Pyrolysis Study of Cinnamaldehyde Model Compound with Analytical Py-Gc×Gc-Fid/Tof-Ms, Chemical Engineering Transactions, 80, 79-84 DOI:10.3303/CET2080014
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Amplification of Oxidative Stress by a Dual Stimuli-Responsive Hybrid Drug
ARTICLE Received 11 Jul 2014 | Accepted 12 Mar 2015 | Published 20 Apr 2015 DOI: 10.1038/ncomms7907 Amplification of oxidative stress by a dual stimuli-responsive hybrid drug enhances cancer cell death Joungyoun Noh1, Byeongsu Kwon2, Eunji Han2, Minhyung Park2, Wonseok Yang2, Wooram Cho2, Wooyoung Yoo2, Gilson Khang1,2 & Dongwon Lee1,2 Cancer cells, compared with normal cells, are under oxidative stress associated with the increased generation of reactive oxygen species (ROS) including H2O2 and are also susceptible to further ROS insults. Cancer cells adapt to oxidative stress by upregulating antioxidant systems such as glutathione to counteract the damaging effects of ROS. Therefore, the elevation of oxidative stress preferentially in cancer cells by depleting glutathione or generating ROS is a logical therapeutic strategy for the development of anticancer drugs. Here we report a dual stimuli-responsive hybrid anticancer drug QCA, which can be activated by H2O2 and acidic pH to release glutathione-scavenging quinone methide and ROS-generating cinnamaldehyde, respectively, in cancer cells. Quinone methide and cinnamaldehyde act in a synergistic manner to amplify oxidative stress, leading to preferential killing of cancer cells in vitro and in vivo. We therefore anticipate that QCA has promising potential as an anticancer therapeutic agent. 1 Department of Polymer Á Nano Science and Technology, Polymer Fusion Research Center, Chonbuk National University, Backje-daero 567, Jeonju 561-756, Korea. 2 Department of BIN Convergence Technology, Chonbuk National University, Backje-daero 567, Jeonju 561-756, Korea. Correspondence and requests for materials should be addressed to D.L. (email: [email protected]). NATURE COMMUNICATIONS | 6:6907 | DOI: 10.1038/ncomms7907 | www.nature.com/naturecommunications 1 & 2015 Macmillan Publishers Limited. -
ABSTRACT SONG, XIAO. Investigating the Role and Structure of Free Radicals in Lignin Biosynthesis
ABSTRACT SONG, XIAO. Investigating the Role and Structure of Free Radicals in Lignin Biosynthesis. (Under the direction of Prof. Tatyana Smirnova). Lignin is the second most abundant biopolymer on earth after cellulose that contributes to the overall viability and sustainability of the plant kingdom. Understanding molecular details of the lignin formation and cross-linking is of fundamental importance to production of biomass streams. Although the processes of monolignols oxidative dehydrogenation, polymerization and cross-linking to cell walls are proposed to occur through a free radical mechanism, the specific details remain elusive. In order to understand molecular mechanisms of these reactions, we investigated formation of radicals during enzyme-catalyzed (HRP or Laccase) oxidative dehydrogenation of twelve monolignols. To characterize short-lived radicals formed during the enzymatic reaction we employed EPR spectroscopy in combination with spin-trapping technique and deduced the structures and spatial conformations of radicals. We also utilized continuous- flow EPR in combination with enzyme surface immobilization to detect the formation of transient monolignol radicals and thus patterned their isotropic hyperfine parameters that allow for the mapping of unpaired electron distribution. Polymerized radicals formed as a result of the coupling of enzyme-generated monolignol radicals. The effective -factors and ∆퐻푃−푃 of EPR spectra of polymerized radicals could be used as a reference to identify the polymeric radicals obtained from monolignols by different methods and paramagnetic species in natural lignin. We further generated a monolignol radical using consecutive enzymatic deglucosidation and oxidative dehydrogenation of a monolignol glucoside. This approach could be used to probe the isotropic hyperfine interactions of radical structures of monolignols with limited solubility in water by continuous-flow EPR method, especially for monolignol hydroxycinnamate conjugate compounds whose isotropic hyperfine component have not been studied yet. -
