวยดีตลอดมาขอขอบพระคุณเปนอยางสูง ขอบพระคุณรองศาสตราจารย ดร. กําธร ธีรคุปต ประธานกรรมการสอบวิทยานิพนธ ผูชวย- ศาสตราจารย ดร.อาจอง ประทัตสุนทรสาร ผูชวยศาสตราจารย ดร.ดวงแข สิทธิเจริญชัย และ ดร.จารุจินต นภีตะภัฏ กรรมการสอบวิทยานิพนธ ที่ไดใหคําแนะนํา และชวยแกไขวิทยานิพนธ ตลอดจนใหคําปรึกษา จนวิทยานิพนธเสร็จสมบูรณ ขอบพระคุณผูชวยศาสตราจารย ดร.อาจอง ประทัตสุนทรสาร ที่ใหคําชี้แนะดานตางๆ ทั้ง สนับสนุนอุปกรณใชในภาคสนามและในหองปฏิบัติการ ขอบพระคุณผูชวยศาสตราจารย ดร.พงชัย หาญยุทธนากร และ อาจารย ดร. นิพาดา เรือนแกว ดิษยทัต ที่กรุณาชวยขัดเกลาบทคัดยอทั้งภาษาไทยและภาษาอังกฤษจนสําเร็จเปนอยางดี ขอบพระคุณอาจารย ดร.นพดล กิตนะ สําหรับคําชี้แนะและความชวยเหลืออยางดีตลอดมา
    [Show full text]
  • Woinarski J. C. Z., Legge S. M., Woolley L. A., Palmer R., Dickman C
    Woinarski J. C. Z., Legge S. M., Woolley L. A., Palmer R., Dickman C. R., Augusteyn J., Doherty T. S., Edwards G., Geyle H., McGregor H., Riley J., Turpin J., Murphy B.P. (2020) Predation by introduced cats Felis catus on Australian frogs: compilation of species records and estimation of numbers killed. Wildlife Research, Vol. 47, Iss. 8, Pp 580-588. DOI: https://doi.org/10.1071/WR19182 1 2 3 Predation by introduced cats Felis catus on Australian frogs: compilation of species’ 4 records and estimation of numbers killed. 5 6 7 J.C.Z. Woinarskia*, S.M. Leggeb, L.A. Woolleya,k, R. Palmerc, C.R. Dickmand, J. Augusteyne, T.S. Dohertyf, 8 G. Edwardsg, H. Geylea, H. McGregorh, J. Rileyi, J. Turpinj, and B.P. Murphya 9 10 a NESP Threatened Species Recovery Hub, Research Institute for the Environment and Livelihoods, 11 Charles Darwin University, Darwin, NT 0909, Australia 12 b NESP Threatened Species Recovery Hub, Centre for Biodiversity and Conservation Research, 13 University of Queensland, St Lucia, QLD 4072, Australia; AND Fenner School of the Environment and 14 Society, The Australian National University, Canberra, ACT 2602, Australia 15 c Western Australian Department of Biodiversity, Conservation and Attractions, Bentley, WA 6983, 16 Australia 17 d NESP Threatened Species Recovery Hub, Desert Ecology Research Group, School of Life and 18 Environmental Sciences, University of Sydney, NSW 2006, Australia 19 e Queensland Parks and Wildlife Service, Red Hill, QLD 4701, Australia 20 f Centre for Integrative Ecology, School of Life and Environmental Sciences (Burwood campus), Deakin 21 University, Geelong, VIC 3216, Australia 22 g Northern Territory Department of Land Resource Management, PO Box 1120, Alice Springs, NT 0871, 23 Australia 24 h NESP Threatened Species Recovery Hub, School of Biological Sciences, University of Tasmania, 25 Hobart, TAS 7001, Australia i School of Biological Sciences, University of Bristol, 24 Tyndall Ave, Bristol BS8 1TQ, United Kingdom.
    [Show full text]