Metabolomics by UHPLC-Q-TOF Reveals Host Tree-Dependent Phytochemical Variation in Viscum Album L
plants Article Metabolomics by UHPLC-Q-TOF Reveals Host Tree-Dependent Phytochemical Variation in Viscum album L. Tim Jäger 1,2,3,†, Carla Holandino 1,4,* , Michelle Nonato de Oliveira Melo 4,5 , Evelyn Maribel Condori Peñaloza 4,5, Adriana Passos Oliveira 4, Rafael Garrett 5 , Gaétan Glauser 6 , Mirio Grazi 1, Hartmut Ramm 1, Konrad Urech 1 and Stephan Baumgartner 1,3,7,* 1 Society for Cancer Research, Hiscia Institute, Kirschweg 9, 4144 Arlesheim, Switzerland; [email protected] (T.J.); [email protected] (M.G.); [email protected] (H.R.); [email protected] (K.U.) 2 Center for Complementary Medicine, Institute for Infection Prevention and Hospital Epidemiology, Faculty of Medicine, University of Freiburg, Breisacher Str. 115b, 79106 Freiburg, Germany 3 Institute of Integrative Medicine, University of Witten/Herdecke, Gerhard-Kienle-Weg 4, 58313 Herdecke, Germany 4 Laboratório Multidisciplinar de Ciências Farmacêuticas, Pharmacy College, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; [email protected] (M.N.d.O.M.); [email protected] (E.M.C.P.); [email protected] (A.P.O.) 5 Metabolomics Laboratory, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-598, Brazil; [email protected] 6 Neuchatel Platform of Analytical Chemistry, University of Neuchâtel, Avenue de Bellevaux 51, 2000 Neuchâtel, Switzerland; [email protected] 7 Institute of Complementary and Integrative Medicine, University of Bern, Freiburgstrasse 46, 3010 Bern, Switzerland * Correspondence: [email protected] (C.H.); [email protected] (S.B.) † Deceased 1 March 2019. Citation: Jäger, T.; Holandino, C.; Abstract: Viscum album L., commonly known as European mistletoe, is a hemi-parasitic plant of Melo, M.N.d.O.; Peñaloza, E.M.C.; the Santalaceae family. -
Cinnamaldehyde Induces Release of Cholecystokinin and Glucagon-Like
animals Article Cinnamaldehyde Induces Release of Cholecystokinin and Glucagon-Like Peptide 1 by Interacting with Transient Receptor Potential Ankyrin 1 in a Porcine Ex-Vivo Intestinal Segment Model Elout Van Liefferinge 1,* , Maximiliano Müller 2, Noémie Van Noten 1 , Jeroen Degroote 1 , Shahram Niknafs 2, Eugeni Roura 2 and Joris Michiels 1 1 Laboratory for Animal Nutrition and Animal Product Quality (LANUPRO), Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000 Ghent, Belgium; [email protected] (N.V.N.); [email protected] (J.D.); [email protected] (J.M.) 2 Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4072, Australia; [email protected] (M.M.); [email protected] (S.N.); [email protected] (E.R.) * Correspondence: [email protected] Simple Summary: The gut is able to “sense” nutrients and release gut hormones to regulate diges- tive processes. Accordingly, various gastrointestinal cell types possess transient receptor potential channels, cation channels involved in somatosensation, thermoregulation and the sensing of pungent and spicy substances. Recent research shows that both channels are expressed in enteroendocrine Citation: Van Liefferinge, E.; Müller, M.; Van Noten, N.; Degroote, J.; cell types responsible for the release of gut peptide hormones such as Cholecystokinin (CCK) and Niknafs, S.; Roura, E.; Michiels, J. Glucagon-like Peptide-1 (GLP-1). A large array of herbal compounds, used in pig nutrition mostly for Cinnamaldehyde Induces Release of their antibacterial and antioxidant properties, are able to activate these channels. Cinnamaldehyde, Cholecystokinin and Glucagon-Like occurring in the bark of cinnamon trees, acts as an agonist of Transient Receptor Potential Ankyrin 1 Peptide 1 by Interacting with (TRPA1)-channel. -
Accumulation and Secretion of Coumarinolignans and Other Coumarins in Arabidopsis Thaliana Roots in Response to Iron Deficiency
Accumulation and Secretion of Coumarinolignans and other Coumarins in Arabidopsis thaliana Roots in Response to Iron Deficiency at High pH Patricia Siso-Terraza, Adrian Luis-Villarroya, Pierre Fourcroy, Jean-Francois Briat, Anunciacion Abadia, Frederic Gaymard, Javier Abadia, Ana Alvarez-Fernandez To cite this version: Patricia Siso-Terraza, Adrian Luis-Villarroya, Pierre Fourcroy, Jean-Francois Briat, Anunciacion Aba- dia, et al.. Accumulation and Secretion of Coumarinolignans and other Coumarins in Arabidopsis thaliana Roots in Response to Iron Deficiency at High pH. Frontiers in Plant Science, Frontiers, 2016, 7, pp.1711. 10.3389/fpls.2016.01711. hal-01417731 HAL Id: hal-01417731 https://hal.archives-ouvertes.fr/hal-01417731 Submitted on 15 Dec 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. fpls-07-01711 November 21, 2016 Time: 15:23 # 1 ORIGINAL RESEARCH published: 23 November 2016 doi: 10.3389/fpls.2016.01711 Accumulation and Secretion of Coumarinolignans and other Coumarins in Arabidopsis thaliana Roots in Response to Iron Deficiency at -
Lignin from Bark As a Resource for Aromatics Production by Hydrothermal Liquefaction
Received: 24 April 2018 | Revised: 25 July 2018 | Accepted: 3 August 2018 DOI: 10.1111/gcbb.12562 ORIGINAL RESEARCH Lignin from bark as a resource for aromatics production by hydrothermal liquefaction Julia Schuler1 | Ursel Hornung1 | Nicolaus Dahmen1 | Jörg Sauer1 Institute for Catalysis Research and Technology, Karlsruhe Institute of Abstract Technology (KIT), Eggenstein‐ Biorefineries, which are using mostly unused side streams of other existing pro- Leopoldshafen, Germany cesses like bark or lignin, have a huge potential to open new resources, for exam- Correspondence ple, chemicals. But with new resources new challenges will be met along the Julia Schuler, Institute for Catalysis way. These challenges must be addressed and discussed to build a solid and far‐ Research and Technology, Karlsruhe sighted process. This work focuses on the formation of monocyclic compounds Institute of Technology (KIT), Eggenstein‐ Leopoldshafen, Germany. like catechol as a valuable product during the hydrothermal liquefaction of beech Email: [email protected] wood bark as well as Kraft lignin from pine wood like Indulin AT. The focus is Funding information to get a better knowledge of the behavior of bark during hydrothermal liquefac- Ministry of Science, Research and the tion for depolymerization aiming at the production of aromatic building blocks Arts of Baden‐Württemberg, Grant/Award for chemicals. Therefore, the influence, for example, of temperature and reaction Number: 200007 time, the chemical reaction pathways, and the therefore necessary analytics need to be understood. Several limitations and challenges of common analytical meth- ods are discussed and compared for bark and Kraft lignin, which is relatively well investigated and can act as a reference material to build a common ground and make it possible to build standards for all bioeconomic processes. -
Trpa1) Activity by Cdk5
MODULATION OF TRANSIENT RECEPTOR POTENTIAL CATION CHANNEL, SUBFAMILY A, MEMBER 1 (TRPA1) ACTIVITY BY CDK5 A dissertation submitted to Kent State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy by Michael A. Sulak December 2011 Dissertation written by Michael A. Sulak B.S., Cleveland State University, 2002 Ph.D., Kent State University, 2011 Approved by _________________, Chair, Doctoral Dissertation Committee Dr. Derek S. Damron _________________, Member, Doctoral Dissertation Committee Dr. Robert V. Dorman _________________, Member, Doctoral Dissertation Committee Dr. Ernest J. Freeman _________________, Member, Doctoral Dissertation Committee Dr. Ian N. Bratz _________________, Graduate Faculty Representative Dr. Bansidhar Datta Accepted by _________________, Director, School of Biomedical Sciences Dr. Robert V. Dorman _________________, Dean, College of Arts and Sciences Dr. John R. D. Stalvey ii TABLE OF CONTENTS LIST OF FIGURES ............................................................................................... iv LIST OF TABLES ............................................................................................... vi DEDICATION ...................................................................................................... vii ACKNOWLEDGEMENTS .................................................................................. viii CHAPTER 1: Introduction .................................................................................. 1 Hypothesis and Project Rationale -
Global Journal of Research in Engineering
Online ISSN : 2249-4596 Print ISSN : 0975-5861 DOI : 10.17406/GJRE SolarCellApplication GravitySeparationAndLeaching AzaraNassarawaBariteMineralOre WasteWoodfromaParquetFactory VOLUME17ISSUE5VERSION1.0 Global Journal of Researches in Engineering: J General Engineering Global Journal of Researches in Engineering: J General Engineering Volume 17 Issue 5 (Ver. 1.0) Open Association of Research Society Global Journals Inc. © Global Journal of (A Delaware USA Incorporation with “Good Standing”; Reg. Number: 0423089) Sponsors:Open Association of Research Society Researches in Engineering. Open Scientific Standards 2017. All rights reserved. Publisher’s Headquarters office This is a special issue published in version 1.0 ® of “Global Journal of Researches in Global Journals Headquarters Engineering.” By Global Journals Inc. 945th Concord Streets, All articles are open access articles distributed Framingham Massachusetts Pin: 01701, under “Global Journal of Researches in Engineering” United States of America Reading License, which permits restricted use. USA Toll Free: +001-888-839-7392 Entire contents are copyright by of “Global USA Toll Free Fax: +001-888-839-7392 Journal of Researches in Engineering” unless otherwise noted on specific articles. Offset Typesetting No part of this publication may be reproduced or transmitted in any form or by any means, Global Journals Incorporated electronic or mechanical, including photocopy, recording, or any information 2nd, Lansdowne, Lansdowne Rd., Croydon-Surrey, storage and retrieval system, without written Pin: CR9 2ER, United Kingdom permission. The opinions and statements made in this Packaging & Continental Dispatching book are those of the authors concerned. Ultraculture has not verified and neither confirms nor denies any of the foregoing and Global Journals Pvt Ltd no warranty or fitness is implied. -
Chemical Tools for the Synthesis and Analysis of Glycans Thamrongsak Cheewawisuttichai [email protected]
The University of Maine DigitalCommons@UMaine Electronic Theses and Dissertations Fogler Library 8-2019 Chemical Tools for the Synthesis and Analysis of Glycans Thamrongsak Cheewawisuttichai [email protected] Follow this and additional works at: https://digitalcommons.library.umaine.edu/etd Recommended Citation Cheewawisuttichai, Thamrongsak, "Chemical Tools for the Synthesis and Analysis of Glycans" (2019). Electronic Theses and Dissertations. 3058. https://digitalcommons.library.umaine.edu/etd/3058 This Open-Access Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. CHEMICAL TOOLS FOR THE SYNTHESIS AND ANALYSIS OF GLYCANS By Thamrongsak Cheewawisuttichai B.S. Chulalongkorn University, 2012 A DISSERTATION Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy (in Chemistry) The Graduate School The University of Maine August 2019 Advisory Committee: Matthew Brichacek, Assistant Professor of Chemistry, Advisor Alice E. Bruce, Professor of Chemistry Barbara J.W. Cole, Professor of Chemistry Raymond C. Fort, Jr., Professor of Chemistry William M. Gramlich, Associate Professor of Chemistry Copyright 2019 Thamrongsak Cheewawisuttichai ii CHEMICAL TOOLS FOR THE SYNTHESIS AND ANALYSIS OF GLYCANS By Thamrongsak Cheewawisuttichai Dissertation Advisor: Dr. Matthew Brichacek An Abstract of the Dissertation Presented in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy (in Chemistry) August 2019 Glycans can be found in every living organism from plants to bacteria and viruses to human. It has been known that glycans are involved in many biological processes such as structural roles, specific recognition with glycan-binding proteins, and host-pathogen recognitions. -
Biosynthesis of Phenylpropane
Biosynthesis of Phenylpropane David Wang’s Wood Components Synthesis’s Class Phenylpropane n Phenylpropane derivatives are compounds composed of a C6-C3 carbon skeleton comprised of an aromatic ring with a propane side chain. n Phenylpropanoids are considered to be essential for plant life. n Dehydrodiconiferyl alcohol glucoside: dividing plant cells and acts as a cytokinin. n Flavonoid : polar transportation of auxin. n Flavonoids pigments: protect growing meristems against UV. n Isofavonoids and furanocoumarine: antibiotic and phytoalexin and protect plants from diseases. Lignin n Lignin is the second abundant and important organic substance in the plant world. n The incorporation of lignin into the cell walls of plants gave them the chance to conquer the Earth’s land surface. n Lignin increased the mechanical strength properties to such an extent that huge plants such as trees with heights of even more than 100 m can remain upright. Outline of the Biosynthetic Pathway of Phenylpropanoids Phenylpropanoid pathway n Shikimate pathway commonly involved in the biosynthesis of many aromatic compounds. n Biosynthesis of phenylalanine and tyrosine. n General phenylprpanoid pathway to afford 4-coumaroyl-Co-A. n Pathways for lignin and lignans etc. associated with general phenylpropanoid pathway. General Biosynthesis Pathway of Plant Phenolic compounds Malonic acid pathway Acetyl-CoA Phenolic compounds (C6-C3-C6)n D-erythose 4-phosphate C6-C3-C6 Shikimate Cinnamate pathway pathway C6-C1 C6-C3 (C6-C3)2 (C6-C3)n L-Phenylalanine Cinnamic acid Phosphoenol -
Comparative Transcriptional Analysis of Caffeoyl-Coenzyme a 3-O
POJ 5(2):184-193 (2012) ISSN:1836-3644 Comparative transcriptional analysis of caffeoyl-coenzyme A 3-O-methyltransferase from Hibiscus cannabinus L., during developmental stages in various tissues and stress regulation Ritesh Ghosh1, Bo Sung Choi1, Mi-Jeong Jeong2, Dong Won Bae3, Sung Chul Shin4, Sang Un Park5, Hyoun-Sub Lim6, Jongkee Kim7, Hanhong Bae1,* 1School of Biotechnology, Yeungnam University, Gyeongsan 712-749, Korea 2National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Korea 3Central Laboratory, Gyeongsang National University, Jinju, 660-701, Korea 4Department of Chemistry and Research Institute of Life Science, Gyeongsang National University, Jinju 660- 701, Korea 5Department of Crop Science, Chungnam National University, Daejeon 305-754, Korea 6Department of Applied Biology, Chungnam National University, Daejeon 305-764, Korea 7Department of Applied Plant Science, Chung-Ang University, Anseong 456-756, Korea *Corresponding author: [email protected] Abstract We have cloned a full-length gene, putatively encoding for caffeoyl-coenzyme A 3-O-methyltransferase (CCoAOMT), an important enzyme involved in lignin biosynthesis, from kenaf (Hibiscus cannabinus L.). Herein, we investigated the expression pattern of a CCoAOMT orthologue from various tissues and organs during development, and in response to different environmental cues. The full-length CCoAOMT orthologue of kenaf consists of a 744 bp open reading frame (ORF), encoding for 247 amino acids of 27.91 kDa and an isoelectric point (pI) of 5.43. The deduced amino acids of CCoAOMT evidenced a high degree of identity (up to 84%) with other plant CCoAOMT sequences. Phylogenetic analysis demonstrated its close relationship with the CCoAOMT of Gossypium hirsutum (ACQ59096). -
Accumulation and Secretion of Coumarinolignans and Other Coumarins in Arabidopsis Thaliana Roots in Response to Iron Deficiency at High Ph
fpls-07-01711 November 21, 2016 Time: 15:23 # 1 ORIGINAL RESEARCH published: 23 November 2016 doi: 10.3389/fpls.2016.01711 Accumulation and Secretion of Coumarinolignans and other Coumarins in Arabidopsis thaliana Roots in Response to Iron Deficiency at High pH Patricia Sisó-Terraza1†, Adrián Luis-Villarroya1†, Pierre Fourcroy2‡, Jean-François Briat2, Anunciación Abadía1, Frédéric Gaymard2, Javier Abadía1 and Ana Álvarez-Fernández1* 1 Plant Stress Physiology Group, Department of Plant Nutrition, Aula Dei Experimental Station, Consejo Superior de Investigaciones Científicas, Zaragoza, Spain, 2 Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Edited by: Recherche Scientifique, Institut National de la Recherche Agronomique, Université Montpellier, Montpellier, France Janin Riedelsberger, University of Talca, Chile Root secretion of coumarin-phenolic type compounds has been recently shown to Reviewed by: Stefano Cesco, be related to Arabidopsis thaliana tolerance to Fe deficiency at high pH. Previous Free University of Bozen-Bolzano, Italy studies revealed the identity of a few simple coumarins occurring in roots and exudates Dierk Scheel, of Fe-deficient A. thaliana plants, and left open the possible existence of other Leibniz Institute of Plant Biochemistry, Germany unknown phenolics. We used HPLC-UV/VIS/ESI-MS(TOF), HPLC/ESI-MS(ion trap) and *Correspondence: HPLC/ESI-MS(Q-TOF) to characterize (identify and quantify) phenolic-type compounds Ana Álvarez-Fernández accumulated in roots or secreted into the nutrient solution of A. thaliana plants in [email protected] response to Fe deficiency. Plants grown with or without Fe and using nutrient solutions †These authors have contributed equally to this work. buffered at pH 5.5 or 7.5 enabled to identify an array of phenolics.